1
|
Singh S, Sutkus L, Li Z, Baker S, Bear J, Dilger RN, Miller DJ. Standardization of a silver stain to reveal mesoscale myelin in histological preparations of the mammalian brain. J Neurosci Methods 2024; 407:110139. [PMID: 38626852 DOI: 10.1016/j.jneumeth.2024.110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND The brain is built of neurons supported by myelin, a fatty substance that improves cellular communication. Noninvasive magnetic resonance imaging (MRI) is now able to measure brain structure like myelin and requires histological validation. NEW METHOD Here we present work in small and large biomedical model mammals to standardize a silver impregnation method as a high-throughput histological myelin visualization procedure. Specifically, we built a new staining well plate to increase batch size, and then systematically varied the staining and clearing cycles to describe the staining response curve across taxa and conditions. We compared tissues fixed by immersion or perfusion, mounted versus free-floating, and cut as thicker or thinner slices, with two-weeks of post-fixation. RESULTS The staining response curves show optimal staining with a single exposure across taxa when incubation and clearing epochs are held to within 3-9 min. We show that clearing was slower in mounted vs free-floating tissue, and that staining was faster and caused fracturing earlier in thinner sliced and smaller volumes of tissue. COMPARISON WITH EXISTING METHODS We developed a batch processing approach to increase throughput while ensuring reproducibility and demonstrate the optimal conditions for fine myelinated fiber morphology visualization with short cycles (<9 minutes). CONCLUSIONS We present our optimized protocol to reveal mesoscale neuroanatomical myelin content in histology across mammals. This standard staining procedure will facilitate multiscale analyses of myelin content across development as well as in the presence of injury or disease.
Collapse
Affiliation(s)
- S Singh
- Department of Evolution, Ecology, and Behavior, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - L Sutkus
- Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - Z Li
- Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - S Baker
- Machine Shop, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - J Bear
- Machine Shop, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - R N Dilger
- Department of Animal Sciences, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America
| | - D J Miller
- Department of Evolution, Ecology, and Behavior, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Neuroscience Program, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America; Beckman Institute for Advanced Science and Technology, at the University of Illinois at Urbana-Champaign, 505 South Goodwin Ave, Urbana, IL 61801, United States of America.
| |
Collapse
|
2
|
Moore TL, Pannuzzo G, Costabile G, Palange AL, Spanò R, Ferreira M, Graziano ACE, Decuzzi P, Cardile V. Nanomedicines to treat rare neurological disorders: The case of Krabbe disease. Adv Drug Deliv Rev 2023; 203:115132. [PMID: 37918668 DOI: 10.1016/j.addr.2023.115132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
The brain remains one of the most challenging therapeutic targets due to the low and selective permeability of the blood-brain barrier and complex architecture of the brain tissue. Nanomedicines, despite their relatively large size compared to small molecules and nucleic acids, are being heavily investigated as vehicles to delivery therapeutics into the brain. Here we elaborate on how nanomedicines may be used to treat rare neurodevelopmental disorders, using Krabbe disease (globoid cell leukodystrophy) to frame the discussion. As a monogenetic disorder and lysosomal storage disease affecting the nervous system, the lessons learned from examining nanoparticle delivery to the brain in the context of Krabbe disease can have a broader impact on the treatment of various other neurodevelopmental and neurodegenerative disorders. In this review, we introduce the epidemiology and genetic basis of Krabbe disease, discuss current in vitro and in vivo models of the disease, as well as current therapeutic approaches either approved or at different stage of clinical developments. We then elaborate on challenges in particle delivery to the brain, with a specific emphasis on methods to transport nanomedicines across the blood-brain barrier. We highlight nanoparticles for delivering therapeutics for the treatment of lysosomal storage diseases, classified by the therapeutic payload, including gene therapy, enzyme replacement therapy, and small molecule delivery. Finally, we provide some useful hints on the design of nanomedicines for the treatment of rare neurological disorders.
Collapse
Affiliation(s)
- Thomas Lee Moore
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy.
| | - Giovanna Pannuzzo
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy
| | - Gabriella Costabile
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy; Department of Pharmacy, Università degli Studi di Napoli Federico II, Naples 80131, NA, Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Raffaele Spanò
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Miguel Ferreira
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Adriana Carol Eleonora Graziano
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy; Facolta di Medicina e Chirurgia, Università degli Studi di Enna "Kore", Enna 94100, EN, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Istituto Italiano di Tecnologia, Genoa 16163, GE, Italy
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, Università di Catania, Catania 95123, CT, Italy.
| |
Collapse
|
3
|
Herdt AR, Peng H, Dickson DW, Golde TE, Eckman EA, Lee CW. Brain Targeted AAV1-GALC Gene Therapy Reduces Psychosine and Extends Lifespan in a Mouse Model of Krabbe Disease. Genes (Basel) 2023; 14:1517. [PMID: 37628569 PMCID: PMC10454254 DOI: 10.3390/genes14081517] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 08/27/2023] Open
Abstract
Krabbe disease (KD) is a progressive and devasting neurological disorder that leads to the toxic accumulation of psychosine in the white matter of the central nervous system (CNS). The condition is inherited via biallelic, loss-of-function mutations in the galactosylceramidase (GALC) gene. To rescue GALC gene function in the CNS of the twitcher mouse model of KD, an adeno-associated virus serotype 1 vector expressing murine GALC under control of a chicken β-actin promoter (AAV1-GALC) was administered to newborn mice by unilateral intracerebroventricular injection. AAV1-GALC treatment significantly improved body weight gain and survival of the twitcher mice (n = 8) when compared with untreated controls (n = 5). The maximum weight gain after postnatal day 10 was significantly increased from 81% to 217%. The median lifespan was extended from 43 days to 78 days (range: 74-88 days) in the AAV1-GALC-treated group. Widespread expression of GALC protein and alleviation of KD neuropathology were detected in the CNS of the treated mice when examined at the moribund stage. Functionally, elevated levels of psychosine were completely normalized in the forebrain region of the treated mice. In the posterior region, which includes the mid- and the hindbrain, psychosine was reduced by an average of 77% (range: 53-93%) compared to the controls. Notably, psychosine levels in this region were inversely correlated with body weight and lifespan of AAV1-GALC-treated mice, suggesting that the degree of viral transduction of posterior brain regions following ventricular injection determined treatment efficacy on growth and survivability, respectively. Overall, our results suggest that viral vector delivery via the cerebroventricular system can partially correct psychosine accumulation in brain that leads to slower disease progression in KD.
Collapse
Affiliation(s)
- Aimee R. Herdt
- Biomedical Research Institute of New Jersey, Cedar Knolls, NJ 07927, USA (E.A.E.)
- MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA
- Atlantic Health System, Morristown, NJ 07960, USA
| | - Hui Peng
- Biomedical Research Institute of New Jersey, Cedar Knolls, NJ 07927, USA (E.A.E.)
- MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA
- Atlantic Health System, Morristown, NJ 07960, USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Todd E. Golde
- Department of Pharmacology and Chemical Biology, Emory University, Atlanta, GA 30322, USA
- Department of Neurology, Emory University, Atlanta, GA 30322, USA
- Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA 30322, USA
| | - Elizabeth A. Eckman
- Biomedical Research Institute of New Jersey, Cedar Knolls, NJ 07927, USA (E.A.E.)
- MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA
- Atlantic Health System, Morristown, NJ 07960, USA
| | - Chris W. Lee
- Biomedical Research Institute of New Jersey, Cedar Knolls, NJ 07927, USA (E.A.E.)
- MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA
- Atlantic Health System, Morristown, NJ 07960, USA
| |
Collapse
|
4
|
Sisó S, Marco-Salazar P, Roccabianca P, Avallone G, Higgins RJ, Affolter VK. Nerve Fiber Immunohistochemical Panel Discriminates between Nerve Sheath and Perivascular Wall Tumors. Vet Sci 2022; 10:vetsci10010001. [PMID: 36669002 PMCID: PMC9863579 DOI: 10.3390/vetsci10010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Benign and malignant nerve sheath tumors (NST) pose a major challenge in routine diagnostic anatomic pathology because of shared histomorphological features with other soft-tissue tumors (STT). As a result, NST are often diagnosed as STT, a broad category that encompasses various entities including perivascular wall tumors (PWT) and that represents approximately 15% of all skin tumors in dogs. Immunohistochemistry (IHC) can assist the identification of histologic subtypes of STT. This IHC pilot study applies various markers largely expressed by peripheral nerves to twelve benign and six malignant NST and determines the intratumoral protein expression of laminin, periaxin-1, Sox-10 and S-100 in the NST subtypes. Furthermore, this study assesses the usefulness of peripheral nerve markers applied to diagnostic work cases and demonstrates the relevance of laminin expression patterns, periaxin-1 and Sox-10 in assisting the differentiation of NST from other STT, in particular from PWT.
Collapse
Affiliation(s)
- Sílvia Sisó
- Departments of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
- Pathology, Immunology Discovery, AbbVie, 100 Research Dr, Worcester, MA 01605, USA
- Correspondence:
| | - Paola Marco-Salazar
- Department of Medicina i Cirurgia Animals, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Paola Roccabianca
- Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900 Lodi, Italy
| | - Giancarlo Avallone
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Robert J. Higgins
- Departments of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Verena K. Affolter
- Departments of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|