1
|
Kwiatkowski D, Schuch LF, Klaus NM, Martins MD, Hilgert JB, Hashizume LN. Oral microbiota in head and neck cancer patients during radiotherapy: a systematic review. Support Care Cancer 2025; 33:127. [PMID: 39875747 DOI: 10.1007/s00520-025-09191-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/21/2025] [Indexed: 01/30/2025]
Abstract
PURPOSE Radiotherapy (RT) in the head and neck (HN) area causes a series of oral complications and the oral microbiota may play an important role in these complications. The aim of this systematic review was to explore alterations in the oral microbiota among individuals undergoing RT in the HN region. METHODS A comprehensive search across six databases and grey literature was made. No limitations were imposed on language or publication year. Studies meeting the inclusion and exclusion criteria were considered for inclusion. RESULTS Twenty-six articles met the criteria for inclusion in this systematic review. These studies varied in terms of radiation doses administered (ranging from 40 Gy to 82.60 Gy), microorganisms analyzed, locations within the oral cavity examined, and timing of assessments. Additionally, different methods of analysis were employed by the studies. Regarding oral microbiota changes, post-RT, there was significant increase in Candida species. Bacterial microbiota experienced increases, notably including Streptococcus mutans (S.mutans) and Lactobacillus, with dynamic fluctuations. CONCLUSION RT in the HN region induces significant changes in oral microbiota, including increases in S. mutans, Lactobacillus and Candida species colonization, and decreases in beneficial bacteria such as Neisseria and Fusobacteria. These microbiota changes may contribute to oral complications post-RT, emphasizing the need for preventive measures and targeted therapies to manage oral health in HN cancer patients undergoing RT.
Collapse
Affiliation(s)
- Deise Kwiatkowski
- Department of Preventive and Social Dentistry, Faculty of Dentistry, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Lauren Frenzel Schuch
- Department of Diagnosis in Pathology and Oral Medicine, Molecular Pathology Area, School of Dentistry, Universidad de La Republica, Montevideo, Uruguay
| | - Natália Mincato Klaus
- Department of Preventive and Social Dentistry, Faculty of Dentistry, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Manoela Domingues Martins
- Department of Oral Pathology, Faculty of Dentistry, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, Campinas University, Piracicaba, SP, Brazil
| | - Juliana Balbinot Hilgert
- Department of Preventive and Social Dentistry, Faculty of Dentistry, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil
| | - Lina Naomi Hashizume
- Department of Preventive and Social Dentistry, Faculty of Dentistry, Federal University of Rio Grande Do Sul, Porto Alegre, Rio Grande Do Sul, Brazil.
| |
Collapse
|
2
|
Haufschild T, Kallscheuer N, Hammer J, Kohn T, Kabuu M, Jogler M, Wohlfarth N, Rohde M, van Teeseling MCF, Jogler C. An untargeted cultivation approach revealed Pseudogemmatithrix spongiicola gen. nov., sp. nov., and sheds light on the gemmatimonadotal mode of cell division: binary fission. Sci Rep 2024; 14:16764. [PMID: 39034380 PMCID: PMC11271474 DOI: 10.1038/s41598-024-67408-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024] Open
Abstract
Members of the phylum Gemmatimonadota can account for up to 10% of the phylogenetic diversity in bacterial communities. However, a detailed investigation of their cell biology and ecological roles is restricted by currently only six characterized species. By combining low-nutrient media, empirically determined inoculation volumes and long incubation times in a 96-well plate cultivation platform, we isolated two strains from a limnic sponge that belong to this under-studied phylum. The characterization suggests that the two closely related strains constitute a novel species of a novel genus, for which we introduce the name Pseudogemmatithrix spongiicola. The here demonstrated isolation of novel members from an under-studied bacterial phylum substantiates that the cultivation platform can provide access to axenic bacterial cultures from various environmental samples. Similar to previously described members of the phylum, the novel isolates form spherical appendages at the cell poles that were believed to be daughter cells resulting from asymmetric cell division by budding. However, time-lapse microscopy experiments and quantitative image analysis showed that the spherical appendages never grew or divided. Although the role of these spherical cells remains enigmatic, our data suggests that cells of the phylum Gemmatimonadota divide via FtsZ-based binary fission with different division plane localization patterns than in other bacterial phyla.
Collapse
Affiliation(s)
- Tom Haufschild
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicolai Kallscheuer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Jonathan Hammer
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Timo Kohn
- Leibniz Institute DSMZ, Brunswick, Germany
| | - Moses Kabuu
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Mareike Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Nicole Wohlfarth
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Brunswick, Germany
| | - Muriel C F van Teeseling
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Christian Jogler
- Department of Microbial Interactions, Institute of Microbiology, Friedrich Schiller University, Jena, Germany.
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University, Jena, Germany.
| |
Collapse
|
3
|
Powell T, Sumner DY, Jungblut AD, Hawes I, Mackey T, Grettenberger C. Metagenome-assembled bacterial genomes from benthic microbial mats in ice-covered Lake Vanda, Antarctica. Microbiol Resour Announc 2024; 13:e0125023. [PMID: 38587419 PMCID: PMC11080526 DOI: 10.1128/mra.01250-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/10/2024] [Indexed: 04/09/2024] Open
Abstract
We recovered 57 bacterial metagenome-assembled genomes (MAGs) from benthic microbial mat pinnacles from Lake Vanda, Antarctica. These MAGs provide access to genomes from polar environments and can assist in culturing and utilizing these Antarctic bacteria.
Collapse
Affiliation(s)
- Tyler Powell
- Department of Earth and Planetary Sciences, University of California, Davis, USA
- Microbiology Graduate Group, University of California, Davis, USA
| | - Dawn Y. Sumner
- Department of Earth and Planetary Sciences, University of California, Davis, USA
| | - Anne D. Jungblut
- Department of Sciences, The Natural History Museum, London, United Kingdom
| | - Ian Hawes
- Coastal Marine Field Station, University of Waikato, Tauranga, New Zealand
| | - Tyler Mackey
- Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico, USA
| | - Christen Grettenberger
- Department of Earth and Planetary Sciences, University of California, Davis, USA
- Department of Environmental Toxicology, University of California, Davis, USA
| |
Collapse
|
4
|
Gao H, Liu Q, Wang X, Li T, Li H, Li G, Tan L, Chen Y. Deciphering the role of female reproductive tract microbiome in reproductive health: a review. Front Cell Infect Microbiol 2024; 14:1351540. [PMID: 38562966 PMCID: PMC10982509 DOI: 10.3389/fcimb.2024.1351540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Relevant studies increasingly indicate that female reproductive health is confronted with substantial challenges. Emerging research has revealed that the microbiome interacts with the anatomy, histology, and immunity of the female reproductive tract, which are the cornerstone of maintaining female reproductive health and preventing adverse pregnancy outcomes. Currently, the precise mechanisms underlying their interaction and impact on physiological functions of the reproductive tract remain elusive, constituting a prominent area of investigation within the field of female reproductive tract microecology. From this new perspective, we explore the mechanisms of interactions between the microbiome and the anatomy, histology, and immunity of the female reproductive tract, factors that affect the composition of the microbiome in the female reproductive tract, as well as personalized medicine approaches in managing female reproductive tract health based on the microbiome. This study highlights the pivotal role of the female reproductive tract microbiome in maintaining reproductive health and influencing the occurrence of reproductive tract diseases. These findings support the exploration of innovative approaches for the prevention, monitoring and treatment of female reproductive tract diseases based on the microbiome.
Collapse
Affiliation(s)
- Hong Gao
- Nursing Department, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
- Ottawa Hospital Research Institute, The Ottawa Hospital, Ottawa, ON, Canada
| | - Qiao Liu
- School of Nursing, University of South China, Hengyang, China
| | - Xiaolan Wang
- Center for a Combination of Obstetrics and Gynecology and Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Li
- Department of Obstetrics, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Huanhuan Li
- Department of Gynaecology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Genlin Li
- Center for a Combination of Obstetrics and Gynecology and Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Lingling Tan
- Nursing Department, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yahui Chen
- School of Nursing, University of South China, Hengyang, China
| |
Collapse
|
5
|
Cantin LJ, Dunning Hotopp JC, Foster JM. Improved metagenome assemblies through selective enrichment of bacterial genomic DNA from eukaryotic host genomic DNA using ATAC-seq. Front Microbiol 2024; 15:1352378. [PMID: 38426058 PMCID: PMC10902005 DOI: 10.3389/fmicb.2024.1352378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Genomics can be used to study the complex relationships between hosts and their microbiota. Many bacteria cannot be cultured in the laboratory, making it difficult to obtain adequate amounts of bacterial DNA and to limit host DNA contamination for the construction of metagenome-assembled genomes (MAGs). For example, Wolbachia is a genus of exclusively obligate intracellular bacteria that live in a wide range of arthropods and some nematodes. While Wolbachia endosymbionts are frequently described as facultative reproductive parasites in arthropods, the bacteria are obligate mutualistic endosymbionts of filarial worms. Here, we achieve 50-fold enrichment of bacterial sequences using ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) with Brugia malayi nematodes, containing Wolbachia (wBm). ATAC-seq uses the Tn5 transposase to cut and attach Illumina sequencing adapters to accessible DNA lacking histones, typically thought to be open chromatin. Bacterial and mitochondrial DNA in the lysates are also cut preferentially since they lack histones, leading to the enrichment of these sequences. The benefits of this include minimal tissue input (<1 mg of tissue), a quick protocol (<4 h), low sequencing costs, less bias, correct assembly of lateral gene transfers and no prior sequence knowledge required. We assembled the wBm genome with as few as 1 million Illumina short paired-end reads with >97% coverage of the published genome, compared to only 12% coverage with the standard gDNA libraries. We found significant bacterial sequence enrichment that facilitated genome assembly in previously published ATAC-seq data sets from human cells infected with Mycobacterium tuberculosis and C. elegans contaminated with their food source, the OP50 strain of E. coli. These results demonstrate the feasibility and benefits of using ATAC-seq to easily obtain bacterial genomes to aid in symbiosis, infectious disease, and microbiome research.
Collapse
Affiliation(s)
- Lindsey J. Cantin
- Biochemistry and Microbiology Division, New England BioLabs, Ipswich, MA, United States
| | - Julie C. Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jeremy M. Foster
- Biochemistry and Microbiology Division, New England BioLabs, Ipswich, MA, United States
| |
Collapse
|
6
|
Hesse E, O’Brien S. Ecological dependencies and the illusion of cooperation in microbial communities. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001442. [PMID: 38385784 PMCID: PMC10924460 DOI: 10.1099/mic.0.001442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/09/2024] [Indexed: 02/23/2024]
Abstract
Ecological dependencies - where organisms rely on other organisms for survival - are a ubiquitous feature of life on earth. Multicellular hosts rely on symbionts to provide essential vitamins and amino acids. Legume plants similarly rely on nitrogen-fixing rhizobia to convert atmospheric nitrogen to ammonia. In some cases, dependencies can arise via loss-of-function mutations that allow one partner to benefit from the actions of another. It is common in microbiology to label ecological dependencies between species as cooperation - making it necessary to invoke cooperation-specific frameworks to explain the phenomenon. However, in many cases, such traits are not (at least initially) cooperative, because they are not selected for because of the benefits they confer on a partner species. In contrast, dependencies in microbial communities may originate from fitness benefits gained from genomic-streamlining (i.e. Black Queen Dynamics). Here, we outline how the Black Queen Hypothesis predicts the formation of metabolic dependencies via loss-of-function mutations in microbial communities, without needing to invoke any cooperation-specific explanations. Furthermore we outline how the Black Queen Hypothesis can act as a blueprint for true cooperation as well as discuss key outstanding questions in the field. The nature of interactions in microbial communities can predict the ability of natural communities to withstand and recover from disturbances. Hence, it is vital to gain a deeper understanding of the factors driving these dynamic interactions over evolutionary time.
Collapse
Affiliation(s)
- Elze Hesse
- College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Siobhán O’Brien
- Moyne Institute of Preventive Medicine, Department of Microbiology, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
7
|
Cao T, Wang S, Pan Y, Guo F, Wu B, Zhang Y, Wang Y, Tian J, Xing Q, Liu X. Characterization of the semen, gut, and urine microbiota in patients with different semen abnormalities. Front Microbiol 2023; 14:1182320. [PMID: 37293215 PMCID: PMC10244769 DOI: 10.3389/fmicb.2023.1182320] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Semen quality is decreasing worldwide, leading to increased male infertility. This study analyzed the microbiota of the gut, semen, and urine in individuals with semen abnormalities to identify potential probiotics and pathogenic bacteria that affect semen parameters and help develop new methods for the diagnosis and treatment of patients with semen abnormalities. Methods We recruited 12 individuals with normal semen parameters (control group), 12 with asthenospermia but no semen hyperviscosity (Group_1), 6 with oligospermia (Group_2), 9 with severe oligospermia or azoospermia (Group_3), and 14 with semen hyperviscosity only (Group_4). The semen, gut, and urine microbiota were examined by analyzing the 16S ribosomal RNA gene sequence using next-generation sequencing. Results The gut microbes were clustered into the highest number of operational taxonomic units, followed by urine and semen. Furthermore, the α-diversity of gut microbes was highest and significantly different from that of urine and semen microbiota. The microbiota of the gut, urine, and semen were all significantly different from each other in terms of β-diversity. The gut abundance of Collinsella was significantly reduced in groups 1, 3, and 4. Furthermore, the gut abundance of Bifidobacterium and Blautia was significantly decreased in Group_1, while that of Bacteroides was significantly increased in Group_3. The abundance of Staphylococcus was significantly increased in the semen of groups 1 and 4. Finally, Lactobacillus abundance was significantly reduced in the urine of groups 2 and 4. Discussion This study comprehensively describes the differences in intestinal and genitourinary tract microbiota between healthy individuals and those with abnormal semen parameters. Furthermore, our study identified Collinsella, Bifidobacterium, Blautia, and Lactobacillus as potential probiotics. Finally, the study identified Bacteroides in the gut and Staphylococcus in semen as potential pathogenic bacteria. Our study lays the foundation of a new approach to the diagnosis and treatment of male infertility.
Collapse
Affiliation(s)
- Tingshuai Cao
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shangren Wang
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yang Pan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Guo
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Wu
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yingchun Zhang
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yujie Wang
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jiaqing Tian
- Center for Reproductive Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qingfei Xing
- Department of Urology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaoqiang Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
8
|
Lemke M, DeSalle R. The Next Generation of Microbial Ecology and Its Importance in Environmental Sustainability. MICROBIAL ECOLOGY 2023; 85:781-795. [PMID: 36826587 PMCID: PMC10156817 DOI: 10.1007/s00248-023-02185-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/24/2023] [Indexed: 05/04/2023]
Abstract
Collectively, we have been reviewers for microbial ecology, genetics and genomics studies that include environmental DNA (eDNA), microbiome studies, and whole bacterial genome biology for Microbial Ecology and other journals for about three decades. Here, we wish to point out trends and point to areas of study that readers, especially those moving into the next generation of microbial ecology research, might learn and consider. In this communication, we are not saying the work currently being accomplished in microbial ecology and restoration biology is inadequate. What we are saying is that a significant milestone in microbial ecology has been reached, and approaches that may have been overlooked or were unable to be completed before should be reconsidered in moving forward into a new more ecological era where restoration of the ecological trajectory of systems has become critical. It is our hope that this introduction, along with the papers that make up this special issue, will address the sense of immediacy and focus needed to move into the next generation of microbial ecology study.
Collapse
Affiliation(s)
- Michael Lemke
- Department of Biology, University of Illinois at Springfield, Springfield, IL, USA.
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA.
| | - Rob DeSalle
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
9
|
Xiao X, Liu S, Deng H, Song Y, Zhang L, Song Z. Advances in the oral microbiota and rapid detection of oral infectious diseases. Front Microbiol 2023; 14:1121737. [PMID: 36814562 PMCID: PMC9939651 DOI: 10.3389/fmicb.2023.1121737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/13/2023] [Indexed: 02/09/2023] Open
Abstract
Several studies have shown that the dysregulation of the oral microbiota plays a crucial role in human health conditions, such as dental caries, periodontal disease, oral cancer, other oral infectious diseases, cardiovascular diseases, diabetes, bacteremia, and low birth weight. The use of traditional detection methods in conjunction with rapidly advancing molecular techniques in the diagnosis of harmful oral microorganisms has expanded our understanding of the diversity, location, and function of the microbiota associated with health and disease. This review aimed to highlight the latest knowledge in this field, including microbial colonization; the most modern detection methods; and interactions in disease progression. The next decade may achieve the rapid diagnosis and precise treatment of harmful oral microorganisms.
Collapse
Affiliation(s)
- Xuan Xiao
- Department of Oral Mucosa, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Shangfeng Liu
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Hua Deng
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yuhan Song
- Department of Oral Mucosa, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Liang Zhang
- Translational Medicine Center, Guangdong Women and Children Hospital, Guangzhou, China,Liang Zhang,
| | - Zhifeng Song
- Department of Oral Mucosa, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Shanghai Stomatological Hospital, Fudan University, Shanghai, China,*Correspondence: Zhifeng Song,
| |
Collapse
|
10
|
Wareham-Mathiassen S, Pinto Glenting V, Bay L, Allesen-Holm M, Bengtsson H, Bjarnsholt T. Characterization of pig skin microbiome and appraisal as an in vivo subcutaneous injection model. Lab Anim 2022:236772221136173. [DOI: 10.1177/00236772221136173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pig skin is commonly used in the medical industry as an injection model due to its compelling physiological affinity to human skin. However, the pig neck skin microflora remains largely uncharacterized, which may have undesirable implications for the translatability of results to humans. This study aimed to characterize pig neck skin microbiome with direct comparison with human skin microflora at emblematic injection sites to appraise its suitability as an injection model. Ten minipigs were sampled with tape strips and swabs and analysed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry and 16S/ITS high throughput sequencing and confocal laser scanning microscopy. Results were directly compared with previous investigations of human injection sites. Pig skin was dominated by phyla 94.8% Firmicutes, 3% Proteobacteria, and 2.2% Actinobacteria. Staphylococcus spp. prevailed (44.4%) at the genus level with S. capitis and S. chromogenes present in all samples. Pig skin revealed populations in the 104 colony-forming units (CFU)/cm2 range with 3% identified as Gram-negative and increased alpha diversity (compared with 102 CFU/cm2 and 10% in humans). While notable taxonomical differences on species levels were seen, pig skin encompassed 97.1% of genera found in human samples. The increased population and variation found support the pig neck as an imperfect but fidelitous subcutaneous injection model that can adequately challenge devices from a microbial standpoint.
Collapse
Affiliation(s)
- Sofia Wareham-Mathiassen
- Department of Immunology and Microbiology, Copenhagen University, Denmark
- Department of Front-End Innovation, Devices & Delivery Solutions, Novo Nordisk A/S, Bagsværd, Denmark
| | - Vera Pinto Glenting
- Department of Microbiology, Devices & Delivery Solutions, Novo Nordisk A/S, Bagsværd, Denmark
| | - Lene Bay
- Department of Immunology and Microbiology, Copenhagen University, Denmark
| | - Marie Allesen-Holm
- Strategy & Project and Portfolio Management, Chr. Hansen, Hørsholm, Denmark
| | - Henrik Bengtsson
- Department of Scientific Modelling, Devices & Delivery Solutions, Novo Nordisk A/S, Bagsværd, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Copenhagen University, Denmark
| |
Collapse
|
11
|
Next-Generation Sequencing Results Vary Between Cultured and Uncultured Microbes. Curr Microbiol 2022; 79:187. [PMID: 35524899 DOI: 10.1007/s00284-022-02865-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 04/05/2022] [Indexed: 11/03/2022]
Abstract
Next-generation sequencing (NGS) technology has led to innovations in environmental metagenomics and investigations involving humans and microbes. However, it is necessary to analyze the components that will affect analysis of the method upon processing a large amount of information. In particular, the processing method after sample collection affects the NGS results, and it is necessary to check for inaccurate results. Here, we show that the microbial communities obtained from fingertip samples differ from those obtained from fingertips remaining on mobile phones and desks, when cultured or not for 24 h. We also confirmed changes in microbial communities in fingertip samples from desks incubated for 2, 4, 8, 16, and 24 h. Samples of prints from mobile phones that are considerably vulnerable to external factors were not analyzed. Ratios of Firmicutes and Bacillus were, respectively, increased in cultures at the phylum and species levels. Collectively, we identified bacterial species that can aid in determining whether a sample has been cultured. In addition, although microbial communities differed depending on sample types, we confirmed changes after culture for 4 and 8 h. However, since this study is a sample limited to three types, it is necessary to analyze other types of samples in the same way and check whether they are applicable to all types. This strategy can verify the suitability of samples for deriving informative results from cultured or uncultured bacterial communities.
Collapse
|
12
|
Abstract
Although the composition of the oral human microbiome is now well studied, regulation of genes within oral microbial communities remains mostly uncharacterized. Current concepts of periodontal disease and caries highlight the importance of oral biofilms and their role as etiological agents of those diseases. Currently, there is increased interest in exploring and characterizing changes in the composition and gene-expression profiles of oral microbial communities. These efforts aim to identify changes in functional activities that could explain the transition from health to disease and the reason for the chronicity of those infections. It is now clear that the functions of distinct species within the subgingival microbiota are intimately intertwined with the rest of the microbial community. This point highlights the relevance of examining the expression profile of specific species within the subgingival microbiota in the case of periodontal disease or caries lesions, in the context of the other members of the biofilm in vivo. Metatranscriptomic analysis of the oral community is the starting point for identifying environmental signals that modulate the shift in metabolism of the community from commensal to dysbiotic. These studies give a snapshot of the expression patterns of microbial communities and also allow us to determine triggers to diseases. For example, in the case of caries, studies have unveiled a potential new pathway of sugar metabolism, namely the use of sorbitol as an additional source of carbon by Streptococcus mutans; and in the case of periodontal disease, high levels of extracellular potassium could be a signal of disease. Longitudinal studies are needed to identify the real markers of the initial stages of caries and periodontal disease. More information on the gene-expression profiles of the host, along with the patterns from the microbiome, will lead to a clearer understanding of the modulation of health and disease. This review presents a summary of these initial studies, which have opened the door to a new understanding of the dynamics of the oral community during the dysbiotic process in the oral cavity.
Collapse
Affiliation(s)
- Ana E Duran-Pinedo
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| |
Collapse
|
13
|
Manimaran NH, Usman H, Kamga KL, Davidson SL, Beckman E, Niepa THR. Developing a Functional Poly(dimethylsiloxane)-Based Microbial Nanoculture System Using Dimethylallylamine. ACS APPLIED MATERIALS & INTERFACES 2020; 12:50581-50591. [PMID: 33119264 DOI: 10.1021/acsami.0c11875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, a novel poly(dimethylsiloxane) (PDMS)-based microbial culture system was investigated. Bacteria were encapsulated in functional and semipermeable membranes, mimicking the cell microenvironment and facilitating mass transport for interrogating microbial dynamics, thereby overcoming one of the major challenges associated with commercially available PDMS such as Sylgard 184. The hydrophobic nature and lack of control in the polymer network in Sylgard 184 significantly impede the the tunability of the transport and mechanical properties of the material as well as its usage as an isolation chamber for culturing and delivering microbes. Therefore, a novel PDMS composition was developed and functionalized with dimethylallylamine (DMAA) to alter its hydrophobicity and modify the polymer network. Characterization techniques including NMR spectroscopy, contact angle measurements, and sol-gel process were utilized to evaluate the physical and chemical properties of the newly fabricated membranes. Furthermore, the DMAA-containing polymer mixture was used as a proof of concept to generate hydrodynamically stable microcapsules and cultivate Escherichia coli cells in the functionalized capsules. The membrane exhibited a selective permeability to tetracycline, which diffused into the capsules to inhibit the growth of the encapsulated microbes. The functionality achieved here with the addition of DMAA, coupled with the high-throughput encapsulation technique, could prove to be an effective testing and diagnostic tool to evaluate microbial resistance, growth dynamics, and interspecies interaction and lays the foundation for in vivo models.
Collapse
Affiliation(s)
- Nithil Harris Manimaran
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Huda Usman
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Kevine L Kamga
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Shanna-Leigh Davidson
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Eric Beckman
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Tagbo H R Niepa
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| |
Collapse
|