Preciado D, Nolan RM, Joshi R, Krakovsky GM, Zhang A, Pudik NA, Kumar NK, Shelton RL, Boppart SA, Bauman NM. Otitis Media Middle Ear Effusion Identification and Characterization Using an Optical Coherence Tomography Otoscope.
Otolaryngol Head Neck Surg 2020;
162:367-374. [PMID:
31959053 DOI:
10.1177/0194599819900762]
[Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE
To determine the feasibility of detecting and differentiating middle ear effusions (MEEs) using an optical coherence tomography (OCT) otoscope.
STUDY DESIGN
Cross-sectional study.
SETTING
US tertiary care children's hospital.
SUBJECTS AND METHODS
Seventy pediatric patients undergoing tympanostomy tube placement were preoperatively imaged using an OCT otoscope. A blinded reader quiz was conducted using 24 readers from 4 groups of tiered medical expertise. The primary outcome assessed was reader ability to detect presence/absence of MEE. A secondary outcome assessed was reader ability to differentiate serous vs nonserous MEE.
RESULTS
OCT image data sets were analyzed from 45 of 70 total subjects. Blinded reader analysis of an OCT data subset for detection of MEE resulted in 90.6% accuracy, 90.9% sensitivity, 90.2% specificity, and intra/interreader agreement of 92.9% and 87.1%, respectively. Differentiating MEE type, reader identification of nonserous MEE had 70.8% accuracy, 53.6% sensitivity, 80.1% specificity, and intra/interreader agreement of 82.9% and 75.1%, respectively. Multivariate analysis revealed that age was the strongest predictor of OCT quality. The mean age of subjects with quality OCT was 5.01 years (n = 45), compared to 2.54 years (n = 25) in the remaining subjects imaged (P = .0028). The ability to capture quality images improved over time, from 50% to 69.4% over the study period.
CONCLUSION
OCT otoscopy shows promise for facilitating accurate MEE detection. The imageability with the prototype device was affected by age, with older children being easier to image, similar to current ear diagnostic technologies.
Collapse