1
|
Guo Z, Gao J, Liu L, Liu X. Quantitatively Predicting Effects of Exercise on Pharmacokinetics of Drugs Using a Physiologically Based Pharmacokinetic Model. Drug Metab Dispos 2024; 52:1271-1287. [PMID: 39251368 DOI: 10.1124/dmd.124.001809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/11/2024] Open
Abstract
Exercise significantly alters human physiological functions, such as increasing cardiac output and muscle blood flow and decreasing glomerular filtration rate (GFR) and liver blood flow, thereby altering the absorption, distribution, metabolism, and excretion of drugs. In this study, we aimed to establish a database of human physiological parameters during exercise and to construct equations for the relationship between changes in each physiological parameter and exercise intensity, including cardiac output, organ blood flow (e.g., muscle blood flow and kidney blood flow), oxygen uptake, plasma pH and GFR, etc. The polynomial equation P = ΣaiHRi was used for illustrating the relationship between the physiological parameters (P) and heart rate (HR), which served as an index of exercise intensity. The pharmacokinetics of midazolam, quinidine, digoxin, and lidocaine during exercise were predicted by a whole-body physiologically based pharmacokinetic (WB-PBPK) model and the developed database of physiological parameters following administration to 100 virtual subjects. The WB-PBPK model simulation results showed that most of the observed plasma drug concentrations fell within the 5th-95th percentiles of the simulations, and the estimated peak concentrations (Cmax) and area under the curve (AUC) of drugs were also within 0.5-2.0 folds of observations. Sensitivity analysis showed that exercise intensity, exercise duration, medication time, and alterations in physiological parameters significantly affected drug pharmacokinetics and the net effect depending on drug characteristics and exercise conditions. In conclusion, the pharmacokinetics of drugs during exercise could be quantitatively predicted using the developed WB-PBPK model and database of physiological parameters. SIGNIFICANCE STATEMENT: This study simulated real-time changes of human physiological parameters during exercise in the WB-PBPK model and comprehensively investigated pharmacokinetic changes during exercise following oral and intravenous administration. Furthermore, the factors affecting pharmacokinetics during exercise were also revealed.
Collapse
Affiliation(s)
- Zeyu Guo
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Jingjing Gao
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Li Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| | - Xiaodong Liu
- Department of Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
2
|
Strategy for the Prediction of Steady-State Exposure of Digoxin to Determine Drug-Drug Interaction Potential of Digoxin With Other Drugs in Digitalization Therapy. Am J Ther 2019; 26:e54-e65. [PMID: 26808357 DOI: 10.1097/mjt.0000000000000435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Digoxin, a narrow therapeutic index drug, is widely used in congestive heart failure. However, the digitalization therapy involves dose titration and can exhibit drug-drug interaction. Ctrough versus area under the plasma concentration versus time curve in a dosing interval of 24 hours (AUC0-24h) and Cmax versus AUC0-24h for digoxin were established by linear regression. The predictions of digoxin AUC0-24h values were performed using published Ctrough or Cmax with appropriate regression lines. The fold difference, defined as the quotient of the observed/predicted AUC0-24h values, was evaluated. The mean square error and root mean square error, correlation coefficient (r), and goodness of the fold prediction were used to evaluate the models. Both Ctrough versus AUC0-24h (r = 0.9215) and Cmax versus AUC0-24h models for digoxin (r = 0.7781) showed strong correlations. Approximately 93.8% of the predicted digoxin AUC0-24h values were within 0.76-fold to 1.25-fold difference for Ctrough model. In sharp contrast, the Cmax model showed larger variability with only 51.6% of AUC0-24h predictions within 0.76-1.25-fold difference. The r value for observed versus predicted AUC0-24h for Ctrough (r = 0.9551; n = 177; P < 0.001) was superior to the Cmax (r = 0.6134; n = 275; P < 0.001) model. The mean square error and root mean square error (%) for the Ctrough model were 11.95% and 16.2% as compared to 67.17% and 42.3% obtained for the Cmax model. Simple linear regression models for Ctrough/Cmax versus AUC0-24h were derived for digoxin. On the basis of statistical evaluation, Ctrough was superior to Cmax model for the prediction of digoxin AUC0-24h and can be potentially used in a prospective setting for predicting drug-drug interaction or lack of it.
Collapse
|
3
|
Peterson GM, Naunton M, Tichelaar LK, Gennari L. Lasofoxifene: selective estrogen receptor modulator for the prevention and treatment of postmenopausal osteoporosis. Ann Pharmacother 2011; 45:499-509. [PMID: 21467260 DOI: 10.1345/aph.1p604] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To review literature evaluating the pharmacology, pharmacokinetics, clinical efficacy, and adverse effects of lasofoxifene (CP-336156), a selective estrogen receptor modulator (SERM) that is not approved for use in the US. DATA SOURCES Literature was accessed through the MEDLINE and EMBASE databases (1985-June 2010) using the terms lasofoxifene and selective estrogen receptor modulators. Reference lists from retrieved articles were also manually reviewed. The Food and Drug Administration and Pfizer provided additional information. STUDY SELECTION AND DATA EXTRACTION All clinical trials evaluating lasofoxifene were included in this review. In addition, all articles evaluating the pharmacology, pharmacokinetics, and safety of lasofoxifene in humans were reviewed. DATA SYNTHESIS Lasofoxifene is a third-generation SERM with markedly higher in vitro and in vivo potency and oral bioavailability than other SERMs. The drug has produced significant improvements in bone density and biochemical markers of bone turnover in preclinical studies and in Phase 2 and 3 clinical trials. In these trials, lasofoxifene has shown a favorable safety profile, with adverse events including hot flushes, leg cramps, and increased vaginal moisture. One 2-year major comparative study in postmenopausal women determined that lasofoxifene and raloxifene were equally effective at increasing total hip bone mineral density (BMD), while lasofoxifene had a significantly greater effect on lumbar spine BMD. CONCLUSIONS Osteoporosis is a significant health problem. While the results of further clinical trials are needed to define the risks and benefits of treatment, particularly relating to fractures, lasofoxifene may prove to be an effective and well-tolerated therapeutic option for the prevention of bone loss in postmenopausal women.
Collapse
|
4
|
Gennari L, Merlotti D, Stolakis K, Nuti R. Lasofoxifene, from the preclinical drug discovery to the treatment of postmenopausal osteoporosis. Expert Opin Drug Discov 2011; 6:205-17. [DOI: 10.1517/17460441.2011.547188] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Abstract
Selective estrogen-receptor modulators (SERMs), which have estrogen-like effects on bone and "antiestrogen effects" on other tissues, have been in development for osteoporosis prevention and treatment in postmenopausal women as a safer alternative to long-term estrogen. We conducted a literature review of the skeletal and extraskeletal effects of lasofoxifene, a new generation SERM approved by the European Commission for osteoporosis treatment. Published data on the effects of lasofoxifene are based on 23 clinical pharmacology studies with over 10,000 participants from 17 phase 2 and 3 randomized controlled trials (RCTs). In RCTs, lasofoxifene decreases bone turnover markers (BTMs), increases bone mineral density (BMD) at the spine and hip, and decreases the incidence of vertebral and nonvertebral nonhip fractures compared with placebo. Compared with raloxifene, lasofoxifene gave greater decreases in BTMs, and greater increases in lumbar spine BMD. Lasofoxifene also decreased the risk of breast cancer, major coronary heart disease events, and stroke, but-similar to raloxifene-there was an increased risk of venous thromboembolism. In one trial, endometrial hypertrophy and uterine polyps were more common with lasofoxifene than with placebo, but endometrial cancer and hyperplasia were not. Lasofoxifene is probably most appropriate for use among women in their early or middle menopausal years (age 55-65) who have, or are at risk of developing, osteoporosis and in particular vertebral fractures. At the time of publication, lasofoxifene is not approved for use by the US Food and Drug Administration, and as such is not used in North America.
Collapse
|
6
|
Cook JA, Feng B, Fenner KS, Kempshall S, Liu R, Rotter C, Smith DA, Troutman MD, Ullah M, Lee CA. Refining the in vitro and in vivo critical parameters for P-glycoprotein, [I]/IC50 and [I2]/IC50, that allow for the exclusion of drug candidates from clinical digoxin interaction studies. Mol Pharm 2010; 7:398-411. [PMID: 20025245 DOI: 10.1021/mp900174z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The objective of this work was to further investigate the reasons for disconcordant clinical digoxin drug interactions (DDIs) particularly for false negative where in vitro data suggests no P-glycoprotein (P-gp) related DDI but a clinically relevant DDI is evident. Applying statistical analyses of binary classification and receiver operating characteristic (ROC), revised cutoff values for ratio of [I]/IC(50) < 0.1 and [I(2)]/IC(50) < 5 were identified to minimize the error rate, a reduction of false negative rate to 9% from 36% (based on individual ratios). The steady state total C(max) at highest dose of the inhibitor is defined as [I] and the ratio of the nominal maximal gastrointestinal concentration determined for highest dose per 250 mL volume defined [I(2)](.) We also investigated the reliability of the clinical data to see if recommendations can be made on values that would allow predictions of 25% change in digoxin exposure. The literature derived clinical digoxin interaction studies were statistically powered to detect relevant changes in exposure associated with digitalis toxicities. Our analysis identified that many co-meds administered with digoxin are cardiovascular (CV) agents. Moreover, our investigations also suggest that the presence of CV agents may alter cardiac output and/or kidney function that may act alone or are additional components to enhance digoxin exposure along with P-gp interaction. While we recommend digoxin as the probe substrate to define P-gp inhibitory potency for clinical assessment, we observed high concordance in P-gp inhibitory potency for calcein AM as a probe substrate.
Collapse
Affiliation(s)
- Jack A Cook
- Departments of Clinical Pharmacology, Pharmacokinetics, Groton/New London, Connecticut, Sandwich, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Gennari L, Merlotti D, De Paola V, Nuti R. Lasofoxifene: Evidence of its therapeutic value in osteoporosis. CORE EVIDENCE 2010; 4:113-29. [PMID: 20694069 PMCID: PMC2899785 DOI: 10.2147/ce.s6001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Osteoporosis is a skeletal disorder characterized by compromised bone strength and increased risk of fracture. It is a common disorder in elderly subjects and represents a major public health problem, affecting up to 40% postmenopausal women and 15% of men. Among the several therapeutical interventions, hormone replacement therapy (HRT) was traditionally seen as the gold standard for preventing osteoporotic fractures in postmenopausal women, as well as for the management of menopausal symptoms. However HRT, especially if administered long-term, may lead to an increased risk of breast and, when unopposed by progestins, endometrial cancers. Alternative therapies include bisphosphonates and raloxifene, a selective estrogen receptor modulator (SERM). While the former have been associated with suboptimal adherence, the latter was considerably less potent than estrogen and its effect in the prevention of nonvertebral fractures remain uncertain. AIMS The purpose of this article is to review the clinical trials of lasofoxifene, a new SERM for the treatment of postmenopausal osteoporosis. The medical literature was reviewed for appropriate articles containing the terms "lasofoxifene" and SERMs". EVIDENCE REVIEW There are three (phase II or phase III) clinical trials that clearly demonstrate efficacy and safety of this new SERM in the suppression of bone loss and the prevention of vertebral and nonvertebral fractures. Moreover, lasofoxifene treatment also reduced breast cancer risk and the occurrence of vaginal atrophy. PLACE IN THERAPY With its increased potency and efficacy on the prevention of nonvertebral fractures lasofoxifene may be an alternative and cost-effective therapy for osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Luigi Gennari
- Department of Internal Medicine, Endocrine-Metabolic Sciences and Biochemistry, University of Siena, Policlinico Le Scotte 53100-Siena, Italy
| | - Daniela Merlotti
- Department of Internal Medicine, Endocrine-Metabolic Sciences and Biochemistry, University of Siena, Policlinico Le Scotte 53100-Siena, Italy
| | - Vincenzo De Paola
- Department of Internal Medicine, Endocrine-Metabolic Sciences and Biochemistry, University of Siena, Policlinico Le Scotte 53100-Siena, Italy
| | - Ranuccio Nuti
- Department of Internal Medicine, Endocrine-Metabolic Sciences and Biochemistry, University of Siena, Policlinico Le Scotte 53100-Siena, Italy
| |
Collapse
|
8
|
Gennari L, Merlotti D, Nuti R. Selective estrogen receptor modulator (SERM) for the treatment of osteoporosis in postmenopausal women: focus on lasofoxifene. Clin Interv Aging 2010; 5:19-29. [PMID: 20169039 PMCID: PMC2817938 DOI: 10.2147/cia.s6083] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Selective estrogen receptor modulators (SERMs) represent a class with a growing number of compounds that act as either estrogen receptor agonists or antagonists in a tissue-specific manner. This article reviews lasofoxifene, a new-generation SERM that has completed phase III development for the prevention and treatment of osteoporosis in postmenopausal women. Consistent with preclinical observations, this new SERM demonstrated improved skeletal efficacy over raloxifene and at an oral dose of 0.5 mg/day was effective in the prevention of both vertebral and nonvertebral fractures in postmenopausal women with osteoporosis. At the same dosage, lasofoxifene treatment also reduced estrogen receptor-positive breast cancer risk and the occurrence of vaginal atrophy, but, like the other SERMs, was associated with hot flushes and an increased risk of venous thromboembolic events. With its increased efficacy on the prevention of nonvertebral fractures than current available SERMs and its positive effects on the vagina, this new compound may represent an alternative and cost-effective therapy for osteoporosis in postmenopausal women.
Collapse
Affiliation(s)
- Luigi Gennari
- Department of Internal Medicine, Endocrine-Metabolic Sciences and Biochemistry, University of Siena, Siena, Italy.
| | | | | |
Collapse
|
9
|
Lewiecki EM. Lasofoxifene for the prevention and treatment of postmenopausal osteoporosis. Ther Clin Risk Manag 2009; 5:817-27. [PMID: 19898646 PMCID: PMC2773750 DOI: 10.2147/tcrm.s5645] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Indexed: 01/23/2023] Open
Abstract
Lasofoxifene is a selective estrogen receptor modulator (estrogen agonist/antagonist) that has completed phase III trials to evaluate safety and efficacy for the prevention and treatment of osteoporosis and for the treatment of vaginal atrophy in postmenopausal women. In postmenopausal women with low or normal bone mineral density (BMD), lasofoxifene increased BMD at the lumbar spine and hip and reduced bone turnover markers compared with placebo. In women with postmenopausal osteoporosis, lasofoxifene increased BMD, reduced bone turnover markers, reduced the risk of vertebral and nonvertebral fractures, and decreased the risk of estrogen receptor-positive breast cancer. In postmenopausal women with low bone mass, lasofoxifene improved the signs and symptoms of vulvovaginal atrophy. Clinical trials show that lasofoxifene is generally well tolerated with mild to moderate adverse events that commonly resolve even with drug continuation. Lasofoxifene has been associated with an increase in the incidence of venous thromboembolic events, hot flushes, muscle spasm, and vaginal bleeding. It is approved for the treatment of postmenopausal women at increased risk for fracture in some countries and is in the regulatory review process in others.
Collapse
Affiliation(s)
- E Michael Lewiecki
- New Mexico Clinical Research & Osteoporosis Center, Albuquerque, NM, USA
| |
Collapse
|
10
|
Gennari L. Lasofoxifene, a new selective estrogen receptor modulator for the treatment of osteoporosis and vaginal atrophy. Expert Opin Pharmacother 2009; 10:2209-20. [DOI: 10.1517/14656560903127241] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Huledal G, Nilsson D, Kågedal M, Reinholdsson I, Cheng YF, Svensson H, Borgå O, van Hout M. Effect of NXY-059, a novel neuroprotectant, on the pharmacokinetics of a single dose of digoxin in healthy subjects. Curr Med Res Opin 2007; 23:1531-9. [PMID: 17559748 DOI: 10.1185/030079907x199646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE NXY-059 is a novel free-radical trapping neuroprotectant. Digoxin treatment is common in acute ischaemic stroke, the intended patient population for NXY-059. Since both digoxin and NXY-059 are eliminated primarily renally, with a substantial contribution by active renal secretion, and because digoxin has a narrow therapeutic window, this open, randomised, crossover, two-period study investigated whether NXY-059 affects the pharmacokinetics (PK) of digoxin. RESEARCH DESIGN AND METHODS Twenty-two healthy subjects received 0.5 mg oral digoxin 2 h after the start of 60-h intravenous infusions of NXY-059 and placebo separated by a 14-day washout. Blood and urine were collected for 60 h. Digoxin concentrations were measured by a novel liquid chromatography-mass spectrometry assay. MAIN OUTCOME MEASURES The ratio of the geometric mean (90% confidence interval) between NXY-059 and placebo for the digoxin area under the concentration-versus-time curve was 0.91 (0.83-0.99) and was within the predefined range for no interaction (0.80-1.25). No safety concerns were raised in the study. No serious adverse events were recorded. The most common adverse event was headache with similar frequencies in the two treatments. CONCLUSIONS NXY-059 had no clinically significant effect on the PK of digoxin.
Collapse
|
12
|
Gennari L, Merlotti D, Martini G, Nuti R. Lasofoxifene: a third-generation selective estrogen receptor modulator for the prevention and treatment of osteoporosis. Expert Opin Investig Drugs 2006; 15:1091-103. [PMID: 16916275 DOI: 10.1517/13543784.15.9.1091] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This article reviews lasofoxifene, a new-generation selective estrogen receptor modulator (SERM) that is currently in Phase III development for the prevention and treatment of osteoporosis in postmenopausal women. This compound selectively binds to both of the estrogen receptors with a high affinity and a median inhibitory concentration that is similar to that seen with estradiol and > or = 10-fold higher than those reported for other SERMs (raloxifene and tamoxifen). Lasofoxifene has a remarkably improved oral bioavailability with respect to other SERMs due to increased resistance to intestinal wall glucuronidation. In both preclinical and short-term studies, the compound showed a favourable safety profile and demonstrated a proven efficacy in preventing bone loss and lowering cholesterol levels. Dose modelling from Phase II studies allowed the selection of lasofoxifene 0.25 mg/day as the lowest fully effective dose.
Collapse
Affiliation(s)
- Luigi Gennari
- University of Siena, Department of Internal Medicine, Endocrine-Metabolic Sciences and Biochemistry,Viale Bracci 1, 53100 Siena, Italy.
| | | | | | | |
Collapse
|