1
|
Zhao Y, Niu M, Jia Y, Yuan J, Xiang L, Dai X, Wang G, Chen H. Establishment of type 2 diabetes mellitus models using streptozotocin after 3 months high-fat diet in Bama minipigs. Anim Biotechnol 2023; 34:2295-2312. [PMID: 35749713 DOI: 10.1080/10495398.2022.2088548] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the past twenty years, the number of adults with diabetes has tripled. Most studies have been conducted using rodent models of type 2 diabetes mellitus (T2DM), and the developed drugs have low clinical conversion efficiency. Therefore, it is urgent to establish a more human-like large animal model to explore T2DM pathogenesis and formulate new disease prevention and control strategies. This study was designed to establish and validate a T2DM model using minipigs fed a high-fat or high-cholesterol/high-fat diet and injected with low-dose streptozotocin (STZ). We examined the influence of the STZ injection timing with a diet high in fat (HFD) compared with one high in cholesterol and fat (HCFD) on the atherosclerotic lesions accelerated by T2DM. Male Bama minipigs (n = 24) were randomly divided into five groups. The control group was fed a normal diet for 9 months. The STZ + HFD and STZ + HCFD groups were infused with 90 mg/kg STZ and then fed a high-fat diet or high-cholesterol and high-fat diet for 9 months, respectively. The HFD + STZ and HCFD + STZ groups were fed a high-fat diet or a high-cholesterol and high-fat diet, respectively, for 9 months (after 3 months, these pigs were injected intravenously with 90 mg/kg STZ). During the induction period, animal body weight, BMI, and serum GLU, INS, TG, TC, HDL-C, LDL-C, FFA, ALT, AST, CRE, and BUN were detected monthly intervals. IVGTT and insulin release tests were performed at 3-month intervals. At the end of the test, the coronary artery and abdominal aorta were examined by computed tomography and pathological observations, and the thickness of the basement membrane of the capillary of the retina and kidney glomerulus was measured under a transmission electron microscope. The serum glucose concentrations were normal in all groups except the HFD + STZ and HCFD + STZ groups. Animals fed an HFD for 9 months did not develop apparent atherosclerotic lesions, but atherosclerotic lesions were seen in the animals fed an HCFD. Hyperglycemia accelerated the formation of atherosclerotic lesions on the intimal surface of the abdominal aorta. Low-dose STZ after 3 months of HFD or HCFD successfully established a T2DM model in minipigs. The HFD did not induce apparent atherosclerotic lesions, but these were seen with the HCFD. Hyperglycemia accelerated atherosclerosis in the minipigs.
Collapse
Affiliation(s)
- Yuqiong Zhao
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Miaomiao Niu
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Yunxiao Jia
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Jifang Yuan
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Lei Xiang
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Dai
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Guisheng Wang
- Radiology Department of No. 3 Clinical Center, Chinese PLA General Hospital, Beijing, China
| | - Hua Chen
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
2
|
Esmaeili S, Bandarian F, Gharishvandi F, Razi F, Hosseinkhani S, Namazi N, Esmaeili B, Sanjari M, Tootee A, Saeedi S, Rambod C, Aalaa M, Fahimfar N, Larijani B, Nasli-Esfahani E. Knowledge gaps in diabetes research: an evidence mapping of the literature. J Diabetes Metab Disord 2022; 21:1139-1148. [PMID: 35673463 PMCID: PMC9167169 DOI: 10.1007/s40200-022-01037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 10/18/2022]
Abstract
Background Mapping the available evidence can be used to inform current diabetes research, identify relevant gaps, and prioritize future research. In this regard, we mapped diabetes research performed in Iran. Method We searched the Scopus and PubMed databases from 01/01/2015 till 01/01/2020 using keywords such as diabetes and Iran. The included articles were classified according to their document types, level of evidence, and subject areas. Results The majority of the included articles (53%) were related to diabetes types, followed by complications (28%). Most of the documents were original articles (82%), and reviews were 18% of the publications. Systematic reviews constitute only 6% of the total documents. Observational studies were the most common types of study designs (26%), followed by clinical trials (20%). Moreover, topics on control and management of diabetes were the most prevalent subject areas (58%), and fewer studies were on preventive strategies (6%). In diabetes management studies, less attention has been paid to evaluate psychological (10%), educational (9%), and physical activity-related (7%) interventions. There was a shortage of secondary studies related to physical activity, psychology, diagnostic, and screening-related studies. Conclusion To fill diabetes research gaps, more investment in cost-effectiveness interventions, such as preventive strategies and behavioral self-management programs, need. Moreover, we need to pay more attention on applied sciences and real world evidence to bridge translational gaps from bench to bedside. In this regard, further data synthesis can be helpful in evaluating the effectiveness of the available studies and avoiding unnecessary investigations.
Collapse
Affiliation(s)
- Shahnaz Esmaeili
- Diabetes Research Center, Endocrinology and Metabolism Clinical sciences Institute, Tehran University of Medical Sciences, PO Box: 1411413137, Tehran, Iran
| | - Fatemeh Bandarian
- Diabetes Research Center, Endocrinology and Metabolism Clinical sciences Institute, Tehran University of Medical Sciences, PO Box: 1411413137, Tehran, Iran
| | - Fatemeh Gharishvandi
- Personalized medicine research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farideh Razi
- Metabolomics and Genomics Research Center. Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Hosseinkhani
- Elderly health research Center. Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazli Namazi
- Biosensor Research Center. Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behnaz Esmaeili
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Sanjari
- Metabolic Disorders Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Tootee
- Diabetes Research Center, Endocrinology and Metabolism Clinical sciences Institute, Tehran University of Medical Sciences, PO Box: 1411413137, Tehran, Iran
| | - Saeedeh Saeedi
- Cell therapy and regenerative medicine research center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Camelia Rambod
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Aalaa
- Evidence Based Medicine Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Noushin Fahimfar
- Osteoporosis Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical, Sciences Institute, Tehran University of Medical Sciences, PO Box: 1411413137, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical sciences Institute, Tehran University of Medical Sciences, PO Box: 1411413137, Tehran, Iran
| |
Collapse
|
3
|
Niu M, Zhao Y, Xiang L, Jia Y, Yuan J, Dai X, Chen H. 16S rRNA gene sequencing analysis of gut microbiome in a mini-pig diabetes model. Animal Model Exp Med 2022; 5:81-88. [PMID: 35213788 PMCID: PMC8879634 DOI: 10.1002/ame2.12202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Currently, increasing attention is being paid to the important role of intestinal microbiome in diabetes. However, few studies have evaluated the characteristics of gut microbiome in diabetic miniature pigs, despite it being a good model animal for assessing diabetes. METHODS In this study, a mini-pig diabetes model (DM) was established by 9-month high-fat diet (HFD) combined with low-dose streptozotocin, while the animals fed standard chow diet constituted the control group. 16S ribosomal RNA (rRNA) gene sequencing was performed to assess the characteristics of the intestinal microbiome in diabetic mini-pigs. RESULTS The results showed that microbial structure in diabetic mini-pigs was altered, reflected by increases in levels of Coprococcus_3 and Clostridium_sensu_stricto_1, which were positively correlated with diabetes, and decreases in levels of the bacteria Rikenellaceae, Clostridiales_vadinBB60_group, and Bacteroidales_RF16_group, which were inversely correlated with blood glucose and insulin resistance. Moreover, PICRUSt-predicted pathways related to the glycolysis and Entner-Doudoroff superpathway, enterobactin biosynthesis, and the l-tryptophan biosynthesis were significantly elevated in the DM group. CONCLUSION These results reveal the composition and predictive functions of the intestinal microbiome in the mini-pig diabetes model, further verifying the relationship between HFD, gut microbiome, and diabetes, and providing novel insights into the application of the mini-pig diabetes model in gut microbiome research.
Collapse
Affiliation(s)
- Miaomiao Niu
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Yuqiong Zhao
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Lei Xiang
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Yunxiao Jia
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Jifang Yuan
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Xin Dai
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| | - Hua Chen
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, PR China
| |
Collapse
|
4
|
Zietek T, Boomgaarden WAD, Rath E. Drug Screening, Oral Bioavailability and Regulatory Aspects: A Need for Human Organoids. Pharmaceutics 2021; 13:1280. [PMID: 34452240 PMCID: PMC8399541 DOI: 10.3390/pharmaceutics13081280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/14/2021] [Indexed: 12/31/2022] Open
Abstract
The intestinal epithelium critically contributes to oral bioavailability of drugs by constituting an important site for drug absorption and metabolism. In particular, intestinal epithelial cells (IEC) actively serve as gatekeepers of drug and nutrient availability. IECs' transport processes and metabolism are interrelated to the whole-body metabolic state and represent potential points of origin as well as therapeutic targets for a variety of diseases. Human intestinal organoids represent a superior model of the intestinal epithelium, overcoming limitations of currently used in vitro models. Caco-2 cells or rodent explant models face drawbacks such as their cancer and non-human origin, respectively, but are commonly used to study intestinal nutrient absorption, enterocyte metabolism and oral drug bioavailability, despite poorly correlative data. In contrast, intestinal organoids allow investigating distinct aspects of bioavailability including spatial resolution of transport, inter-individual differences and high-throughput screenings. As several countries have already developed strategic roadmaps to phase out animal experiments for regulatory purposes, intestinal organoid culture and organ-on-a-chip technology in combination with in silico approaches are roads to go in the preclinical and regulatory setup and will aid implementing the 3Rs (reduction, refinement and replacement) principle in basic science.
Collapse
Affiliation(s)
- Tamara Zietek
- Doctors against Animal Experiments, 51143 Köln, Germany
| | | | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
5
|
Diwekar-Joshi M, Watve M. Driver versus navigator causation in biology: the case of insulin and fasting glucose. PeerJ 2020; 8:e10396. [PMID: 33365205 PMCID: PMC7735078 DOI: 10.7717/peerj.10396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 10/29/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND In biomedicine, inferring causal relation from experimental intervention or perturbation is believed to be a more reliable approach than inferring causation from cross-sectional correlation. However, we point out here that even in interventional inference there are logical traps. In homeostatic systems, causality in a steady state can be qualitatively different from that in a perturbed state. On a broader scale there is a need to differentiate driver causality from navigator causality. A driver is essential for reaching a destination but may not have any role in deciding the destination. A navigator on the other hand has a role in deciding the destination and the path but may not be able to drive the system to the destination. The failure to differentiate between types of causalities is likely to have resulted into many misinterpretations in physiology and biomedicine. METHODS We illustrate this by critically re-examining a specific case of the causal role of insulin in glucose homeostasis using five different approaches (1) Systematic review of tissue specific insulin receptor knock-outs, (2) Systematic review of insulin suppression and insulin enhancement experiments, (3) Differentiating steady state and post-meal state glucose levels in streptozotocin treated rats in primary experiments, (4) Mathematical and theoretical considerations and (5) Glucose-insulin relationship in human epidemiological data. RESULTS All the approaches converge on the inference that although insulin action hastens the return to a steady state after a glucose load, there is no evidence that insulin action determines the steady state level of glucose. Insulin, unlike the popular belief in medicine, appears to be a driver but not a navigator for steady state glucose level. It is quite likely therefore that the current line of clinical action in the field of type 2 diabetes has limited success largely because it is based on a misinterpretation of glucose-insulin relationship. The insulin-glucose example suggests that we may have to carefully re-examine causal inferences from perturbation experiments and set up revised norms for experimental design for causal inference.
Collapse
Affiliation(s)
- Manawa Diwekar-Joshi
- Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Milind Watve
- Deenanath Mangeshkar Hospital and Research Centre, Pune, Maharashtra, India
| |
Collapse
|
6
|
Harman NL, Sanz-Moreno A, Papoutsopoulou S, Lloyd KA, Ameen-Ali KE, Macleod M, Williamson PR. Can harmonisation of outcomes bridge the translation gap for pre-clinical research? A systematic review of outcomes measured in mouse models of type 2 diabetes. J Transl Med 2020; 18:468. [PMID: 33298112 PMCID: PMC7727210 DOI: 10.1186/s12967-020-02649-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In pre-clinical research, systematic reviews have the potential to mitigate translational challenges by facilitating understanding of how pre-clinical studies can inform future clinical research. Yet their conduct is encumbered by heterogeneity in the outcomes measured and reported, and those outcomes may not always relate to the most clinically important outcomes. We aimed to systematically review outcomes measured and reported in pre-clinical in vivo studies of pharmacological interventions to treat high blood glucose in mouse models of type 2 diabetes. METHODS A systematic review of pre-clinical in vivo studies of pharmacological interventions aimed at addressing elevated blood glucose in mouse models of type 2 diabetes was completed. Studies were screened for eligibility and outcomes extracted from the included studies. The outcomes were recorded verbatim and classified into outcome domains using an existing outcome taxonomy. Outcomes were also compared to those identified in a systematic review of registered phase 3/4 clinical trials for glucose lowering interventions in people with type 2 diabetes. RESULTS Review of 280 included studies identified 532 unique outcomes across 19 domains. No single outcome, or domain, was measured in all studies and only 132 (21%) had also been measured in registered phase 3/4 clinical trials. A core outcome set, representing the minimum that should be measured and reported, developed for type 2 diabetes effectiveness clinical trials includes 18 core outcomes, of these 12 (71%) outcomes were measured and reported in one or more of the included pre-clinical studies. CONCLUSIONS There is heterogeneity of outcomes reported in pre-clinical research. Harmonisation of outcomes across the research pathway using a core outcome set may facilitate interpretation, evidence synthesis and translational success, and may contribute to the refinement of the use of animals in research. Systematic review registration: The study was prospectively registered on the PROSPERO Database, registration number CRD42018106831.
Collapse
Affiliation(s)
- Nicola L Harman
- Department of Health Data Science, University of Liverpool, Liverpool, L69 3GL, UK.
| | - Adrián Sanz-Moreno
- German Mouse Clinic, Institute of Experimental Genetics, HMGU, Neuherberg, 85764, Germany
| | - Stamatia Papoutsopoulou
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3GL, UK
| | - Katie A Lloyd
- Clinical Translational Research Innovation Centre (CTRIC), Altnagelvin Hospital, University of Ulster, Londonderry, BT47 6SB, UK
| | - Kamar E Ameen-Ali
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle, NE4 5PL, UK
| | - Malcolm Macleod
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Paula R Williamson
- Department of Health Data Science, University of Liverpool, Liverpool, L69 3GL, UK
| |
Collapse
|
7
|
Zietek T, Giesbertz P, Ewers M, Reichart F, Weinmüller M, Urbauer E, Haller D, Demir IE, Ceyhan GO, Kessler H, Rath E. Organoids to Study Intestinal Nutrient Transport, Drug Uptake and Metabolism - Update to the Human Model and Expansion of Applications. Front Bioeng Biotechnol 2020; 8:577656. [PMID: 33015026 PMCID: PMC7516017 DOI: 10.3389/fbioe.2020.577656] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/19/2020] [Indexed: 12/22/2022] Open
Abstract
Intestinal transport and sensing processes and their interconnection to metabolism are relevant to pathologies such as malabsorption syndromes, inflammatory diseases, obesity and type 2 diabetes. Constituting a highly selective barrier, intestinal epithelial cells absorb, metabolize, and release nutrients into the circulation, hence serving as gatekeeper of nutrient availability and metabolic health for the whole organism. Next to nutrient transport and sensing functions, intestinal transporters including peptide transporter 1 (PEPT1) are involved in the absorption of drugs and prodrugs, including certain inhibitors of angiotensin-converting enzyme, protease inhibitors, antivirals, and peptidomimetics like β-lactam antibiotics. Here, we verify the applicability of 3D organoids for in vitro investigation of intestinal biochemical processes related to transport and metabolism of nutrients and drugs. Establishing a variety of methodologies including illustration of transporter-mediated nutrient and drug uptake and metabolomics approaches, we highlight intestinal organoids as robust and reliable tool in this field of research. Currently used in vitro models to study intestinal nutrient absorption, drug transport and enterocyte metabolism, such as Caco-2 cells or rodent explant models are of limited value due to their cancer and non-human origin, respectively. Particularly species differences result in poorly correlative data and findings obtained in these models cannot be extrapolated reliably to humans, as indicated by high failure rates in drug development pipelines. In contrast, human intestinal organoids represent a superior model of the intestinal epithelium and might help to implement the 3Rs (Reduction, Refinement and Replacement) principle in basic science as well as the preclinical and regulatory setup.
Collapse
Affiliation(s)
- Tamara Zietek
- Chair of Nutritional Physiology, Technische Universität München, Munich, Germany
| | - Pieter Giesbertz
- Chair of Nutritional Physiology, Technische Universität München, Munich, Germany
| | - Maren Ewers
- Pediatric Nutritional Medicine, Klinikum Rechts der Isar, Else Kröner-Fresenius-Zentrum für Ernährungsmedizin, Technische Universität München, Munich, Germany
| | - Florian Reichart
- Institute for Advanced Study, Department of Chemistry and Center for Integrated Protein Science (CIPSM), Technische Universität München, Garching, Germany
| | - Michael Weinmüller
- Institute for Advanced Study, Department of Chemistry and Center for Integrated Protein Science (CIPSM), Technische Universität München, Garching, Germany
| | - Elisabeth Urbauer
- Chair of Nutrition and Immunology, Technische Universität München, Munich, Germany
| | - Dirk Haller
- Chair of Nutrition and Immunology, Technische Universität München, Munich, Germany.,ZIEL Institute for Food and Health, Technische Universität München, Munich, Germany
| | - Ihsan Ekin Demir
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey.,German Cancer Consortium (DKTK), Munich, Germany.,CRC 1321 Modeling and Targeting Pancreatic Cancer, Klinikum rechts der Isar, School of Medicine, Technische Universität München, Munich, Germany
| | - Güralp O Ceyhan
- Department of Surgery, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany.,Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Horst Kessler
- Institute for Advanced Study, Department of Chemistry and Center for Integrated Protein Science (CIPSM), Technische Universität München, Garching, Germany
| | - Eva Rath
- Chair of Nutrition and Immunology, Technische Universität München, Munich, Germany
| |
Collapse
|
8
|
Kongsuphol P, Gupta S, Liu Y, Bhuvanendran Nair Gourikutty S, Biswas SK, Ramadan Q. In vitro micro-physiological model of the inflamed human adipose tissue for immune-metabolic analysis in type II diabetes. Sci Rep 2019; 9:4887. [PMID: 30894623 PMCID: PMC6426956 DOI: 10.1038/s41598-019-41338-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/28/2019] [Indexed: 12/14/2022] Open
Abstract
Chronic inflammation mediated by the interaction of immune cells and adipocytes is a key underlying factor in obesity-associated type 2 diabetes mellitus (T2DM). Therefore, methods to investigate adipocyte-immune cells interaction and their immuno-metabolic status in obese/T2DM subjects not only serve as an early indicator of disease development but also provide an insight into disease mechanism. A microfluidic-based in vitro model of the human adipose that is interfaced with a co-culture of immune cell has been developed for in vitro immune-metabolic analysis. This miniaturized system integrates a biologically active in vitro cellular system within a perfusion-based microfluidic device for mimicking the major processes that characterize the interaction of adipose tissue with immune cells. A viable immune competent model of the adipocytes/PBMCs co-culture has been demonstrated and characterized. Our testing results showed that the inflammatory cytokine profile obtained from the on-chip culture agrees with those from static transwell based co-culture with more intense responses observed in the chip-based system. The microfluidic chip also allows time-resolved measurement of cytokines that provide reliable data and detailed mechanisms of inflammation. In addition, glucose uptake by the adipocytes from the chip-based cultures showed correlated insulin responsivity/resistivity to the expression of the cytokine profile in different dynamic culture conditions. Testing of the known diabetic drug, metformin, and neutraceutical compound, omega-3, on-chip show agreeable results as compared to the previously reported data. This organotypic culture system offers a physiologically relevant model that exhibits a key characteristic of type 2 diabetic adipose tissues and can be used to study the T2DM mechanisms and diabetic drug screening.
Collapse
Affiliation(s)
- Patthara Kongsuphol
- Institute of Microelectronics, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-02, Innovis, Singapore, 138634, Singapore
| | - Shilpi Gupta
- Singapore Immunology Network, A*STAR, 8a Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Yunxiao Liu
- Institute of Microelectronics, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-02, Innovis, Singapore, 138634, Singapore
| | - Sajay Bhuvanendran Nair Gourikutty
- Institute of Microelectronics, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-02, Innovis, Singapore, 138634, Singapore
| | - Subhra K Biswas
- Singapore Immunology Network, A*STAR, 8a Biomedical Grove, Immunos, Singapore, 138648, Singapore
| | - Qasem Ramadan
- Institute of Microelectronics, Agency for Science Technology and Research (A*STAR), 2 Fusionopolis Way, #08-02, Innovis, Singapore, 138634, Singapore.
| |
Collapse
|