1
|
Orlando N, Snir J, Barker K, D'Souza D, Velker V, Mendez LC, Fenster A, Hoover DA. A power Doppler ultrasound method for improving intraoperative tip localization for visually obstructed needles in interstitial prostate brachytherapy. Med Phys 2023; 50:2649-2661. [PMID: 36846880 DOI: 10.1002/mp.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 03/01/2023] Open
Abstract
PURPOSE High-dose-rate (HDR) interstitial brachytherapy (BT) is a common treatment technique for localized intermediate to high-risk prostate cancer. Transrectal ultrasound (US) imaging is typically used for guiding needle insertion, including localization of the needle tip which is critical for treatment planning. However, image artifacts can limit needle tip visibility in standard brightness (B)-mode US, potentially leading to dose delivery that deviates from the planned dose. To improve intraoperative tip visualization in visually obstructed needles, we propose a power Doppler (PD) US method which utilizes a novel wireless mechanical oscillator, validated in phantom experiments and clinical HDR-BT cases as part of a feasibility clinical trial. METHODS Our wireless oscillator contains a DC motor housed in a 3D printed case and is powered by rechargeable battery allowing the device to be operated by one person with no additional equipment required in the operating room. The oscillator end-piece features a cylindrical shape designed for BT applications to fit on top of the commonly used cylindrical needle mandrins. Phantom validation was completed using tissue-equivalent agar phantoms with the clinical US system and both plastic and metal needles. Our PD method was tested using a needle implant pattern matching a standard HDR-BT procedure as well as an implant pattern designed to maximize needle shadowing artifacts. Needle tip localization accuracy was assessed using the clinical method based on ideal reference needles as well as a comparison to computed tomography (CT) as a gold standard. Clinical validation was completed in five patients who underwent standard HDR-BT as part of a feasibility clinical trial. Needle tips positions were identified using B-mode US and PD US with perturbation from our wireless oscillator. RESULTS Absolute mean ± standard deviation tip error for B-mode alone, PD alone, and B-mode combined with PD was respectively: 0.3 ± 0.3 mm, 0.6 ± 0.5 mm, and 0.4 ± 0.2 mm for the mock HDR-BT needle implant; 0.8 ± 1.7 mm, 0.4 ± 0.6 mm, and 0.3 ± 0.5 mm for the explicit shadowing implant with plastic needles; and 0.5 ± 0.2 mm, 0.5 ± 0.3 mm, and 0.6 ± 0.2 mm for the explicit shadowing implant with metal needles. The total mean absolute tip error for all five patients in the feasibility clinical trial was 0.9 ± 0.7 mm using B-mode US alone and 0.8 ± 0.5 mm when including PD US, with increased benefit observed for needles classified as visually obstructed. CONCLUSIONS Our proposed PD needle tip localization method is easy to implement and requires no modifications or additions to the standard clinical equipment or workflow. We have demonstrated decreased tip localization error and variation for visually obstructed needles in both phantom and clinical cases, including providing the ability to visualize needles previously not visible using B-mode US alone. This method has the potential to improve needle visualization in challenging cases without burdening the clinical workflow, potentially improving treatment accuracy in HDR-BT and more broadly in any minimally invasive needle-based procedure.
Collapse
Affiliation(s)
- Nathan Orlando
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada
| | - Jonatan Snir
- London Health Sciences Centre, London, Ontario, Canada
| | - Kevin Barker
- Robarts Research Institute, Western University, London, Ontario, Canada
| | - David D'Souza
- London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| | - Vikram Velker
- London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| | - Lucas C Mendez
- London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| | - Aaron Fenster
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,Robarts Research Institute, Western University, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| | - Douglas A Hoover
- Department of Medical Biophysics, Western University, London, Ontario, Canada.,London Health Sciences Centre, London, Ontario, Canada.,Department of Oncology, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Antico M, Sasazawa F, Wu L, Jaiprakash A, Roberts J, Crawford R, Pandey AK, Fontanarosa D. Ultrasound guidance in minimally invasive robotic procedures. Med Image Anal 2019; 54:149-167. [DOI: 10.1016/j.media.2019.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/01/2019] [Accepted: 01/09/2019] [Indexed: 12/20/2022]
|
3
|
Kumar V, Katayama M, Peavler R, Alizad A, Belohlavek M, Fatemi M. Real-Time Visualization of an Acoustically Active Injection Catheter With Ultrasound Imaging: Algorithm and In Vivo Validation in a Swine Model. IEEE Trans Biomed Eng 2019; 66:3212-3219. [PMID: 30843791 DOI: 10.1109/tbme.2019.2902338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To independently visualize a catheter and needle during minimally invasive surgery in order to aid in precisely guiding them to their intended location. METHODS Symmetric frequency detection allows for the visualization of the acoustically active catheter tip as a unique color in live imaging. This study extends the algorithm to identify two different crystals by unique colors, validating the algorithm with in vivo pig experiments while simulating the human condition using different attenuation pads. RESULTS The catheter and needle tip were identified with unique colors, differentiable from common Doppler colors, with a frame rate varying between 8 and 10 Hz. Both were visible at graded levels of attenuation induced by interposed polymer pads. Reducing ensemble length increased the frame rate and decreased the signal-to-noise ratio (SNR), though not significantly. At the highest in-path attenuation of 12 dB at 5 MHz, the catheter spot marker was visible whereas the needle was not. The SNR of the catheter signal varied between 12.50 and 18.24 dB and the size of the spot marker varied between 149 and 1015 mm2. The SNR of the needle signal varied between 6.37 and 16.3 dB and the size of the spot marker between 59 and 169 mm2. A reliability index greater than 50% was achieved for all cases except for the needle crystal at the highest attenuation setting. CONCLUSION Modified symmetric frequency detection algorithm can uniquely visualize both catheter and needle in real time with in-path attenuation. SIGNIFICANCE Unambiguous and distinct visualization of separate locations on the catheter facilitates real-time tracking of minimally invasive procedures.
Collapse
|
6
|
Adebar TK, Fletcher AE, Okamura AM. 3-D ultrasound-guided robotic needle steering in biological tissue. IEEE Trans Biomed Eng 2014; 61:2899-910. [PMID: 25014948 DOI: 10.1109/tbme.2014.2334309] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Robotic needle steering systems have the potential to greatly improve medical interventions, but they require new methods for medical image guidance. Three-dimensional (3-D) ultrasound is a widely available, low-cost imaging modality that may be used to provide real-time feedback to needle steering robots. Unfortunately, the poor visibility of steerable needles in standard grayscale ultrasound makes automatic segmentation of the needles impractical. A new imaging approach is proposed, in which high-frequency vibration of a steerable needle makes it visible in ultrasound Doppler images. Experiments demonstrate that segmentation from this Doppler data is accurate to within 1-2 mm. An image-guided control algorithm that incorporates the segmentation data as feedback is also described. In experimental tests in ex vivo bovine liver tissue, a robotic needle steering system implementing this control scheme was able to consistently steer a needle tip to a simulated target with an average error of 1.57 mm. Implementation of 3-D ultrasound-guided needle steering in biological tissue represents a significant step toward the clinical application of robotic needle steering.
Collapse
|