1
|
Diamond JR, Boni V, Lim E, Nowakowski G, Cordoba R, Morillo D, Valencia R, Genvresse I, Merz C, Boix O, Frigault MM, Greer JM, Hamdy AM, Huang X, Izumi R, Wong H, Moreno V. First-in-human dose escalation study of cyclin-dependent kinase-9 inhibitor VIP152 in patients with advanced malignancies shows early signs of clinical efficacy. Clin Cancer Res 2022; 28:1285-1293. [PMID: 35046056 DOI: 10.1158/1078-0432.ccr-21-3617] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE To report on the first-in-human phase I study of VIP152 (NCT02635672), a potent and highly selective CDK9 inhibitor. PATIENTS AND METHODS Adults with solid tumors or aggressive non-Hodgkin lymphoma (NHL) who were refractory to or had exhausted all available therapies received VIP152 monotherapy as a 30-minute intravenous, once weekly infusion, as escalating doses (5, 10, 15, 22.5, or 30 mg in 21-day cycles) until the maximum tolerated dose (MTD) was determined. RESULTS Thirty-seven patients received {greater than or equal to} 1 VIP152 dose, with 30 mg identified as the MTD based on dose-limiting toxicity of grade 3/4 neutropenia. The most common adverse events were nausea and vomiting (75.7% and 56.8%, respectively), all of grade 1/2 severity. Of the most common events, Grade 3/4 events occurring in > 1 patient were neutropenia (22%), anemia (11%), abdominal pain (8%), increased alkaline phosphatase (8%), and hyponatremia (8%). Day 1 exposure for the MTD exceeded the predicted minimum therapeutic exposure and reproducibly achieved maximal pathway modulation; no accumulation occurred after multiple doses. Seven of 30 patients with solid tumors had stable disease (including 9.5 and 16.8 months in individual patients with pancreatic cancer and salivary gland cancer, respectively), and 2 of 7 patients with high-grade B-cell lymphoma with MYC and BCL2/BCL6 translocations (HGL) achieved durable complete metabolic remission (ongoing at study discontinuation, after 3.7 and 2.3 years of treatment). CONCLUSION VIP152 monotherapy, administered intravenously once weekly, demonstrated a favorable safety profile and evidence of clinical benefit in patients with advanced HGL and solid tumors.
Collapse
Affiliation(s)
| | - Valentina Boni
- Department of Oncology, START Madrid-CIOCC HM University Hospital Sanchinarro
| | - Emerson Lim
- Department of Medicine, Division of Hematology/Oncology, Columbia University Medical Center
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Victor Moreno
- Medical Oncology, START Madrid-FJD, Hospital Universitario Fundacion Jimenez Diaz
| |
Collapse
|
2
|
Yap TA, Tan DSP, Terbuch A, Caldwell R, Guo C, Goh BC, Heong V, Haris NRM, Bashir S, Drew Y, Hong DS, Meric-Bernstam F, Wilkinson G, Hreiki J, Wengner AM, Bladt F, Schlicker A, Ludwig M, Zhou Y, Liu L, Bordia S, Plummer R, Lagkadinou E, de Bono JS. First-in-Human Trial of the Oral Ataxia Telangiectasia and RAD3-Related (ATR) Inhibitor BAY 1895344 in Patients with Advanced Solid Tumors. Cancer Discov 2020; 11:80-91. [PMID: 32988960 DOI: 10.1158/2159-8290.cd-20-0868] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/31/2020] [Accepted: 08/21/2020] [Indexed: 11/16/2022]
Abstract
Targeting the ataxia telangiectasia and RAD3-related (ATR) enzyme represents a promising anticancer strategy for tumors with DNA damage response (DDR) defects and replication stress, including inactivation of ataxia telangiectasia mutated (ATM) signaling. We report the dose-escalation portion of the phase I first-in-human trial of oral ATR inhibitor BAY 1895344 intermittently dosed 5 to 80 mg twice daily in 21 patients with advanced solid tumors. The MTD was 40 mg twice daily 3 days on/4 days off. Most common adverse events were manageable and reversible hematologic toxicities. Partial responses were achieved in 4 patients and stable disease in 8 patients. Median duration of response was 315.5 days. Responders had ATM protein loss and/or deleterious ATM mutations and received doses ≥40 mg twice daily. Overall, BAY 1895344 is well tolerated, with antitumor activity against cancers with certain DDR defects, including ATM loss. An expansion phase continues in patients with DDR deficiency. SIGNIFICANCE: Oral BAY 1895344 was tolerable, with antitumor activity in heavily pretreated patients with various advanced solid tumors, particularly those with ATM deleterious mutations and/or loss of ATM protein; pharmacodynamic results supported a mechanism of action of increased DNA damage. Further study is warranted in this patient population.See related commentary by Italiano, p. 14.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Timothy A Yap
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S P Tan
- National University Cancer Institute and National University Hospital and Cancer Science Institute, National University of Singapore, Singapore
| | - Angelika Terbuch
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Sutton, United Kingdom.,Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Reece Caldwell
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Sutton, United Kingdom
| | - Christina Guo
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Sutton, United Kingdom
| | - Boon Cher Goh
- National University Cancer Institute and National University Hospital and Cancer Science Institute, National University of Singapore, Singapore
| | - Valerie Heong
- National University Cancer Institute and National University Hospital and Cancer Science Institute, National University of Singapore, Singapore
| | - Noor R Md Haris
- Translational and Clinical Research Institute, Newcastle University and Northern Centre for Cancer Care, Newcastle, United Kingdom
| | - Saira Bashir
- Translational and Clinical Research Institute, Newcastle University and Northern Centre for Cancer Care, Newcastle, United Kingdom
| | - Yvette Drew
- Translational and Clinical Research Institute, Newcastle University and Northern Centre for Cancer Care, Newcastle, United Kingdom
| | - David S Hong
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | | | - Joseph Hreiki
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey
| | | | | | | | | | - Yinghui Zhou
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey
| | - Li Liu
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey
| | - Sonal Bordia
- Bayer HealthCare Pharmaceuticals, Inc., Whippany, New Jersey
| | - Ruth Plummer
- Translational and Clinical Research Institute, Newcastle University and Northern Centre for Cancer Care, Newcastle, United Kingdom
| | | | - Johann S de Bono
- The Royal Marsden NHS Foundation Trust and The Institute of Cancer Research, Sutton, United Kingdom.
| |
Collapse
|
3
|
Safety and efficacy of BAY1436032 in IDH1-mutant AML: phase I study results. Leukemia 2020; 34:2903-2913. [PMID: 32733012 PMCID: PMC7584476 DOI: 10.1038/s41375-020-0996-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022]
Abstract
The mutant IDH1 (mIDH1) inhibitor BAY1436032 demonstrated robust activity in preclinical AML models, supporting clinical evaluation. In the current dose-escalation study, BAY1436032 was orally administered to 27 mIDH1 AML subjects across 4 doses ranging from 300 to 1500 mg twice-daily. BAY1436032 exhibited a relatively short half-life and apparent non-linear pharmacokinetics after continuous dosing. Most subjects experienced only partial target inhibition as indicated by plasma R-2HG levels. BAY1436032 was safe and a maximum tolerated dose was not identified. The median treatment duration for all subjects was 3.0 months (0.49–8.5). The overall response rate was 15% (4/27; 1 CRp, 1 PR, 2 MLFS), with responding subjects experiencing a median treatment duration of 6.0 months (3.9–8.5) and robust R-2HG decreases. Thirty percent (8/27) achieved SD, with a median treatment duration of 5.5 months (3.1–7.0). Degree of R-2HG inhibition and clinical benefit did not correlate with dose. Although BAY1436032 was safe and modestly effective as monotherapy, the low overall response rate and incomplete target inhibition achieved at even the highest dose tested do not support further clinical development of this investigational agent in AML.
Collapse
|
4
|
Wanitjirattikal P, Shi C. A Bayesian zero-inflated binomial regression and its application in dose-finding study. J Biopharm Stat 2019; 30:322-333. [PMID: 31693441 DOI: 10.1080/10543406.2019.1684313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In early phase clinical trial, finding maximum-tolerated dose (MTD) is a very important goal. Many researches show that finding a correct MTD can improve drug efficacy and safety significantly. Usually, dose-finding trials start from very low doses, so in many cases, more than 50% patients or cohorts do not have dose-limiting toxicity (DLT), but DLT may occur suddenly and increase fast along with just two or three doses. Although some fantastic models were built to find MTD, little consideration was given to those '0 DLTs' and the 'jump' of DLTs. In this paper, we developed a Bayesian zero-inflated binomial regression for dose-finding study, which analyses dose-finding data from two aspects: 1) observation of only zeros, 2) number of DLTs based on binomial distribution, so it can help us analyse if the cohorts without DLT have potential possibility to have DLT and fit the 'jump' of DLTs.
Collapse
Affiliation(s)
- Puntipa Wanitjirattikal
- Department of Statistics, King Mongkut'sInstitute of Technology Ladkrabang, Bangkok, Thailand
| | - Chenyang Shi
- Department of Biostatistics, Celgene Corporation, Berkeley Heights, USA
| |
Collapse
|
5
|
Krause A, Henrich A, Dingemanse J. The Case for an Unblinded Modeler in Early Clinical Development. J Clin Pharmacol 2019; 60:369-377. [PMID: 31552685 DOI: 10.1002/jcph.1526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/02/2019] [Indexed: 11/05/2022]
Abstract
The current trend for clinical pharmacology is toward more complex studies (eg, umbrella protocols covering single and multiple ascending doses, food effect, metabolism pathways), requiring many decisions to be made during their conduct. This article discusses guidance of such early clinical studies by modeling and simulation. The ability to make use of all available information each time new data become available during the study requires the modeling scientist to be unblinded. This must of course not jeopardize the blinding of the clinical team, and this article discusses how unblinding can be prevented. Although modeling and simulation are established for guidance of the drug development process overall, they are not frequently used for guidance on a small scale, that is, during studies with the largest uncertainty, the first-in-human studies. Application of a quantitative model backbone makes early clinical drug development a more efficient process and provides additional safety for healthy subjects and patients. Real clinical impact is illustrated by 3 case studies that show different contributions from unblinded modeling: dose escalation based on safety data, modeling and predicting with explicit incorporation of in vitro data, and dose escalation supported by unblinded analysis of adverse event data, which resulted in new insights of the clinical team without being unblinded and made it possible to proceed with dose escalation and to extend the study with an up-titration group.
Collapse
Affiliation(s)
- Andreas Krause
- Idorsia Pharmaceuticals Ltd, Clinical Pharmacology, Allschwil, Switzerland
| | - Andrea Henrich
- Idorsia Pharmaceuticals Ltd, Clinical Pharmacology, Allschwil, Switzerland
| | - Jasper Dingemanse
- Idorsia Pharmaceuticals Ltd, Clinical Pharmacology, Allschwil, Switzerland
| |
Collapse
|
6
|
Rogaratinib in patients with advanced cancers selected by FGFR mRNA expression: a phase 1 dose-escalation and dose-expansion study. Lancet Oncol 2019; 20:1454-1466. [PMID: 31405822 DOI: 10.1016/s1470-2045(19)30412-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND The clinical activity of fibroblast growth factor receptor (FGFR) inhibitors seems restricted to cancers harbouring rare FGFR genetic aberrations. In preclinical studies, high tumour FGFR mRNA expression predicted response to rogaratinib, an oral pan-FGFR inhibitor. We aimed to assess the safety, maximum tolerated dose, recommended phase 2 dose, pharmacokinetics, and preliminary clinical activity of rogaratinib. METHODS We did a phase 1 dose-escalation and dose-expansion study of rogaratinib in adults with advanced cancers at 22 sites in Germany, Switzerland, South Korea, Singapore, Spain, and France. Eligible patients were aged 18 years or older, and were ineligible for standard therapy, with an Eastern Cooperative Oncology Group performance status of 0-2, a life expectancy of at least 3 months, and at least one measurable or evaluable lesion according to Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. During dose escalation, rogaratinib was administered orally twice daily at 50-800 mg in continuous 21-day cycles using a model-based dose-response analysis (continuous reassessment method). In the dose-expansion phase, all patients provided an archival formalin-fixed paraffin-embedded (FFPE) tumour biopsy or consented to a new biopsy at screening for the analysis of FGFR1-3 mRNA expression. In the dose-expansion phase, rogaratinib was given at the recommended dose for expansion to patients in four cohorts: urothelial carcinoma, head and neck squamous-cell cancer (HNSCC), non-small-cell lung cancer (NSCLC), and other solid tumour types. Primary endpoints were safety and tolerability, determination of maximum tolerated dose including dose-limiting toxicities and determination of recommended phase 2 dose, and pharmacokinetics of rogaratinib. Safety analyses were reported in all patients who received at least one dose of rogaratinib. Patients who completed cycle 1 or discontinued during cycle 1 due to an adverse event or dose-limiting toxicity were included in the evaluation of recommended phase 2 dose. Efficacy analyses were reported for all patients who received at least one dose of study drug and who had available post-baseline efficacy data. This ongoing study is registered with ClinicalTrials.gov, number NCT01976741, and is fully recruited. FINDINGS Between Dec 30, 2013, and July 5, 2017, 866 patients were screened for FGFR mRNA expression, of whom 126 patients were treated (23 FGFR mRNA-unselected patients in the dose-escalation phase and 103 patients with FGFR mRNA-overexpressing tumours [52 patients with urothelial carcinoma, eight patients with HNSCC, 20 patients with NSCLC, and 23 patients with other tumour types] in the dose-expansion phase). No dose-limiting toxicities were reported and the maximum tolerated dose was not reached; 800 mg twice daily was established as the recommended phase 2 dose and was selected for the dose-expansion phase. The most common adverse events of any grade were hyperphosphataemia (in 77 [61%] of 126 patients), diarrhoea (in 65 [52%]), and decreased appetite (in 48 [38%]); and the most common grade 3-4 adverse events were fatigue (in 11 [9%] of 126 patients) and asymptomatic increased lipase (in 10 [8%]). Serious treatment-related adverse events were reported in five patients (decreased appetite and diarrhoea in one patient with urothelial carcinoma, and acute kidney injury [NSCLC], hypoglycaemia [other solid tumours], retinopathy [urothelial carcinoma], and vomiting [urothelial carcinoma] in one patient each); no treatment-related deaths occurred. Median follow-up after cessation of treatment was 32 days (IQR 25-36 days). In the expansion cohorts, 15 (15%; 95% CI 8·6-23·5) out of 100 evaluable patients achieved an objective response, with responses recorded in all four expansion cohorts (12 in the urothelial carcinoma cohort and one in each of the other three cohorts), and in ten (67%) of 15 FGFR mRNA-overexpressing tumours without apparent FGFR genetic aberration. INTERPRETATION Rogaratinib was well tolerated and clinically active against several types of cancer. Selection by FGFR mRNA expression could be a useful additional biomarker to identify a broader patient population who could be eligible for FGFR inhibitor treatment. FUNDING Bayer AG.
Collapse
|
7
|
Dingemanse J, Krause A. Impact of pharmacokinetic-pharmacodynamic modelling in early clinical drug development. Eur J Pharm Sci 2017; 109S:S53-S58. [PMID: 28535992 DOI: 10.1016/j.ejps.2017.05.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 05/19/2017] [Indexed: 12/27/2022]
Abstract
Early clinical pharmacology studies in healthy subjects are often dissociated from patient studies. In this review we encourage the use of modelling and simulation techniques to generate valuable information at an early stage of clinical development. We illustrate these principles by presenting 5 different case studies from a spectrum of therapeutic drug classes. Their application leads to a better understanding of drug characteristics early on, thereby facilitating the design of dose-finding studies in the target patient population and saving resources.
Collapse
Affiliation(s)
- Jasper Dingemanse
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, 4123 Allschwil, Switzerland.
| | - Andreas Krause
- Department of Clinical Pharmacology, Actelion Pharmaceuticals Ltd, Gewerbestrasse 16, 4123 Allschwil, Switzerland
| |
Collapse
|
8
|
Guédé D, Reigner B, Vandenhende F, Derks M, Beyer U, Jordan P, Worth E, Diack C, Frey N, Peck R. Bayesian adaptive designs in single ascending dose trials in healthy volunteers. Br J Clin Pharmacol 2015; 78:393-400. [PMID: 24528176 DOI: 10.1111/bcp.12344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 01/25/2014] [Indexed: 11/29/2022] Open
Abstract
AIM Recent publications indicate a strong interest in applying Bayesian adaptive designs in first time in humans (FTIH) studies outside of oncology. The objective of the present work was to assess the performance of a new approach that includes Bayesian adaptive design in single ascending dose (SAD) trials conducted in healthy volunteers, in comparison with a more traditional approach. METHODS A trial simulation approach was used and seven different scenarios of dose-response were tested. RESULTS The new approach provided less biased estimates of maximum tolerated dose (MTD). In all scenarios, the number of subjects needed to define a MTD was lower with the new approach than with the traditional approach. With respect to duration of the trials, the two approaches were comparable. In all scenarios, the number of subjects exposed to a dose greater than the actual MTD was lower with the new approach than with the traditional approach. CONCLUSIONS The new approach with Bayesian adaptive design shows a very good performance in the estimation of MTD and in reducing the total number of healthy subjects. It also reduces the number of subjects exposed to doses greater than the actual MTD.
Collapse
|
9
|
Tolerability and pharmacokinetics of ACT-280778, a novel nondihydropyridine dual L/T-type calcium channel blocker: early clinical studies in healthy male subjects using adaptive designs. J Cardiovasc Pharmacol 2013; 63:120-31. [PMID: 24126567 DOI: 10.1097/fjc.0000000000000030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
ACT-280778 is a novel nondihydropyridine dual L/T-type calcium channel blocker. Two clinical studies (AC-067-101 and AC-067-102) were conducted to characterize its safety, tolerability, and pharmacokinetics in healthy male subjects after oral administration of single and multiple doses. Both trials were single-center, randomized, double-blind, placebo-controlled, adaptive design, ascending-dose studies, in which ACT-280778 was administrated as single doses of 2, 5, 15, or 40 mg, or as once-daily doses of 5 or 15 mg for 7 days. Single and multiple doses up to and including 15 mg were well tolerated, and no serious or severe adverse event was reported in either study. A single dose of 40 mg was associated with abnormal electrocardiogram findings resulting in the discontinuation of further treatment at this dose or higher doses. ACT-280778 was rapidly absorbed, and larger than dose-proportional increases of the maximum plasma concentration and area under the plasma concentration-time curve were observed. Food intake delayed the time to maximum plasma concentration and doubled exposure. Urinary excretion of unchanged ACT-280778 was negligible, and accumulation at steady state was modest. Overall, pharmacokinetic and tolerability profiles of ACT-280778 observed in these 2 studies warranted further evaluation of ACT-280778 in a proof-of-concept study in patients with hypertension.
Collapse
|