1
|
Zhang C, Xiang D, Zhao Q, Jiang S, Wang C, Yang H, Huang Y, Yuan Y, Liu X, Huang Z, Zeng Y, Wen H, Long S, Hao H, Tuo Q, Liu Z, Liao D. Curcumin nicotinate decreases serum LDL cholesterol through LDL receptor-mediated mechanism. Eur J Pharmacol 2022; 931:175195. [PMID: 35964656 DOI: 10.1016/j.ejphar.2022.175195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 07/23/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
Curcumin nicotinate (Curtn) is a synthesized ester derivative of curcumin and niacin. Our previous study has shown that Curtn lowers serum low-density lipoprotein cholesterol (LDL-C) levels in apoE-/- mice and promotes LDL-C uptake into HepG2 cells in vitro. The present study was to test the hypothesis that Curtn decreases serum LDL-C levels through decreased expression of pro-protein convertase subtilisin/kexin type 9 (PCSK9) and subsequent increase in LDL receptor expression. Male Wistar rats on high-fat diet (HFD) were treated with Curtn or rosuvastatin. Curtn or rosuvastatin treatment significantly decreased serum levels of total cholesterol (TC) and LDL-C in rats on HFD with increased liver LDL receptor expression. LDL-C-lowering effect of Curtn was not observed in LDL receptor deficient (LDLR-/-) mice on HFD, while rosuvastatin still decreased serum lipid levels in LDLR-/- mice, indicating that the reduction of serum LDL-C levels by Curtn treatment was LDL receptor-dependent. Curtn treatment also significantly decreased the protein expression of PCSK9 in Wistar rats and LDLR-/- mice. In HepG2 cells with overexpression of human PCSK9, Curtn treatment significantly increased LDL-C uptakes into hepatocytes, and increased LDL receptor distribution on cell surface in association with decreased PCSK9 protein expression. RNAi-LDLR significantly attenuated the effect of Curtn on LDLR distribution on cell surface. These data indicates that Curtn would decrease serum LDL-C level at least partially through inhibition of PCSK9 expression, and subsequent increase in LDL receptor expression and distribution in hepatocytes, serving as a potential novel compound to treat hyperlipidemia.
Collapse
Affiliation(s)
- Caiping Zhang
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Debiao Xiang
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China; Department of Pharmacy, The Third Hospital of Changsha, Changsha, China
| | - Qian Zhao
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Susu Jiang
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chuyao Wang
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Huixian Yang
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ying Huang
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Yulin Yuan
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Xuanyou Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Zhixin Huang
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Yaling Zeng
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Hongyan Wen
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Shiyin Long
- Department of Biochemistry & Molecular Biology, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hong Hao
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA
| | - Qinhui Tuo
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Zhenguo Liu
- Center for Precision Medicine and Division of Cardiovascular Medicine, Department of Medicine, University of Missouri School of Medicine, Columbia, MO, USA.
| | - Duanfang Liao
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China.
| |
Collapse
|
2
|
Degli Esposti L, Veronesi C, Ancona DD, Andretta M, Bartolini F, Drei A, Lupi A, Palcic S, Re D, Rizzi FV, Giacomini E, Perrone V. Direct Healthcare Costs by Level of Adherence of a Real-World Population of Statin Users in Italy. Clinicoecon Outcomes Res 2022; 14:139-147. [PMID: 35299992 PMCID: PMC8922236 DOI: 10.2147/ceor.s345852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/04/2022] [Indexed: 11/23/2022]
Abstract
Purpose This real-world study investigates the direct healthcare costs from the perspective of the Italian Healthcare National Service of experienced statin users according to their level of adherence to therapy and to their cardiovascular (CV) profile in Italian settings of outpatients clinical practice. Patients and Methods A retrospective observational analysis was performed based on administrative databases covering approximately 6 million health-assisted individuals. Adult patients with statins prescription between January 2014 and December 2016 were screened, and first prescription within this period was the index date. Follow-up lasted 1 year after index date. Only patients receiving statins prior index date (experienced statin users) were included and distributed in clusters based on their CV profile. Adherence was calculated during follow-up as proportion of days covered (PDC) and classified in low adherence (PDC<40%), partial adherence (PDC=40–79%) and adherence (PDC≥80%). Mean direct healthcare costs of drugs, hospitalizations, and outpatient services were evaluated during follow-up. Results A total of 436,623 experienced statin users were included and distributed as follows: 5.5% in the previous CV events, 22.6% in diabetes, 55.7% in CV treatments and 16.2% in the no comorbidity cluster. Total mean annual cost/patient decreased from low adherent to adherent patients from €4826 to €3497 in previous CV events, from €2815 to €2360 in diabetes cluster, from €2077 to €1863 for patients with CV treatments. Same trend was reported for the cost item related to hospitalizations, which was the major determinant of the total costs. In previous CV event cluster, adherence was associated to a saving of €879 on total costs. Conclusion The study highlighted a decrease in overall mean costs as adherence levels increase, particularly for patients with previous CV events, showing how improving adherence could be associated to cost savings and suggesting suited strategy based on CV profile should be undertaken for adherence optimization.
Collapse
Affiliation(s)
| | - Chiara Veronesi
- CliCon S.r.l. Health, Economics & Outcomes Research, Bologna, Italy
| | | | - Margherita Andretta
- UOC Assistenza Farmaceutica Territoriale, Azienda ULSS 8 Berica, Vicenza, Italy
| | | | | | | | - Stefano Palcic
- Farmaceutica Territoriale, Azienda Sanitaria Universitaria Integrata Giuliano-Isontina, Trieste, Italy
| | - Davide Re
- UOC Assistenza Farmaceutica Territoriale, ASL Teramo, Teramo, Italy
| | | | - Elisa Giacomini
- CliCon S.r.l. Health, Economics & Outcomes Research, Bologna, Italy
| | - Valentina Perrone
- CliCon S.r.l. Health, Economics & Outcomes Research, Bologna, Italy
- Correspondence: Valentina Perrone, Clicon Srl, Health, Economics and Outcomes Research, Via Murri 9, Bologna, 40137, Italy, Tel +39 544 38393, Fax +39 544 212699, Email
| |
Collapse
|
3
|
Li H, Wang Q, Zhao R, Wang Y, Xun L, Liu H. Construction of Escherichia coli Whole-Cell Biosensors for Statin Efficacy and Production Test. Front Cell Dev Biol 2020; 8:404. [PMID: 32671060 PMCID: PMC7326143 DOI: 10.3389/fcell.2020.00404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/04/2020] [Indexed: 11/13/2022] Open
Abstract
Statins are widely used cholesterol-lowering drugs. Their potential application in anti-cancer treatment is also under investigation. The individual variance in statin response has been observed, which may be caused by the variation in human HMG-CoA reductase (hHMGR)—the inhibition target of statin drugs. Herein, we reported the design and construction of two Escherichia coli whole-cell biosensors. The first one is statin-efficacy testing sensor, which is composed of two separate modules: a hybrid mevalonate (MVA) pathway and a HMG-CoA sensing system. A truncated hHMGR was used as the key enzyme of the MVA pathway and a promiscuous transcription factor (TF) BsFapR was used as the HMG-CoA sensor. When hHMGR was inhibited by statins, HMG-CoA accumulated intracellularly and was sensed by BsFapR, which subsequently turned on its cognate promoter. This biosensor has the potential to be used as a “precision medicine” tool—selecting potent statin drugs for individual patients. The second one is a statin-production testing sensor, which is based on another promiscuous TF AraCM that can sense statins. This biosensor can be used in optimization of statin-producing strains. The prototypes of these two biosensors were successfully constructed and their further optimization is highly expected.
Collapse
Affiliation(s)
- Huanjie Li
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qingda Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Rui Zhao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yunshan Wang
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Medical Research and Laboratory Diagnostic Center, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Luying Xun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.,School of Molecular Biosciences, Washington State University, Pullman, WA, United States
| | - Huaiwei Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Essalmani R, Weider E, Marcinkiewicz J, Chamberland A, Susan-Resiga D, Roubtsova A, Seidah NG, Prat A. A single domain antibody against the Cys- and His-rich domain of PCSK9 and evolocumab exhibit different inhibition mechanisms in humanized PCSK9 mice. Biol Chem 2019; 399:1363-1374. [PMID: 30044755 DOI: 10.1515/hsz-2018-0194] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 07/09/2018] [Indexed: 11/15/2022]
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a secreted protein that binds and escorts the low density lipoprotein receptor (LDLR) into the lysosomal degradation pathway. Prescribed monoclonal antibodies (mAbs) against PCSK9 prevent its binding to the LDLR, and result in ~60% lower LDL cholesterol (LDLc) levels. Although efficient, mAbs are expensive. Hence other PCSK9 inhibitors are needed. For screening purpose, we developed C57BL/6J mice expressing the human PCSK9 gene under the control of its own promoter, but lacking endogenous mouse PCSK9. All lines recapitulate the endogenous PCSK9 expression pattern. The Tg2 line that expresses physiological levels of human PCSK9 (hPCSK9) was selected to characterize the inhibitory properties of a previously reported single domain antibody (sdAb), PKF8-mFc, which binds the C-terminal domain of PCSK9. Upon intraveinous injection of 10 mg/kg, PKF8-mFc and the mAb evolocumab neutralized ~50% and 100% of the hPCSK9 impact on total cholesterol (TC) levels, respectively, but PKF8-mFc had a more sustained effect. PKF8-mFc barely affected hPCSK9 levels, whereas evolocumab promoted a 4-fold increase 3 days post-injection, suggesting very different inhibitory mechanisms. The present study also shows that the new transgenic mice are well suited to screen a variety of hPCSK9 inhibitors.
Collapse
Affiliation(s)
- Rachid Essalmani
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, Affiliated to the Université de Montréal, 110 Pine Ave. West, Montreal H2W 1R7, QC, Canada
| | - Elodie Weider
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, Affiliated to the Université de Montréal, 110 Pine Ave. West, Montreal H2W 1R7, QC, Canada
| | - Jadwiga Marcinkiewicz
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, Affiliated to the Université de Montréal, 110 Pine Ave. West, Montreal H2W 1R7, QC, Canada
| | - Ann Chamberland
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, Affiliated to the Université de Montréal, 110 Pine Ave. West, Montreal H2W 1R7, QC, Canada
| | - Delia Susan-Resiga
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, Affiliated to the Université de Montréal, 110 Pine Ave. West, Montreal H2W 1R7, QC, Canada
| | - Anna Roubtsova
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, Affiliated to the Université de Montréal, 110 Pine Ave. West, Montreal H2W 1R7, QC, Canada
| | - Nabil G Seidah
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, Affiliated to the Université de Montréal, 110 Pine Ave. West, Montreal H2W 1R7, QC, Canada
| | - Annik Prat
- Laboratory of Biochemical Neuroendocrinology, Institut de Recherches Cliniques de Montréal, Affiliated to the Université de Montréal, 110 Pine Ave. West, Montreal H2W 1R7, QC, Canada
| |
Collapse
|
5
|
Biocatalyzed Synthesis of Statins: A Sustainable Strategy for the Preparation of Valuable Drugs. Catalysts 2019. [DOI: 10.3390/catal9030260] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Statins, inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are the largest selling class of drugs prescribed for the pharmacological treatment of hypercholesterolemia and dyslipidaemia. Statins also possess other therapeutic effects, called pleiotropic, because the blockade of the conversion of HMG-CoA to (R)-mevalonate produces a concomitant inhibition of the biosynthesis of numerous isoprenoid metabolites (e.g., geranylgeranyl pyrophosphate (GGPP) or farnesyl pyrophosphate (FPP)). Thus, the prenylation of several cell signalling proteins (small GTPase family members: Ras, Rac, and Rho) is hampered, so that these molecular switches, controlling multiple pathways and cell functions (maintenance of cell shape, motility, factor secretion, differentiation, and proliferation) are regulated, leading to beneficial effects in cardiovascular health, regulation of the immune system, anti-inflammatory and immunosuppressive properties, prevention and treatment of sepsis, treatment of autoimmune diseases, osteoporosis, kidney and neurological disorders, or even in cancer therapy. Thus, there is a growing interest in developing more sustainable protocols for preparation of statins, and the introduction of biocatalyzed steps into the synthetic pathways is highly advantageous—synthetic routes are conducted under mild reaction conditions, at ambient temperature, and can use water as a reaction medium in many cases. Furthermore, their high selectivity avoids the need for functional group activation and protection/deprotection steps usually required in traditional organic synthesis. Therefore, biocatalysis provides shorter processes, produces less waste, and reduces manufacturing costs and environmental impact. In this review, we will comment on the pleiotropic effects of statins and will illustrate some biotransformations nowadays implemented for statin synthesis.
Collapse
|
6
|
Qu L, Li D, Gao X, Li Y, Wu J, Zou W. Di'ao Xinxuekang Capsule, a Chinese Medicinal Product, Decreases Serum Lipids Levels in High-Fat Diet-Fed ApoE -/- Mice by Downregulating PCSK9. Front Pharmacol 2018; 9:1170. [PMID: 30443213 PMCID: PMC6221936 DOI: 10.3389/fphar.2018.01170] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 09/26/2018] [Indexed: 11/13/2022] Open
Abstract
Numerous risk factors are responsible for the development of atherosclerosis, for which an increased serum level of low-density lipoprotein cholesterol (LDL-C) is a driving force. By binding to the low-density lipoprotein cholesterol receptor (LDLR) and inducing LDLR degradation, proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in cholesterol homeostasis regulation. The inducement of PCSK9 expression is also an important reason for statin intolerance. The Di'ao Xinxuekang (DXXK) capsule extracted from Dioscorea nipponica Makino is a well-known traditional Chinese herbal medicinal product used in atherosclerotic cardiovascular disease. Although DXXK has been widely used in atherosclerotic cardiovascular treatment for nearly 30 years, studies on the potential mechanisms of the lipid-lowering effect are very limited. The purpose of the present study was to demonstrate the possible involvement of the PCSK9/LDLR signaling pathway in the lipid-lowering and antiatherosclerotic effect of DXXK in high-fat diet-fed ApoE-/- mice. The results showed that DXXK treatment alleviated hyperlipidemia, fat accumulation, and atherosclerosis formation in ApoE-/- mice. Furthermore, changes in the expression of PCSK9 mRNA in liver tissue and the circulating PCSK9 level in ApoE-/- mice were both reversed after DXXK treatment, and upregulation of LDLR in the liver was also detected in the protein level in DXXK-treated mice. Our study is the first to show that DXXK could alleviate lipid disorder and ameliorate atherosclerosis with downregulation of the PCSK9 in high-fat diet-fed ApoE-/- mice, suggesting that DXXK may be a potential novel therapeutic treatment and may support statin action in the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Liping Qu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Didi Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoping Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongwei Li
- Department of New Drug Research and Development, National Engineering Research Center for Natural Medicines, Chengdu, China
| | - Jianming Wu
- Laboratory of Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Wenjun Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|