1
|
Shi J, Zhou J, Fan D, Lin T, Wang J, Zhao J, Ronen A, Li M, You J. Enhanced Separation Performance of Hierarchically Porous Membranes Fabricated via the Combination of Crystallization Template and Foaming. Polymers (Basel) 2022; 14:5160. [PMID: 36501557 PMCID: PMC9736639 DOI: 10.3390/polym14235160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
In this work, poly (vinylidene fluoride) (PVDF) hierarchically porous membranes (HPMs) with isolated large pores and continuous narrow nano-pores have been fabricated from its blend with poly (methyl methacrylate) (PMMA) based on the combination of crystallization template with chemical or supercritical CO2 foaming. On the one hand, the decomposition of azodicarbonamide (ADC, chemical foaming agent) or the release of CO2 can produce isolated large pores. On the other hand, PMMA is expelled during the isothermal crystallization of PVDF in their miscible blend, yielding narrow nano-pores upon etching with a selective solvent. In the case of supercritical CO2, the attained PVDF HPMs fail to improve separation performance because of the compact wall of isolated-large-pore and consequent poor connectivity of hierarchical pores. In the case of ADC, the optimal HPM exhibits much higher flux (up to 20 times) without any loss of selectivity compared with the reference only with nano-pores. The enhanced permeability can be attributed to the shorter diffusion length and lower diffusion barrier from isolated large pores, while the comparable selectivity is determined by narrow nano-pores in THE matrix.
Collapse
Affiliation(s)
- Jiahui Shi
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiahai Zhou
- Zhejiang Chuanhua Chemical Group Co., Ltd., Hangzhou 311215, China
| | - Donglei Fan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Taotao Lin
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiayao Wang
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiaqi Zhao
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Avner Ronen
- Jacob Blaustein Inst Desert Res, Zuckerberg Inst Water Res, Sede Boqer Campus, Ben Gurion Univ Negev, Beer Sheva IL-84990, Israel
| | - Minggang Li
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jichun You
- Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
2
|
Barroso-Solares S, Cuadra-Rodriguez D, Rodriguez-Mendez ML, Rodriguez-Perez MA, Pinto J. A new generation of hollow polymeric microfibers produced by gas dissolution foaming. J Mater Chem B 2020; 8:8820-8829. [PMID: 33026393 DOI: 10.1039/d0tb01560a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A new and straightforward route to produce polymeric hollow microfibers has been proposed. Polycaprolactone (PCL) hollow fibers are obtained for the first time using an environmentally friendly gas dissolution foaming approach, overcoming its limitations to induce porosity on samples in the micrometric range. Different porous morphologies are achieved from solid PCL microfibers with a well-controlled diameter obtained by conventional electrospinning. The optimization of the foaming parameters provides two sets of well-defined hollow fibers, one showing smooth surfaces and the other presenting an enhanced surface porosity. Accordingly, gas dissolution foaming proves to be not only suitable for the production of hollow polymeric microfibers, but is also capable of providing diverse porous morphologies from the same precursor, solid fibers. Moreover, a preliminary study about the suitability of this new generation of foamed hollow polymeric fibers for drug delivery is carried out, aiming to take advantage of the enhanced surface area and tunable morphology obtained by using the proposed new production method. It is found that the foamed microfibers can be loaded with up to 15 wt% of ibuprofen while preserving the morphology of each kind of fiber. Then, foamed PCL fibers presenting a hollow structure and surface porosity show a remarkable constant release of ibuprofen for almost one and a half days. In contrast, the original solid fibers do not present such behavior, releasing all the ibuprofen in about seven hours.
Collapse
Affiliation(s)
- Suset Barroso-Solares
- Cellular Materials Laboratory (CellMat), Condensed Matter Physics Department, University of Valladolid, 47011, Spain.
| | | | | | | | | |
Collapse
|
3
|
Razzaz Z, Mohebbi A, Rodrigue D. Gas transport properties of cellular hollow fiber membranes based on LLDPE/LDPE blends. CELLULAR POLYMERS 2020. [DOI: 10.1177/0262489320929300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The production of foamed hollow fiber membranes (HFMs) is presented based on polymer blends using various concentrations of linear low-density polyethylene (LLDPE) and low-density polyethylene (LPDE) combined with azodicarbonamide (chemical blowing agent) to prepare samples via twin-screw extrusion. In particular, the blowing agent concentration as well as the stretching speed were found to be the most important parameters to achieve a good cellular structure for membrane application. From the samples obtained, a complete set of morphological, thermal, and gas transport characterization was performed. The results show that LLDPE/LDPE blends compared to neat LLDPE lead to higher cell density at high stretching speed, which is appropriate for membranes having higher gas permeability and selectivity due to lower cell wall thickness. The results also show that the developed cellular structure has high potential for the continuous production of HFMs for different gas separation, especially for hydrogen recovery.
Collapse
Affiliation(s)
- Zahir Razzaz
- CREPEC, Research Center for High Performance Polymer and Composite Systems, CQMF, Quebec Centre on Functional Materials, Department of Chemical Engineering, Université Laval, Quebec, Canada
| | - Abolfazl Mohebbi
- CREPEC, Research Center for High Performance Polymer and Composite Systems, CQMF, Quebec Centre on Functional Materials, Department of Chemical Engineering, Université Laval, Quebec, Canada
| | - Denis Rodrigue
- CREPEC, Research Center for High Performance Polymer and Composite Systems, CQMF, Quebec Centre on Functional Materials, Department of Chemical Engineering, Université Laval, Quebec, Canada
| |
Collapse
|
4
|
Singh I, Gandhi A, Mohanty S, Nayak SK. Depressurization induced morphology control in solid-state microcellular batch foaming process. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2019. [DOI: 10.1080/10601325.2019.1704178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Indrajeet Singh
- School for Advanced Research in polymers (SARP) - LARPM, Central Institute of Plastics Engineering & Technology, Bhubaneswar, Odisha, India
| | - Abhishek Gandhi
- School for Advanced Research in polymers (SARP) - LARPM, Central Institute of Plastics Engineering & Technology, Bhubaneswar, Odisha, India
| | - Smita Mohanty
- School for Advanced Research in polymers (SARP) - LARPM, Central Institute of Plastics Engineering & Technology, Bhubaneswar, Odisha, India
| | - S. K. Nayak
- School for Advanced Research in polymers (SARP) - LARPM, Central Institute of Plastics Engineering & Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
5
|
Kaczmarek H, Królikowski B, Klimiec E, Chylińska M, Bajer D. Advances in the study of piezoelectric polymers. RUSSIAN CHEMICAL REVIEWS 2019. [DOI: 10.1070/rcr4860] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The literature review based on the works published over the last decade concerns the progress in research on innovative piezoelectric materials with current or potential practical applications. At the beginning, the nature of piezoelectric phenomenon is clarified. The main emphasis is put on presentation of polymers, biopolymers and polymer composites as well as hybrid materials with piezoelectric properties. Moreover, carbon nanomaterials are also included. These materials have recently become an intensively developing field, as evidenced by numerous scientific publications. Furthermore, the recently reported main methods of characterizations and selected examples of modern applications of piezoelectric materials in various fields (electronics, industry, medicine) have been discussed.
The bibliography includes 217 references.
Collapse
|