1
|
Badr MM, Youssef WM, Elgammal EM, Hussien AEM, Taha MH. Recovery of uranium using epoxy-modified phosphorus pentasulfide as an efficient adsorbent for uranium extraction from aquatic environments. RSC Adv 2024; 14:34526-34536. [PMID: 39479485 PMCID: PMC11520320 DOI: 10.1039/d4ra04688a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/02/2024] [Indexed: 11/02/2024] Open
Abstract
Epoxy-modified phosphorus pentasulfide (EPMPS) formulation was developed for the supported recovery of uranium from aquatic environments. The selected components of the prepared formulation were tailored to produce a rigid foamed polymeric material that was rich in phosphorus, nitrogen, sulfur and oxygen atoms, thus increasing chelating bonding possibilities with uranium. FT-IR and SEM were applied to physically characterize the resulting sorbent. At an equilibrium time of 30 min, the phase ratio S/L of 1 g L-1, pH 3 and initial uranium concentration of 50 mg L-1 yielded an adsorption efficiency for uranium of 90%. An 85% elution of uranium from loaded EPMPS was achieved with 1 h shaking and a phase ratio (S/A) of 0.5 g/25 mL of 0.1 M CH3COONa. Sorption isotherm designs were exploited to analyze the findings from the experiments. Uranium had an adsorption capability of about 78.7 mg g-1. According to the results of uranium adsorption, when applied to an actual sample, EPMPS is a suitable substrate for uranium adsorption from nitrate media.
Collapse
Affiliation(s)
- Magd M Badr
- Polymer Laboratory, Petrochemical Department, Egyptian Petroleum Research Institute Nasr City Cairo 11727 Egypt +20 1002372636
| | - W M Youssef
- Nuclear Materials Authority P.O. Box 530 Maadi Cairo Egypt
| | | | - A E M Hussien
- Nuclear Materials Authority P.O. Box 530 Maadi Cairo Egypt
| | - M H Taha
- Nuclear Materials Authority P.O. Box 530 Maadi Cairo Egypt
| |
Collapse
|
2
|
Wang B, Lan J, Bo C, Gong B, Ou J. Adsorption of heavy metal onto biomass-derived activated carbon: review. RSC Adv 2023; 13:4275-4302. [PMID: 36760304 PMCID: PMC9891085 DOI: 10.1039/d2ra07911a] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Due to the rapid development of the social economy and the massive increase in population, human beings continue to undertake processing, and commercial manufacturing activities of heavy metals, which has caused serious damage to the environment and human health. Heavy metals lead to serious environmental problems such as soil contamination and water pollution. Human health and the living environment are closely affected by the handling of heavy metals. Researchers must find several simple, economical and practical methods to adsorb heavy metals. Adsorption technology has been recognized as an efficient and economic strategy, exhibiting the advantages of recovering and reusing adsorbents. Biomass-derived activated carbon adsorbents offer large adjustable specific surface area, hierarchically porous structure, strong adsorption capacity, and excellent high economic applicability. This paper focuses on reviewing the preparation methods of biomass-derived activated carbon in the past five years. The application of representative biomass-derived activated carbon in the adsorption of heavy metals preferentially was described to optimize the critical parameters of the activation type of samples and process conditions. The key factors of the adsorbent, the physicochemical properties of the heavy metals, and the adsorption conditions affecting the adsorption of heavy metals are highlighted. In addition, the challenges faced by biomass-derived activated carbon are also discussed.
Collapse
Affiliation(s)
- Baoying Wang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Jingming Lan
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Chunmiao Bo
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University Yinchuan 750021 PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences Dalian 116023 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
3
|
Darge AW, DeVol TA, Husson SM. Polyamidoxime-based membranes for the rapid screening of uranium isotopes in water. Anal Chim Acta 2022; 1220:339997. [DOI: 10.1016/j.aca.2022.339997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022]
|
4
|
MAHMUDIONO T, BOKOV D, WIDJAJA G, KONSTANTINOV IS, SETIYAWAN K, ABDELBASSET WK, MAJDI HS, KADHIM MM, KAREEM HA, BANSAL K. Removal of heavy metals using food industry waste as a cheap adsorbent. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.111721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
| | - Dmitry BOKOV
- Sechenov First Moscow State Medical University, Russian Federation; Federal Research Center of Nutrition, Biotechnology and Food Safety, Russian Federation
| | - Gunawan WIDJAJA
- Universitas Indonesia, Indonesia; Universitas Krisnadwipayana, Indonesia
| | | | | | - Walid Kamal ABDELBASSET
- Prince Sattam bin Abdulaziz University, Saudi Arabia; Kasr Al-Aini Hospital, Cairo University, Egypt
| | | | | | | | | |
Collapse
|
5
|
Hagag MS, Esmaeel SM, Salem F, Zaki SA, Ali AH. Uranium sorption from waste solutions by Talc Phosphogypsum ferri-silicate synthetic new sorbent. RADIOCHIM ACTA 2021. [DOI: 10.1515/ract-2021-1061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
In this investigation, a synthetic Talc Phosphogypsum ferri-silicate TPFS sorbent was prepared by thermal activation then evaluated the uranium ions removal from sulfate waste solution containing uranium. Generally, the synthetic adsorbents from raw and waste materials have a significant attention from scientists because the environmental concern and economic development, particularly, the uranium elimination from radioactive waste solutions. The uranium removal percentage and loading capacity were determined by optimization the conditions of adsorption such as the pH range, adsorbent/adsorbate ratio, uranium concentration of radioactive waste solutions, equilibrium time and temperature. The resultant adsorption efficiency and loading capacity were 87.2% and 375 mg g−1, respectively. The adsorption isothermally was in accordance with Langmuir isotherm model, in addition pseudo-second-order kinetic model, with theoretical capacity of 384.6 and 333 mg g−1, respectively. Uranium (VI) adsorption on TPFS was inhibited at elevated temperatures. The removal of uranium from sulfate waste solution by TPES sorbent according to the thermodynamic functions values was exothermic (∆H of −16.095) and non-spontaneous in nature (∆G of −17.27 at 303 K). In addition, there was a decrease in the randomness at the TPFS/uranium waste solution interface with ∆S value of 3.88.
Collapse
Affiliation(s)
| | | | - Fatma Salem
- Nuclear Materials Authority , P.O. Box 530 Maadi , Cairo , Egypt
| | - Salah A. Zaki
- Nuclear Materials Authority , P.O. Box 530 Maadi , Cairo , Egypt
| | - Amr H. Ali
- Nuclear Materials Authority , P.O. Box 530 Maadi , Cairo , Egypt
| |
Collapse
|
6
|
Abd El Fatah AL, Elashry SM, Hashem M, Kouraim MN. Uranium extraction from nitrate media using amine functionalized poly acrylate hydrogel / nano silica. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1982977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Wu W, Chen Z, Huang Y, Li J, Chen D, Chen N, Su M. Red mud for the efficient adsorption of U(VI) from aqueous solution: Influence of calcination on performance and mechanism. JOURNAL OF HAZARDOUS MATERIALS 2021; 409:124925. [PMID: 33421876 DOI: 10.1016/j.jhazmat.2020.124925] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
Iron-rich red mud is a potent radioactive drainage treatment material. However, the calcite in red mud attenuates its U adsorption capacity by restricting U adsorption onto adsorbent; it captures U as a dissociative complex in aqueous systems. This study produced macroporous iron and carbon combined calcined red mud (ICRM) and carbon calcined red mud (CRM) through calcination in the range of 500-800 °C. XRD results revealed that both series generated advantageous magnetite and calcite were fully decomposed. SEM and batch experiments highlighted ICRM calcined at 600 °C has more stable and favorable performance. The components of post-adsorption ICRM remained active, as demonstrated by FT-IR results. Additionally, ICRM@600 displayed superior U adsorption capacity (59.45 mg/g) than did all red mud adsorbents from our previous research. Zeta-potential results revealed ICRM has positive potential charges in acidic conditions, indicating it adsorbs U(VI) ions via electrostatic attraction. The main adsorption mechanisms of ICRM are surface electrostatic attraction, physical adsorption by porous structure, and chemical adsorption by active Al and Fe components. In application, ICRM@600 obtained a 82.20% U adsorption ratio in uranium mine pit drainage. Overall, this study offers theoretical guidances to radioactive drainage management and red mud reuse.
Collapse
Affiliation(s)
- Wanying Wu
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School for Environment and Sustainability, University of Michigan, Ann Arbor 48109, USA
| | - Zheng Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ying Huang
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jinwen Li
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Diyun Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Nan Chen
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| | - Minhua Su
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Shukla SK. Rice Husk Derived Adsorbents for Water Purification. GREEN MATERIALS FOR WASTEWATER TREATMENT 2020. [DOI: 10.1007/978-3-030-17724-9_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
9
|
Kouraim MN, Hagag MS, Ali AH. Adsorption of uranium from its aqueous solutions using activated cellulose and silica grafted cellulose. RADIOCHIM ACTA 2019. [DOI: 10.1515/ract-2019-3149] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Abstract
The present work provides a thorough description of the preparation of two cellulose anion exchange resins. In addition, the application of the prepared resins for treatment the uranium-contaminated wastewater. In the preparation, the first resin was cellulose reacted with 0.3 M HNO3 to produce Activated Cellulose (AC), while the second was AC treated with sodium metasilicate and phosphoric acid to yield Silica Grafted Cellulose (SGC). The efficiency of the two prepared resins for uranium adsorption from aqueous solution was testifying on a batch scale. In solutions of pH ranging from 4 to 7, results showed a high exchange rate and uptaking capacity up to 105 mg/g. However, the addition of NO3
−, Fe3+ and Th4+ ions to the target media has an adverse impact on the uranium sorption for AC adsorbent. Otherwise, the addition of uranyl sulfate complexes could ameliorate Fe3+ and Th4+ adsorbed into the SGC.
Collapse
Affiliation(s)
| | | | - Amr H. Ali
- Nuclear Materials Authority, P.O. Box 530, El Maadi , Cairo , Egypt
| |
Collapse
|