1
|
Li J, Bai Y, Ma K, Ren Z, Li J, Zhang J, Shan A. Dihydroartemisinin alleviates deoxynivalenol induced liver apoptosis and inflammation in piglets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113811. [PMID: 35772362 DOI: 10.1016/j.ecoenv.2022.113811] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Deoxynivalenol (DON) is one of the mycotoxins that contaminate cereals and feed, thereby endangering human and animal health. Dihydroartemisinin (DHA), a derivative of artemisinin, has anti-inflammatory and antioxidant functions in addition to anti-malaria and anti-cancer. The purpose of this study was to investigate the effects of DHA on alleviating liver apoptosis and inflammation induced by DON in piglets. The experimental design followed a 2 (normal diet and DON-contaminated diet) × 2 (with and without supplementation of DHA) factorial arrangement. 36 weaned piglets were subjected to a 21-day experiment. Results showed that DON increased ALT activity, the levels of TNF-α, IL-1β and IL-2, and reduced the levels of total protein (TP) and albumin (ALB) in the serum. However, DHA decreased the levels of TNF-α, IL-1β and IL-2, and increased the levels of TP and ALB. Also, DON decreased glutathione (GSH) content and catalase (CAT) activity, and increased methane dicarboxylic aldehyde (MDA) content. But GSH content was increased by DHA. In addition, DHA decreased DON-induced increase in apoptosis rate of hepatocytes. Furthermore, DON activated death receptor pathway to promote apoptosis by up-regulating the protein expression of FasL and caspase-3, and the mRNA expression of FasL, TNFR1, caspase-8, Bid, Bax, CYC and caspase-3. However, DHA reduced caspase-3 protein expression, as well as the mRNA expression of FADD, Bid, Bax, CYC and caspase-3. Besides, DON also activated TNF/NF-κB pathway to induce an inflammatory response by up-regulating TNF-α protein expression, and the mRNA expression of TNFR1, RIP1, IKKβ, IκBα, IL-1β and IL-8. Nevertheless, DHA reduced the mRNA expression of RIP1, IκBα, NF-κB, IL-1β and IL-6, and the protein expression of TNF-α and NF-κB. In conclusion, DHA improved DON-induced negative effects on serum biochemical parameters and inflammatory cytokine levels, hepatic antioxidant capacity, hepatic apoptosis and inflammation.
Collapse
Affiliation(s)
- Jibo Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Yongsong Bai
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Kaidi Ma
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhongshuai Ren
- College of Animal Sciences, Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, Changchun 130062, PR China
| | - Jianping Li
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China
| | - Jing Zhang
- College of Animal Sciences, Jilin University, Key Laboratory of Zoonosis Research, Ministry of Education, Changchun 130062, PR China.
| | - Anshan Shan
- Institute of Animal Nutrition, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
2
|
Zhao Y, Guo W, Gu X, Chang C, Wu J. Repression of deoxynivalenol-triggered cytotoxicity and apoptosis by mannan/β-glucans from yeast cell wall: Involvement of autophagy and PI3K-AKT-mTOR signaling pathway. Int J Biol Macromol 2020; 164:1413-1421. [PMID: 32735928 DOI: 10.1016/j.ijbiomac.2020.07.217] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/10/2020] [Accepted: 07/26/2020] [Indexed: 12/20/2022]
Abstract
Deoxynivalenol (DON) is the most common trichothecene distributed in food and feed. So far, much work has focused on investigating the cytotoxicity of DON, while there is few researches aimed at intervening in the toxic impacts on humans and livestock posed by DON. The objective of this study is to investigate the underlying mechanism of biomacromolecules mannan/β-glucans from yeast cell wall (BYCW) for their potency to impede the cytotoxicity and apoptosis caused by DON with porcine jejunum epithelial cell lines (IPEC-J2) used as a cell injury model. We analyzed the cell morphology, cell activity, oxidative stress, fluorescence intensity and expressions of proteins relevant to autophagy, apoptosis and PI3K-AKT-mTOR signaling pathway by using inverted microscopy, MTS, reactive oxygen species (ROS), glutathione (GSH) and malondialdehyde (MDA) assay, Annexin V-FITC / propidium iodide (PI) double staining and Western blot assay. The consequent data demonstrated that in the presence of BYCW, the cell morphology and activity were relatively ameliorated and that the oxidation damage was attenuated with DON-induced autophagy concomitantly decreased, which, furthermore, was found involved in the positive regulation on PI3K-AKT-mTOR signaling pathway by BYCW. In a word, BYCW possess an ability to repress the cytotoxicity and apoptosis induced by DON through the inhibition of autophagy via activating PI3K-AKT-mTOR signaling pathway.
Collapse
Affiliation(s)
- Yujie Zhao
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Wenyan Guo
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaolian Gu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Chao Chang
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Hubei, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Jine Wu
- College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Key Laboratory of Intensive Processing of Staple Grain and Oil, Ministry of Education, Key Laboratory for Processing and Transformation of Agricultural Products, Hubei, Wuhan Polytechnic University, Wuhan 430023, China.
| |
Collapse
|
3
|
Habrowska-Górczyńska DE, Kowalska K, Urbanek KA, Domińska K, Sakowicz A, Piastowska-Ciesielska AW. Deoxynivalenol Modulates the Viability, ROS Production and Apoptosis in Prostate Cancer Cells. Toxins (Basel) 2019; 11:E265. [PMID: 31083547 PMCID: PMC6563311 DOI: 10.3390/toxins11050265] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 12/13/2022] Open
Abstract
Deoxynivalenol (DON), known as vomitoxin, a type B trichothecene, is produced by Fusarium. DON frequently contaminates cereal grains such as wheat, maize, oats, barley, rye, and rice. At the molecular level, it induces ribosomal stress, inflammation and apoptosis in eukaryotic cells. Our findings indicate that DON modulates the viability of prostate cancer (PCa) cells and that the response to a single high dose of DON is dependent on the androgen-sensitivity of cells. DON appears to increase reactive oxygen species (ROS) production in cells, induces DNA damage, and triggers apoptosis. The effects of DON application in PCa cells are influenced by the mitogen-activated protein kinase (MAPK) and NFΚB- HIF-1α signaling pathways. Our results indicate that p53 is a crucial factor in DON-associated apoptosis in PCa cells. Taken together, our findings show that a single exposure to high concentrations of DON (2-5 µM) modulates the progression of PCa.
Collapse
Affiliation(s)
- Dominika Ewa Habrowska-Górczyńska
- Laboratory of Cell Cultures and Genomic Analysis, Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Karolina Kowalska
- Laboratory of Cell Cultures and Genomic Analysis, Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Kinga Anna Urbanek
- Laboratory of Cell Cultures and Genomic Analysis, Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Kamila Domińska
- Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| | - Agnieszka Wanda Piastowska-Ciesielska
- Laboratory of Cell Cultures and Genomic Analysis, Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
- Department of Comparative Endocrinology, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
| |
Collapse
|
4
|
Wu Q, Wang X, Nepovimova E, Miron A, Liu Q, Wang Y, Su D, Yang H, Li L, Kuca K. Trichothecenes: immunomodulatory effects, mechanisms, and anti-cancer potential. Arch Toxicol 2017; 91:3737-3785. [PMID: 29152681 DOI: 10.1007/s00204-017-2118-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 12/11/2022]
Abstract
Paradoxically, trichothecenes have both immunosuppressive and immunostimulatory effects. The underlying mechanisms have not been fully explored. Early studies show that dose, exposure timing, and the time at which immune function is assessed influence whether trichothecenes act in an immunosuppressive or immunostimulatory fashion. Recent studies suggest that the immunomodulatory function of trichothecenes is also actively shaped by competing cell-survival and death-signaling pathways. Autophagy may also promote trichothecene immunosuppression, although the mechanism may be complicated. Moreover, trichothecenes may generate an "immune evasion" milieu that allows pathogens to escape host and vaccine immune defenses. Some trichothecenes, especially macrocyclic trichothecenes, also potently kill cancer cells. T-2 toxin conjugated with anti-cancer monoclonal antibodies significantly suppresses the growth of thymoma EL-4 cells and colon cancer cells. The type B trichothecene diacetoxyscirpenol specifically inhibits the tumor-promoting factor HIF-1 in cancer cells under hypoxic conditions. Trichothecin markedly inhibits the growth of multiple cancer cells with constitutively activated NF-κB. The type D macrocyclic toxin Verrucarin A is also a promising therapeutic candidate for leukemia, breast cancer, prostate cancer, and pancreatic cancer. The anti-cancer activities of trichothecenes have not been comprehensively summarized. Here, we first summarize the data on the immunomodulatory effects of trichothecenes and discuss recent studies that shed light on the underlying cellular and molecular mechanisms. These mechanisms include autophagy and major signaling pathways and their crosstalk. Second, the anti-cancer potential of trichothecenes and the underlying mechanisms will be discussed. We hope that this review will show how trichothecene bioactivities can be exploited to generate therapies against pathogens and cancer.
Collapse
Affiliation(s)
- Qinghua Wu
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China. .,Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Anca Miron
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy Grigore T. Popa, Iasi, Romania
| | - Qianying Liu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yun Wang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Dongxiao Su
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Hualin Yang
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Li Li
- College of Life Science, Institute of Biomedicine, Yangtze University, Jingzhou, 434025, China
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic.
| |
Collapse
|
5
|
Smith MC, Madec S, Troadec S, Coton E, Hymery N. Effects of fusariotoxin co-exposure on THP-1 human immune cells. Cell Biol Toxicol 2017; 34:191-205. [PMID: 28822000 DOI: 10.1007/s10565-017-9408-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/08/2017] [Indexed: 11/29/2022]
Abstract
Deoxynivalenol (DON), nivalenol (NIV), T-2 toxin (T2), fumonisin B1 (FB1), zearalenone (ZEA), and moniliformin (MON) mycotoxins are common food and feed contaminants produced by Fusarium spp. However, while they are usually found to co-occur in a large range of commodities, only few data are available on mycotoxin co-exposure effects and cellular response mechanisms. In this study, the individual and combined toxic effects of these fusariotoxins were evaluated on the THP-1 human immune cell line as major fusariotoxins are mostly potent immunomodulators. In particular, four relevant fusariotoxin mixtures, namely DON-MON, DON-FB1, DON-ZEA, and NIV-T2, were studied using several parameters including cell viability as well as the expression of cell surface markers and the main mitogen-activated protein kinases (MAPKs). After 48 h exposure, a reduction of cell viability in a dose-dependent manner was observed for T2, the most cytotoxic mycotoxin, followed by NIV, DON, MON, FB1, and ZEA. Regarding mycotoxin mixtures, they mainly showed antagonism on cell viability reduction. Interestingly, at concentrations inhibiting 50% of cell viability, most viable cells exhibited surface marker loss and thus became potentially non-functional. In addition, during the first 18 h of exposure, the effects of mycotoxin mixtures on early cell apoptosis and necrosis were found to be different from those induced by the toxins alone. At the molecular level, after 1 h exposure of individual and combined mycotoxins, the three main MAPK signaling pathways (p38, SAPK/JNK, and ERK1/2) were activated, highlighting a fast reaction of the exposed cells even at low cytotoxicity levels.
Collapse
Affiliation(s)
- Marie-Caroline Smith
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Stéphanie Madec
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Samuel Troadec
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Emmanuel Coton
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280, Plouzané, France
| | - Nolwenn Hymery
- Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et d'Ecologie Microbienne, IBSAM, ESIAB, Technopôle Brest-Iroise, 29280, Plouzané, France.
| |
Collapse
|
6
|
Bracarense A, Basso K, Da Silva E, Payros D, Oswald I. Deoxynivalenol in the liver and lymphoid organs of rats: effects of dose and duration on immunohistological changes. WORLD MYCOTOXIN J 2017. [DOI: 10.3920/wmj2016.2094] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Deoxynivalenol (DON) is one of the most prevalent type B trichothecenes present in food inducing adverse effects, including intestinal changes and immunosuppression. The aim of the present study was to investigate the effects of DON on rats exposed for 7, 14 and 28 days to mycotoxin-contaminated diets, using histological and immunohistochemical analyses on liver and lymphoid organs. Fifty rats received a control diet, or a diet contaminated with 1.75 mg/kg of DON for 30 days, or a diet contaminated with 11.4 mg/kg of DON for 7, 14 or 30 days. Ingestion of contaminated feed induced a significant increase in the lesional score in the liver, spleen, and lymph nodes. The main histological findings observed in the liver were cytoplasmic vacuolisation and hepatocelular megalocytosis. A significant increase in hepatocyte proliferation was observed in rats that received 1.75 mg/kg of DON. Lymphoid depletion was the main histological alteration observed in lymphoid organs, resulting in a significant increase in the lesional score in all groups that received the contaminated diets. The histological changes and lymphocyte apoptosis were more severe in lymph nodes of rats fed 11.4 mg/kg of DON during 30 days. The results of the morphological and immunohistochemical analyses suggest that the ingestion of DON can induce functional hepatic impairment and immunosuppression in a dose- and time-dependent manner.
Collapse
Affiliation(s)
- A.P.F.L. Bracarense
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-990 Londrina, Brazil
| | - K.M. Basso
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-990 Londrina, Brazil
| | - E.O. Da Silva
- Laboratory of Animal Pathology, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, km 380, 86057-990 Londrina, Brazil
| | - D. Payros
- INRA, UMR 1331 Toxalim, Research Center in Food Toxicology, 31027 Toulouse, France
- Université de Toulouse, INP, UMR 1331 Toxalim, 31076 Toulouse, France
| | - I.P. Oswald
- INRA, UMR 1331 Toxalim, Research Center in Food Toxicology, 31027 Toulouse, France
- Université de Toulouse, INP, UMR 1331 Toxalim, 31076 Toulouse, France
| |
Collapse
|
7
|
Fernandes G, Barone AW, Dziak R. The effect of ascorbic acid on bone cancer cells in vitro. ACTA ACUST UNITED AC 2017. [DOI: 10.1080/23312025.2017.1288335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Gabriela Fernandes
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, 3435 Main Street, Buffalo, NY 14201, USA
| | - Andrew W. Barone
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, 3435 Main Street, Buffalo, NY 14201, USA
| | - Rosemary Dziak
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, State University of New York, 3435 Main Street, Buffalo, NY 14201, USA
| |
Collapse
|
8
|
Wang X, Xu W, Fan M, Meng T, Chen X, Jiang Y, Zhu D, Hu W, Gong J, Feng S, Wu J, Li Y. Deoxynivalenol induces apoptosis in PC12 cells via the mitochondrial pathway. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 43:193-202. [PMID: 27017380 DOI: 10.1016/j.etap.2016.03.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
Deoxynivalenol (DON) has broad toxicity in animals and humans. In this study the impact of DON treatment on apoptotic pathways in PC12 cells was determined. The effects of DON were evaluated on (i) typical indicators of apoptosis, including cellular morphology, cell activity, lactate dehydrogenase (LDH) release, and apoptosis ratio in PC12 cells, and on (ii) the expression of key genes and proteins related to apoptosis, including Bcl-2, Bax, Bid, cytochrome C (Cyt C), apoptosis inducing factor (AIF), cleaved-Caspase9, and cleaved-Caspase3. DON treatment inhibited proliferation of PC12 cells, induced significant morphological changes and apoptosis, promoted the release of Cyt C and AIF from the mitochondria, and increased the activities of cleaved-Caspase9 and cleaved-Caspase3. Bcl-2 expression decreased with increasing DON concentrations, in contrast to Bax and Bid, which were increased with increasing DON concentration. These data demonstrate that DON induces apoptosis in PC12 cells through the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Xichun Wang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Wei Xu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Mengxue Fan
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Tingting Meng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Xiaofang Chen
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Yunjing Jiang
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Dianfeng Zhu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Wenjuan Hu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jiajie Gong
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Shibin Feng
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Jinjie Wu
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| | - Yu Li
- College of Animal Science and Technology, Anhui Agricultural University, 130 West Changjiang Road, Hefei 230036, China.
| |
Collapse
|
9
|
Tsubone H, Hanafusa M. An overview of toxicity of trichothecene mycotoxins, T-2 toxin and deoxynivalenol: Involvements of their oxidative stress and apoptosis effects. ACTA ACUST UNITED AC 2016. [DOI: 10.2520/myco.66.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hirokazu Tsubone
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Masakazu Hanafusa
- Research Center for Food Safety, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
10
|
Deoxynivalenol: signaling pathways and human exposure risk assessment—an update. Arch Toxicol 2014; 88:1915-28. [DOI: 10.1007/s00204-014-1354-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 08/27/2014] [Indexed: 10/24/2022]
|
11
|
Connor CA, Adriaens M, Pierini R, Johnson IT, Belshaw NJ. Procyanidin induces apoptosis of esophageal adenocarcinoma cells via JNK activation of c-Jun. Nutr Cancer 2014; 66:335-41. [PMID: 24471892 DOI: 10.1080/01635581.2014.868914] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Procyanidins are polymeric flavanols found in fruits and vegetables and have shown anticarcinogenic/chemopreventive properties. We previously showed that oligomeric procyanidin extracted from apples induced cell cycle arrest and apoptosis in esophageal adenocarcinoma (OA) cells. To understand the mechanism of action, we determined transcriptomic changes induced by procyanidin in OA cells. Pathway analysis implicated mitogen-activated protein kinase signaling pathways in eliciting these responses. Procyanidin induced the activation of JNK and p38 and the phosphorylation and expression of c-Jun. Inhibition of JNK but not p38 kinase activity prevented the procyanidin-induced phosphorylation and expression of c-Jun. Knockdown of the expression of JNK1, JNK2, or JUN diminished procyanidin-induced effects on cell proliferation and apoptosis. c-Jun is a component of the transcription factor AP-1 and AP-1 binding sites are overrepresented in the promoters of procyanidin-induced genes. This indicates that JNK activation of c-Jun by procyanidin leads to the induction of apoptosis of OA cells and suggests a role for a c-Jun-mediated transcriptional program. These data provide a mechanistic understanding of how procyanidin specifically targets a distinct pathway involved in the induction of apoptosis in OA cells and will inform future studies investigating its use as a chemopreventive/therapeutic agent.
Collapse
|
12
|
Diesing AK, Nossol C, Dänicke S, Walk N, Post A, Kahlert S, Rothkötter HJ, Kluess J. Vulnerability of polarised intestinal porcine epithelial cells to mycotoxin deoxynivalenol depends on the route of application. PLoS One 2011; 6:e17472. [PMID: 21364771 PMCID: PMC3045462 DOI: 10.1371/journal.pone.0017472] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 02/03/2011] [Indexed: 11/18/2022] Open
Abstract
Background and Aims Deoxynivalenol (DON) is a Fusarium derived mycotoxin, often occurring on cereals used for human and animal nutrition. The intestine, as prominent barrier for nutritional toxins, has to handle the mycotoxin from the mucosa protected luminal side (apical exposure), as well as already absorbed toxin, reaching the cells from basolateral side via the blood stream. In the present study, the impact of the direction of DON exposure on epithelial cell behaviour and intestinal barrier integrity was elucidated. Methods A non-transformed intestinal porcine epithelial cell line (IPEC-J2), cultured in membrane inserts, serving as a polarised in vitro model to determine the effects of deoxynivalenol (DON) on cellular viability and tight junction integrity. Results Application of DON in concentrations up to 4000 ng/mL for 24, 48 and 72 hours on the basolateral side of membrane cultured polarised IPEC-J2 cells resulted in a breakdown of the integrity of cell connections measured by transepithelial electrical resistance (TEER), as well as a reduced expression of the tight junction proteins ZO-1 and claudin 3. Epithelial cell number decreased and nuclei size was enlarged after 72 h incubation of 4000 ng/mL DON from basolateral. Although necrosis or caspase 3 mediated apoptosis was not detectable after basolateral DON application, cell cycle analysis revealed a significant increase in DNA fragmentation, decrease in G0/G1 phase and slight increase in G2/M phase after 72 hours incubation with DON 2000 ng/mL. Conclusions Severity of impact of the mycotoxin deoxynivalenol on the intestinal epithelial barrier is dependent on route of application. The epithelium appears to be rather resistant towards apical (luminal) DON application whereas the same toxin dose from basolateral severely undermines barrier integrity.
Collapse
Affiliation(s)
- Anne-Kathrin Diesing
- Medical Faculty, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany
| | - Constanze Nossol
- Medical Faculty, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany
| | - Sven Dänicke
- Institute of Animal Nutrition, Federal Research Institute for Animal Health, Braunschweig, Germany
| | - Nicole Walk
- Medical Faculty, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany
| | - Andreas Post
- Medical Faculty, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany
| | - Stefan Kahlert
- Medical Faculty, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany
| | | | - Jeannette Kluess
- Medical Faculty, Institute of Anatomy, Otto-von-Guericke University, Magdeburg, Germany
- * E-mail:
| |
Collapse
|
13
|
Ngampongsa S, Ito K, Kuwahara M, Kumagai S, Tsubone H. Arrhythmias and alterations in autonomic nervous function induced by deoxynivalenol (DON) in unrestrained rats. J Toxicol Sci 2011; 36:453-60. [DOI: 10.2131/jts.36.453] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
| | - Koichi Ito
- Department of Comparative Pathophysiology, The University of Tokyo
| | | | - Susumu Kumagai
- Department of Veterinary Public Health, The University of Tokyo
- Research Center for Food Safety, The University of Tokyo
| | - Hirokazu Tsubone
- Department of Comparative Pathophysiology, The University of Tokyo
- Research Center for Food Safety, The University of Tokyo
| |
Collapse
|
14
|
Kincses ZT, Vecsei L. Pharmacological therapy in Parkinson's disease: focus on neuroprotection. CNS Neurosci Ther 2010; 17:345-67. [PMID: 20438581 DOI: 10.1111/j.1755-5949.2010.00150.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Although the number of available therapeutic approaches in Parkinson's disease (PD) is steadily increasing the search for effective neuroprotective agent is continuing. Such research is directed at influencing the key steps in the pathomechanism: the mitochondrial dysfunction, the oxidative stress, the neuroinflammatory processes and the final common apoptotic pathway. Earlier-developed symptomatic therapies were implicated to be neuroprotective, and promising novel disease modifying approaches were brought into the focus of interest. The current review presents a survey of our current knowledge relating to the pathomechanism of PD and discusses the putative neuroprotective therapy.
Collapse
Affiliation(s)
- Zsigmond Tamas Kincses
- Department of Neurology, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | | |
Collapse
|
15
|
Yang H, Chung DH, Kim YB, Choi YH, Moon Y. Ribotoxic mycotoxin deoxynivalenol induces G2/M cell cycle arrest via p21Cip/WAF1 mRNA stabilization in human epithelial cells. Toxicology 2008; 243:145-54. [DOI: 10.1016/j.tox.2007.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Revised: 10/01/2007] [Accepted: 10/01/2007] [Indexed: 11/26/2022]
|
16
|
Pan J, Zhao YX, Wang ZQ, Jin L, Sun ZK, Chen SD. Expression of FasL and its interaction with Fas are mediated by c-Jun N-terminal kinase (JNK) pathway in 6-OHDA-induced rat model of Parkinson disease. Neurosci Lett 2007; 428:82-7. [PMID: 17959308 DOI: 10.1016/j.neulet.2007.09.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2007] [Accepted: 09/17/2007] [Indexed: 11/16/2022]
Abstract
Our previous studies and those of others have strongly suggested that c-Jun N-terminal kinase (JNK) signaling pathway plays a critical role in 6-hydroxydopamine (6-OHDA)-induced dopaminergic neuron injury in the substantia nigra. However, the downstream mechanism that accounts for the proapoptotic actions of JNK in 6-OHDA lesion remains to be investigated in detail. Fas, a member of the tumor necrosis factor receptor family with proapoptotic functions, was reported to be elevated within the striatum and substantia nigra pars compacta (SNc) of Parkinson's disease (PD) patients. In the present study, we examined the changes in the protein level of Fas ligand (FasL) and its interaction with Fas in a rat model of PD. We demonstrate that the expression of FasL and not Fas was increased after 6-OHDA lesion; additionally, the interaction of FasL and Fas was increased due to 6-OHDA lesion. This indicates that the 6-OHDA-induced activation of Fas signaling pathway is mediated by JNK and that FasL may be a promising target in the therapeutic approach for PD patients.
Collapse
Affiliation(s)
- Jing Pan
- Department of Neurology and Neuroscience Institute, Ruijin Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai 200025, PR China
| | | | | | | | | | | |
Collapse
|