1
|
Eriksson M, Nylén S, Grönvik KO. Passive immunization of mice with IgY anti-H5N1 protects against experimental influenza virus infection and allows development of protective immunity. Vaccine 2024; 42:126133. [PMID: 39019655 DOI: 10.1016/j.vaccine.2024.07.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Influenza virus contributes substantially to the global human and animal disease burden. To protect individuals against disease, strategies are needed to minimize the time an individual is at risk of developing disease symptoms. Passive immunization using avian IgY antibodies can protect individuals against a variety of pathogens, including influenza virus. Yet the effect of IgY administration on generation of protective immunity is largely unknown. To address the effect of passive immunization on the host immune response development, adult or aged, male and female C57BL/6NCrl mice received chicken IgY anti-H5N1, normal IgY or PBS intranasally four hours before, and 20 hours after intranasal infection with H1N1 influenza A virus (PR8). The mice receiving cross-reactive IgY anti-H5N1 were protected from disease and developed influenza virus-specific memory T cells similar to control-treated mice. When re-challenged with PR8 35 days post primary infection IgY anti-H5N1-treated mice were fully protected. Moreover, when challenged with heterologous H3N2 influenza A virus (X-31) or with PR8 three months post infection the mice were protected against severe disease and death, albeit a slight transient weight loss was noted. The results show that passive immunization with IgY anti-H5N1 is safe and protects mice against disease induced by influenza virus without inhibiting development of protective immunity after virus exposure. This indicate that passive immunization can be used as prophylactic therapy in combination with immunization to prevent disease.
Collapse
Affiliation(s)
- Malin Eriksson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden; Department of Microbiology, Swedish Veterinary Agency, 751 89 Uppsala, Sweden.
| | - Susanne Nylén
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
| | - Kjell-Olov Grönvik
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden; Uppsala Immunobiology Lab, 752 37 Uppsala, Sweden.
| |
Collapse
|
2
|
Zhang L, Xiao Y, Ji L, Lin M, Zou Y, Zhao J, Zhao S. Potential Therapeutic Effects of Egg Yolk Antibody (IgY) in Helicobacter pylori Infections─A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13691-13699. [PMID: 34783242 DOI: 10.1021/acs.jafc.1c05398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Currently, the infection with Helicobacter pylori affects about half of the world's population, and the most common therapy to treat H. pylori is the first line clarithromycin-based triple therapy or the quadruple therapy. However, drug resistance, eradication in a low level, high rate of reinfection, and gastrointestinal side effects among the causative organisms for H. pylori infection pose a critical challenge to the global health care community. Therefore, new approaches to treat H. pylori infections are urgently needed. Chicken egg yolk constituting a source of immunoglobulin Y (IgY) has attracted noticeable attention for its advantages of cost-effective extraction, minimization of animal harm and suffering, and induction of no specific resistance and is, therefore, being regarded as an alternative therapy for H. pylori infection. This review is intended to summarize various H. pylori antigens for IgY preparation in terms of their application, mechanism, and limitations.
Collapse
Affiliation(s)
- Leheng Zhang
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yire Xiao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Li Ji
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Mingxia Lin
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Yikui Zou
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Jingjing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| | - Suqing Zhao
- Department of Pharmaceutical Engineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, People's Republic of China
| |
Collapse
|
3
|
IgY – Immune component of eggs as a source of passive immunity for animals and humans. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933910000279] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
4
|
The potential to reduce poultry nitrogen emissions with specific uricase egg yolk feed grade antibodies. WORLD POULTRY SCI J 2019. [DOI: 10.1017/s0043933913000056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Huang X, Ahn DU. How Can the Value and Use of Egg Yolk Be Increased? J Food Sci 2019; 84:205-212. [PMID: 30620779 DOI: 10.1111/1750-3841.14430] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 11/16/2018] [Accepted: 11/24/2018] [Indexed: 12/12/2022]
Abstract
The major driving force for the egg consumption in the United States over the past few decades was processed egg. However, the consumption of egg through the processed egg reached the plateau in recent years because of the imbalance in the demands between the egg white and yolk products. The consumer demands for egg white products are very high while those for the egg yolk, the co-product of dried egg white, are low because of the negative perceptions on egg yolk. Two key approaches that can be used to increase the value and use of egg yolk are: (1) developing new commodity products by fractionating egg yolk and apply them in various food processing, and (2) separating functional proteins and lipids from yolk and use them as is or further develop functional peptides and functional lipids and use them as pharmaceutical, nutraceutical, and cosmeceutical agents. These approaches can diversify the use of egg yolk, which eventually will help increase the consumption of egg. This review (1) discusses the current use of egg yolk products and the development of new functional commodity products from egg yolk, (2) review the important functional components in egg yolk and overview the current separation methods and their applications, (3) discuss the production of functional peptides and lipids using the separated egg proteins and lipids, and (4) suggest the future directions for the best use of egg yolk components. Development of scale-up production methods, which is vital for the practical applications, is discussed when appropriate.
Collapse
Affiliation(s)
- X Huang
- College of Food Science & Technology, Egg Processing Technology Local Joint Natl. Engineering Research Center, Natl. R&D Center for Egg Processing, Huazhong Agricultural Univ., Wuhan, Hubei, 430070, China
| | - Dong U Ahn
- Animal Science Dept., Iowa State Univ., Ames, IA, 50011, U.S.A
| |
Collapse
|
6
|
Tsukamoto Y, Hendler B, Greenberg S, Epstein C. The Efficacy of Ostrich Antibodies to Dihydrotestosterone and 5<i>α</i>-Reductase in the Restoration of Hair Growth. Health (London) 2019. [DOI: 10.4236/health.2019.1110101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
7
|
Tsukamoto Y, Nakano Y, Adachi K. Protection against Infectious Bronchitis Virus, a Corona Virus Infection, Using Ostrich Antibodies. Health (London) 2018. [DOI: 10.4236/health.2018.1010100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
8
|
Tsukamoto Y, Maeda O, Shigekawa G, Greenberg S, Hendler B. Ostrich Antibody and Its Application to Skin Diseases, a Review and Case Report. Health (London) 2018. [DOI: 10.4236/health.2018.1010105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
9
|
Duan HL, He QY, Zhou B, Wang WW, Li B, Zhang YZ, Deng QP, Zhang YF, Yu XD. Anti-Trimeresurus albolabris venom IgY antibodies: preparation, purification and neutralization efficacy. J Venom Anim Toxins Incl Trop Dis 2016; 22:23. [PMID: 27563307 PMCID: PMC4997716 DOI: 10.1186/s40409-016-0078-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/27/2016] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Snakebite incidence in southwestern China is mainly attributed to one of the several venomous snakes found in the country, the white-lipped green pit viper Trimeresurus albolabris. Since antivenom produced from horses may cause numerous clinical side effects, the present study was conducted aiming to develop an alternative antivenom antibody (immunoglobulin Y - IgY) from leghorn chickens. METHODS IgY in egg yolk from white leghorn chicken previously injected with T. albolabris venom was extracted by water, precipitated by ammonium sulfate and purified by affinity chromatographic system. IgY was identified by SDS-PAGE, ELISA and Western blot, and its neutralizing assay was conducted on mice. RESULTS Chickens injected multiple times with T. albolabris venom elicited strong antibody responses, and from their egg yolk IgY was isolated and purified, which exhibited a single protein band on SDS-PAGE and two bands (about 65 and 35 kDa, respectively) under reduced conditions. Immunoblot analysis revealed that these IgY are polyclonal antibodies since they bind with most venom components. In the neutralizing assay, all mice survived while the ratios of IgY/venom reached up to 3.79 (50.0 mg/13.2 mg). CONCLUSIONS IgY antibody response was successfully conducted in white leghorn chicken injected with T. albolabris venom. IgY against T. albolabris venom was obtained for the first time, and it exhibited strong neutralizing potency on mice. These results may lay a foundation for the development of IgY antivenom with clinical applications in the future.
Collapse
Affiliation(s)
- Hai-Long Duan
- Animal Toxin Group, Chongqing Key Laboratory of Animal Biology, Chongqing Engineering Research Center of Bioactive Substance, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing, 401331 China
| | - Qi-Yi He
- Animal Toxin Group, Chongqing Key Laboratory of Animal Biology, Chongqing Engineering Research Center of Bioactive Substance, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing, 401331 China
| | - Bin Zhou
- Library, Chongqing Normal University, Chongqing, 401331 China
| | - Wen-Wen Wang
- Animal Toxin Group, Chongqing Key Laboratory of Animal Biology, Chongqing Engineering Research Center of Bioactive Substance, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing, 401331 China
| | - Bo Li
- Animal Toxin Group, Chongqing Key Laboratory of Animal Biology, Chongqing Engineering Research Center of Bioactive Substance, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing, 401331 China
| | - Ying-Zheng Zhang
- Animal Toxin Group, Chongqing Key Laboratory of Animal Biology, Chongqing Engineering Research Center of Bioactive Substance, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing, 401331 China
| | - Qiu-Ping Deng
- Animal Toxin Group, Chongqing Key Laboratory of Animal Biology, Chongqing Engineering Research Center of Bioactive Substance, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing, 401331 China
| | - Ying-Feng Zhang
- Animal Toxin Group, Chongqing Key Laboratory of Animal Biology, Chongqing Engineering Research Center of Bioactive Substance, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing, 401331 China
| | - Xiao-Dong Yu
- Animal Toxin Group, Chongqing Key Laboratory of Animal Biology, Chongqing Engineering Research Center of Bioactive Substance, Engineering Research Center of Active Substance and Biotechnology, Ministry of Education, College of Life Science, Chongqing Normal University, Chongqing, 401331 China
| |
Collapse
|
10
|
Zolfagharian H, Dounighi NM. Study on development of Vipera lebetina snake anti-venom in chicken egg yolk for passive immunization. Hum Vaccin Immunother 2015; 11:2734-9. [PMID: 25700656 PMCID: PMC4685695 DOI: 10.4161/21645515.2014.985492] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 10/22/2014] [Accepted: 11/04/2014] [Indexed: 11/19/2022] Open
Abstract
Chicken egg yolk antibodies against Vipera lebetina venom were evaluated for their antivenom potential. White leghorn hens were immunized with detoxified V. lebetina venom (γ-irradiated venom). The detoxified venom (200 μg) was mixed with an equal volume of complete Freund's adjuvant and was injected intramuscularly into the hens. The antibodies showed high activity (1.6 LD50/mL) in egg yolks after 12 d of venom injection. The eggs were collected after 12 days, and the egg yolks were removed and washed with purified water to remove any contamination with egg whites. The purification was performed using a method described by Maya Devi et al., followed by gel filtration (Sephadex G-50). The purity and molecular weight of antivenom antibodies (IgY) were determined using electrophoresis, and the molecular weight was found to be approximately 185 kDa. The potency of IgY was 6 LD50/mL (mice), i.e., 1 mL of IgY could neutralize 43.8 μg of standard V. lebetina venom). Our results showed that chicken egg yolk antibodies were effective in neutralizing the lethality and several pharmacological effects of V. lebetina venom and could be used for developing effective antivenom.
Collapse
Affiliation(s)
- Hossein Zolfagharian
- Department of Human Vaccine and Serum; Razi Vaccine and Serum Research Institute; Karaj, Iran
| | | |
Collapse
|
11
|
Brunda G, Sashidhar RB, Sarin RK. Use of egg yolk antibody (IgY) as an immunoanalytical tool in the detection of Indian cobra (Naja naja naja) venom in biological samples of forensic origin. Toxicon 2006; 48:183-94. [PMID: 16846624 DOI: 10.1016/j.toxicon.2006.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2005] [Revised: 04/14/2006] [Accepted: 04/24/2006] [Indexed: 10/24/2022]
Abstract
An immunoglobulin Y (IgY) based indirect double antibody sandwich enzyme linked immunosorbent assay (ELISA) was developed for the detection of Indian cobra (Naja naja naja) venom in the biological samples of forensic origin. Polyclonal antibodies were raised and purified from chick egg yolk and rabbit serum. The cobra venom was sandwiched between immobilized affinity purified IgY and the rabbit IgG. The detection concentration of cobra venom was in the range of 0.1 to 300ng. The calibration plot was based on linear regression analysis (y=0.2581x+0.4375, r(2)=0.9886). The limit of detection of the assay was found to be 0.1ng. The coefficient of variation (CV) of different concentrations of working range in inter (n=6) and intra-assay (n=6) was observed to be less than 10%. The recovery of venom was found to be in the range of 80-99%, when different concentrations (0.002, 0.1, 0.2, 1, and 2microg) of cobra venom were spiked to pooled normal human serum (ml(-1)). No cross reactivity was observed with krait and viper venom in the immunoassay system in the concentration range of 0.1-1000ng. The method was initially, validated by analyzing specimens (autopsy) of experimental rats injected with cobra venom (1.2mgkg(-1) body mass). Further, human specimens (autopsy and biopsy) of snake bite victims of forensic origin were also analyzed. The methodology developed may find diagnostic application in forensic laboratories.
Collapse
Affiliation(s)
- G Brunda
- Department of Biochemistry, University College of Science, Osmania University, Hyderabad 500007, India
| | | | | |
Collapse
|
12
|
Malik MW, Ayub N, Qureshi IZ. Passive immunization using purified IgYs against infectious bursal disease of chickens in Pakistan. J Vet Sci 2006; 7:43-6. [PMID: 16434848 PMCID: PMC3242084 DOI: 10.4142/jvs.2006.7.1.43] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infectious bursal disease (IBD) is an acute and highly contagious disease of young chickens caused by Birnavirus. Mortality of infected birds can be best prevented if injected with antibodies. The present study was an attempt to raise specific hyper-immune polyclonal antibodies against IBD virus in Pakistan. Commercial layers divided into four groups were injected with IBD vaccine subcutaneously according to four different treatment regimens. Eggs were collected daily and antibodies were purified from yolk with dextran sulphate. Titers of antibodies in serum and yolk were evaluated with enzyme linked immunosorbant assay and agar gel precipitation test. Antibody titers were significantly higher in yolk than serum. Eggs collected at 28 days post-vaccination had maximum antibody titers. Of treatment regimens, T3 was found to be most effective for hyperimmunization. Lyophilized antibodies stored at 4℃ did not lose their activity till the end of experiment. IBD virus infected birds were injected with purified antibodies which induced 92% recovery as compared to control birds. The study implicates that the purified antibodies may be useful as a therapeutic agent to cure IBD infected birds.
Collapse
Affiliation(s)
- Muhammad Wasif Malik
- Department of Biological Sciences, Quaid-i-Azam University, Islamabad P.O. Box 45320, Pakistan
| | | | | |
Collapse
|
13
|
Maya Devi C, Vasantha Bai M, Krishnan LK. Development of viper-venom antibodies in chicken egg yolk and assay of their antigen binding capacity. Toxicon 2002; 40:857-61. [PMID: 12076638 DOI: 10.1016/s0041-0101(01)00258-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The therapeutic use of specific antibodies is invaluable in certain clinical conditions, such as administration of specific antivenom for snakebite envenomation. The production of antibodies and their purification from mammalian blood has been found low yielding and laborious. Most antivenom is polyvalent whole serum or partially purified immunoglobulin. The side effects of anti-snake-venom therapy include serum sickness and can be reduced by using mono-specific antivenom in sufficiently pure form. We have attempted to standardize a simple method for producing avian antivenom in relatively pure form from eggs. The isolation is very simple and involves only two steps, namely, removal of lipids from the diluted egg yolk followed by gel filtration. Each egg produces 80-100mg of pure immunoglobulin, and specific antibodies are present for up to 100 days after immunization. Thus, large quantities of the Ig can be obtained in pure form using only small amounts of venom. Antigen binding was shown by Ouchterlony's double diffusion experiments and the avian antivenom neutralizes the thrombin-like activity of equivalent amounts of venom on human plasma. The LD(50) of the venom was approximately 3mg/kg body weight in mice and rats but when pre-incubated with equivalent amounts (by weight) of egg IgG injected subcutaneously, all the animals survived. In a similar experiment using a commercial horse IgG, 25% mortality is seen. These results indicate that the antivenom immunoglobulins purified from immunized chicken egg yolk is biologically active and the possibility of their therapeutic use will be investigated further.
Collapse
Affiliation(s)
- C Maya Devi
- Thrombosis Research Group, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, India
| | | | | |
Collapse
|
14
|
Devi CM, Bai MV, Lal AV, Umashankar PR, Krishnan LK. An improved method for isolation of anti-viper venom antibodies from chicken egg yolk. JOURNAL OF BIOCHEMICAL AND BIOPHYSICAL METHODS 2002; 51:129-38. [PMID: 12062112 DOI: 10.1016/s0165-022x(02)00002-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The production of antibodies and its purification from mammalian blood has been found low yielding and laborious. Therefore, anti snake venom antibodies for therapeutic use is obtained mostly as polyvalent whole serum or partially purified polyvalent immunoglobulin. The side effects of anti snake venom (ASV) therapy are mainly serum sickness and renal failure, which may be reduced by using sufficiently pure antibodies. Therefore, we have standardized a simple method for production of purified antivenom. Here, we present the development of polyclonal antibodies against viper venom in hens and its isolation from the egg yolk of immunized birds. We have modified the reported methods of purification of immunoglobulin from egg yolk, and thus yielded 90% purity of the protein. The modified method involves only two steps, such as removal of lipids from the diluted egg yolk by a freeze-thaw cycle and centrifugation, followed by gel filtration on Biogel P-150. The advantages are that the process is very simple, and from one egg, 100+/-20 mg of pure immunoglobulin is obtained. The antibodies are present in the egg for up to 100 days after the immunization. Thus, using small amounts of venom, a large quantity of the immunoglobulin is obtained in a sufficiently pure form. The antigen binding ability of the pure antibody is found good by the Ouchterlony's double diffusion experiment.
Collapse
Affiliation(s)
- C Maya Devi
- Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Trivandrum-695012, India
| | | | | | | | | |
Collapse
|