1
|
Sandu T, Sârbu A, Căprărescu S, Stoica EB, Iordache TV, Chiriac AL. Polymer Membranes as Innovative Means of Quality Restoring for Wastewater Bearing Heavy Metals. MEMBRANES 2022; 12:membranes12121179. [PMID: 36557086 PMCID: PMC9783154 DOI: 10.3390/membranes12121179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 05/31/2023]
Abstract
The problem that has aroused the interest of this review refers to the harmful effect of heavy metals on water sources due to industrial development. In this respect, the review is aimed at achieving a literature survey on the outstanding results and advancements in membranes and membrane technologies for the advanced treatment of heavy metal-loaded wastewaters. Particular attention is given to synthetic polymer membranes, for which the proper choice of precursor material can provide cost benefits while ensuring good decontamination activity. Furthermore, it was also found that better removal efficiencies of heavy metals are achieved by combining the membrane properties with the adsorption properties of inorganic powders. The membrane processes of interest from the perspective of industrial applications are also discussed. A noteworthy conclusion is the fact that the main differences between membranes, which refer mainly to the definition and density of the pore structure, are the prime factors that affect the separation process of heavy metals. Literature studies reveal that applying UF/MF approaches prior to RO leads to a better purification performance.
Collapse
Affiliation(s)
- Teodor Sandu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Andrei Sârbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Simona Căprărescu
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University Politehnica of Bucharest, Ghe. Polizu Street, No. 1-7, 011061 Bucharest, Romania
| | - Elena-Bianca Stoica
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Tanța-Verona Iordache
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Anita-Laura Chiriac
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| |
Collapse
|
2
|
Torrejon VM, Song J, Yu Z, Hang S. Gelatin-based cellular solids: Fabrication, structure and properties. J CELL PLAST 2022. [DOI: 10.1177/0021955x221087602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Although most cellular polymers are made from thermoplastics using different foaming technologies, gelatin and many other natural polymers can form hydrogels and convert them to cellular solids using various techniques, many of which differ from traditional plastic foaming, and so does their resulting structures. Cellular solids from natural hydrogels are porous materials that often exhibit a combination of desirable properties, including high specific surface area, biochemical activity, as well as thermal and acoustic insulation properties. Among natural hydrogels, gelatin-based porous materials are widely explored due to their availability, biocompatibility, biodegradability and relatively low cost. In addition, gelatin-based cellular solids have outstanding properties and are currently subject to increasing scientific research due to their potential in many applications, such as biocompatible cellular materials or biofoams to facilitate waste treatment. This article aims at providing a comprehensive review of gelatin cellular solids processing and their processing-properties-structure relationship. The fabrication techniques covered include aerogels production, mechanical foaming, blowing agents use, 3D printing, electrospinning and particle leaching methods. It is hoped that the assessment of their characteristics provides compiled information and guidance for selecting techniques and optimization of processing conditions to control material structure and properties to meet the needs of the finished products.
Collapse
Affiliation(s)
- Virginia Martin Torrejon
- Media and Communication School, Shenzhen Polytechnic, Shenzhen, China
- Department of Applied Chemistry, School of Science, Xi’an Jiaotong University, Xi’an, China
- Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Jim Song
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, China
| | - Zhang Yu
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi’an University of Technology, Xi’an, China
| | - Song Hang
- School of Innovation and Entrepreneurship, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
3
|
Komez A, Buyuksungur A, Antmen E, Swieszkowski W, Hasirci N, Hasirci V. A two-compartment bone tumor model to investigate interactions between healthy and tumor cells. ACTA ACUST UNITED AC 2020; 15:035007. [PMID: 31935707 DOI: 10.1088/1748-605x/ab6b31] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We produced a novel three-dimensional (3D) bone tumor model (BTM) to study the interactions between healthy and tumor cells in a tumor microenvironment, the migration tendency of the tumor cells, and the efficacy of an anticancer drug, Doxorubicin, on the cancer cells. The model consisted of two compartments: (a) a healthy bone tissue mimic, made of poly(lactic acid-co-glycolic acid) (PLGA)/beta-tricalcium phosphate (β-TCP) sponge seeded with human fetal osteoblastic cells (hFOB) and human umbilical vein endothelial cells (HUVECs), and (b) a tumor mimic, made of lyophilized collagen sponge seeded with human osteosarcoma cells (Saos-2). The tumor mimic component was placed into a central cavity created in the healthy bone mimic and together they constituted the complete 3D bone tumor model (3D-BTM). The porosities of both sponges were higher than 85% and the diameters of the pores were 199 ± 52 μm for the PLGA/TCP and 50-150 μm for the collagen scaffolds. The compression Young's modulus of the PLGA/TCP and the collagen sponges were determined to be 4.76 MPa and 140 kPa, respectively. Cell proliferation, morphology, calcium phosphate forming capacity and alkaline phosphatase production were studied separately on both the healthy and tumor mimics. All cells demonstrated cellular extensions and spread well in porous scaffolds indicating good cell-material interactions. Confocal microscopy analysis showed direct contact between the cells present in different parts of the 3D-BTM. Migration of HUVECs from the healthy bone mimic to the tumor compartment was confirmed by the increase in the levels of angiogenic factors vascular endothelial growth factor, basic fibroblast growth factor, and interleukin 8 in the tumor component. Doxorubicin (2.7 μg.ml-1) administered to the 3D-BTM caused a seven-fold decrease in the cell number after 24 h of interaction with the anticancer drug. Caspase-3 enzyme activity assay results demonstrated apoptosis of the osteosarcoma cells. This novel 3D-BTM has a high potential for use in studying the metastatic capabilities of cancer cells, and in determining the effective drug types and combinations for personalized treatments.
Collapse
Affiliation(s)
- Aylin Komez
- Graduate Department of Biotechnology, Middle East Technical University (METU), Ankara, 06800, Turkey. BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, 06800, Turkey
| | | | | | | | | | | |
Collapse
|
4
|
Jahid MA, Hu J, Thakur S. Novel approach of making porous polyurethane membrane and its properties for apparel application. J Appl Polym Sci 2019. [DOI: 10.1002/app.48566] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Md Anwar Jahid
- Institute of Textiles and ClothingThe Hong Kong Polytechnic University, HKSAR, Hung Hom, Kowloon Hong Kong 999077 China
| | - Jinlian Hu
- Institute of Textiles and ClothingThe Hong Kong Polytechnic University, HKSAR, Hung Hom, Kowloon Hong Kong 999077 China
| | - Suman Thakur
- Institute of Textiles and ClothingThe Hong Kong Polytechnic University, HKSAR, Hung Hom, Kowloon Hong Kong 999077 China
| |
Collapse
|
5
|
Guarino V, Ambrosio L. Temperature-driven processing techniques for manufacturing fully interconnected porous scaffolds in bone tissue engineering. Proc Inst Mech Eng H 2010; 224:1389-400. [DOI: 10.1243/09544119jeim744] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The development of structures with a predefined multiscale pore network is a major challenge in designing tissue engineering (TE) scaffolds. To address this, several strategies have been investigated to provide biocompatible, biodegradable porous materials that would be suitable for use as scaffolds, and able to guide and facilitate the cell activity involved in the generation of new tissue regeneration. This study seeks to provide an overview of different temperature-driven process technologies for developing scaffolds with tailored porosity, in which pore size distribution is strictly defined and pores are fully interconnected. Here, three-dimensional (3D) porous composite scaffolds based on poly(∊-caprolactone) (PCL) were fabricated by thermally induced phase separation (TIPS) and by melt co-continuous polymer blending (MCPB). The combination of these processes with a salt leaching technique enables the establishment of bimodal porosity within the polymer network. This feature may be exploited in the development of substrates with fully interconnected pores, which can be used effectively for tissue regeneration. Various combinations of the proposed techniques provide a range of procedures for the preparation of porous scaffolds with an appropriate combination of morphological and mechanical properties to reproduce the requisite features of the extracellular matrix (ECM) of hard tissues such as bone.
Collapse
Affiliation(s)
- V Guarino
- Institute of Composite and Biomedical Materials (IMCB-CNR), National Research Council, Naples, Italy
| | - L Ambrosio
- Institute of Composite and Biomedical Materials (IMCB-CNR), National Research Council, Naples, Italy
| |
Collapse
|
6
|
Salerno A, Iannace S, Netti PA. Open-pore biodegradable foams prepared via gas foaming and microparticulate templating. Macromol Biosci 2008; 8:655-64. [PMID: 18350540 DOI: 10.1002/mabi.200700278] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Open-pore biodegradable foams with controlled porous architectures were prepared by combining gas foaming and microparticulate templating. Microparticulate composites of poly(epsilon-caprolactone) (PCL) and micrometric sodium chloride particles (NaCl), in concentrations ranging from 70/30 to 20/80 wt.-% of PCL/NaCl were melt-mixed and gas-foamed using carbon dioxide as physical blowing agent. The effects of microparticle concentration, foaming temperature, and pressure drop rate on foam microstructure were surveyed and related to the viscoelastic properties of the polymer/microparticle composite melt. Results showed that foams with open-pore networks can be obtained and that porosity, pore size, and interconnectivity may be finely modulated by optimizing the processing parameters. Furthermore, the ability to obtain a spatial gradient of porosity embossed within the three-dimensional polymer structure was exploited by using a heterogeneous microparticle filling. Results indicated that by foaming composites with microparticle concentration gradients, it was also possible to control the porosity and pore-size spatial distribution of the open-pore PCL foams.
Collapse
Affiliation(s)
- Aurelio Salerno
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Italian Institute of Technology (IIT), Piazzale Tecchio 80, 80125 Naples, Italy
| | | | | |
Collapse
|
7
|
Tas AC. Preparation of porous apatite granules from calcium phosphate cement. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2008; 19:2231-2239. [PMID: 18049869 DOI: 10.1007/s10856-007-3326-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Accepted: 11/06/2007] [Indexed: 05/25/2023]
Abstract
A versatile method for preparing spherical, micro- and macroporous (micro: 2-10 and macro: 150-550 microm pores), carbonated apatitic calcium phosphate (Ap-CaP) granules (2-4 mm in size) was developed by using NaCl crystals as the porogen. The entire granule production was performed between 21 and 37 degrees C. A CaP cement powder, comprising alpha-Ca3(PO4)2 (61 wt.%), CaHPO4 (26%), CaCO3 (10%) and precipitated hydroxyapatite, Ca10(PO4)6(OH)2 (3%), was dry mixed with NaCl crystals varying in size from 420 microm to 1 mm. Cement powder (35 wt.%) and NaCl (65 wt.%) mixture was kneaded with an ethanol-Na2HPO4 initiator solution, and the formed dough was immediately agitated on an automatic sieve shaker for a few minutes to produce the spherical granules. Embedded NaCl crystals were then leached out of the granules by soaking them in deionized water. CaP granules were micro- and macroporous with a total porosity of 50% or more. Granules were composed of carbonated, poorly crystallized, apatitic CaP phase. These were the first spherical and porous CaP granules ever produced from a self-setting calcium phosphate cement. The granules reached their final handling strength at the ambient temperature through the cement setting reaction, without having a need for sintering.
Collapse
Affiliation(s)
- A C Tas
- Department of Biomedical Engineering, Yeditepe University, Istanbul 34755, Turkey.
| |
Collapse
|
8
|
Reignier J, Huneault MA. Preparation of interconnected poly(ε-caprolactone) porous scaffolds by a combination of polymer and salt particulate leaching. POLYMER 2006. [DOI: 10.1016/j.polymer.2006.04.029] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|