1
|
Elrafey A, Farghali AA, Kamal W, Allam AA, Eldin ZE, Rudayni HA, Alfassam HE, Anwar AAA, Saeed S, Mahmoud R. Cost-effective eggshell-modified LDH composite for caffeine adsorption, cytotoxicity and antimicrobial activity: exploring the synergy and economic viability in search processes. RSC Adv 2024; 14:33281-33300. [PMID: 39435004 PMCID: PMC11492829 DOI: 10.1039/d4ra04558k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/18/2024] [Indexed: 10/23/2024] Open
Abstract
The rise of pharmaceutical residues poses a serious threat to ecological and aquatic environments, necessitating the development of cost-effective, convenient, and recyclable adsorbents. Given the high global consumption of eggs, a significant amount of waste eggshell is produced. The techniques outlined here aim to manage eggshell waste by transforming it into highly valuable products, addressing the issue of eggshell waste in communities and industries. This approach supports the concept of zero-waste operations to create value-added goods, contributing to sustainable development. In the future, this method of waste management and material recycling may be adopted as an alternative. CaO-based ZnFe-layered double hydroxide (LDH) is identified as an efficient adsorbent for caffeine (COF) residues due to its biodegradability and biocompatibility. We extensively analyzed the synthesized CaO, ZnFe-LDH, and CaO/ZnFe-LDH composites before the adsorption processes using FT-IR, XRD, SEM, EDX, BET surface area, PZC, TGA/DTG, and after the adsorption processes using FT-IR. We investigated factors affecting the adsorption process, such as pH, adsorbent dose, COF concentrations, and time. Six non-linear adsorption isotherm models were studied at pH 7 for the composite and pH 9 for LDH, showing maximum adsorption capacities (q max) of 152.35 mg g-1 for LDH and 194.87 mg g-1 for CaO/ZnFe-LDH. Kinetic studies were also conducted. Interestingly, the MTT assay conducted on WI-38 cells revealed minimal toxicity, with most tests indicating cell viability above 60%. The synthesized CaO, ZnFe-LDH, and CaO/ZnFe-LDH composite exhibit robust antimicrobial properties against two pathogens, including Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (MRSA). The MIC values for the synthesized materials range from 0.87 to 7 µg mL-1, varying with the microbial species. Two green metrics were applied: the analytical Eco-scale and the Analytical GREEnness Calculator (AGREE).
Collapse
Affiliation(s)
- Asmaa Elrafey
- Environmental Science and Industrial Development Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University Beni-Suef 62511 Egypt
| | - W Kamal
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| | - Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University Riyadh 11623 Saudi Arabia
- Department of Zoology, Faculty of Science, Beni-Suef University Beni-Suef 65211 Egypt
| | - Zienab E Eldin
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Science (PSAS), Beni-Suef University Beni-Suef 62511 Egypt
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University Riyadh 11623 Saudi Arabia
| | - Haifa E Alfassam
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University P. O. Box 84428 Riyadh 11671 Saudi Arabia
| | - Alaa A A Anwar
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| | - Sara Saeed
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| | - Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University Beni-Suef 62511 Egypt
| |
Collapse
|
2
|
Hasan IMA, Salman HMA, Hafez OM. Ficus-mediated green synthesis of manganese oxide nanoparticles for adsorptive removal of malachite green from surface water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28144-28161. [PMID: 36394816 PMCID: PMC9995432 DOI: 10.1007/s11356-022-24199-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
The extract of ficus leaves was used to prepare manganese (IV) oxide nanoparticles (MnO2 NPs) for the first time. Several different analytical techniques were used to characterize the prepared MnO2 NPs. MnO2 has spherical crystals that are ~ 7 nm on average in size and have 149.68 m2/g of surface area and 0.91 cm3/g of total pore volume. Malachite green (MG) dye was then taken out of the water by adsorption using MnO2 NPs. Optimization of various adsorption parameters resulted in 188.68-277.78 mg/g maximum adsorption capacities at 298-328 K tested temperatures and 99.6% removal of 50 mg/L MG within 90 min using MnO2 dose of 0.01 g at pH 10 and 298 K. The results were tested using pseudo-first order, pseudo-second order, intraparticle diffusion, Elovich, and Liquid film kinetic models as well as Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich isotherm models. The most likely models to describe the adsorption process at 298 K are pseudo-second-order kinetics (R2 = 0.997) with a rate constant of 4 × 10-4 g/(mg.min) and Langmuir isotherm (R2 = 0.973). Additionally, the positive values of enthalpy change (3.91-67.81 kJ/mol) and the negative values of Gibb's free energy (- 3.38 to - 19.7 kJ/mol) indicate that the process is endothermic, spontaneous, and thermodynamically feasible. MnO2 NPs sustained their adsorption efficiency at 90.4% after 5 sorption cycles. MnO2 appears to be more selective for MG in studies examining the adsorption of various cationic dyes. Lately, the biosynthesized MnO2 NPs can be utilized to remove MG from aqueous solutions effectively.
Collapse
Affiliation(s)
| | - Hassan M A Salman
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| | - Olfat M Hafez
- Chemistry Department, Faculty of Science, South Valley University, Qena, 83523, Egypt
| |
Collapse
|
3
|
Shaddel R, Akbari-Alavijeh S, Cacciotti I, Yousefi S, Tomas M, Capanoglu E, Tarhan O, Rashidinejad A, Rezaei A, Bhia M, Jafari SM. Caffeine-loaded nano/micro-carriers: Techniques, bioavailability, and applications. Crit Rev Food Sci Nutr 2022; 64:4940-4965. [PMID: 36412258 DOI: 10.1080/10408398.2022.2147143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Caffeine, as one of the most consumed bioactive compounds globally, has gained considerable attention during the last years. Considering the bitter taste and adverse effects of high levels of caffeine consumption, it is crucial to apply a strategy for masking the caffeine's bitter taste and facilitating its programmable deliverance within a long time. Other operational parameters such as food processing parameters, exposure to sunlight and oxygen, and gastrointestinal digestion could also degrade the phenolic compounds in general and caffeine in special. To overcome these challenges, various nano/micro-platforms have been fabricated, including lipid-based (e.g., nanoliposomal vehicles; nanoemulsions, double emulsions, Pickering emulsions; microemulsions; niosomal vehicles; solid lipid nanoparticles and nanostructured lipid carriers), as well as biopolymeric (e.g., nanoparticles; hydrogels, organogels, oleogels; nanofibers and nanotubes; protein-polysaccharide nanocomplexes, conjugates; cyclodextrin inclusion complexes) and inorganic (e.g., gold and silica nanoparticles) nano/micro-structures. In this review, the findings on various caffeine-loaded nano/micro-carriers and their potential applications in functional food products/supplements will be discussed. Also, the controlled release and bioavailability of encapsulated caffeine will be given, and finally, the toxicity and safety of encapsulated caffeine will be presented.
Collapse
Affiliation(s)
- Rezvan Shaddel
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Safoura Akbari-Alavijeh
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ilaria Cacciotti
- Department of Engineering, INSTM RU, University of Rome "Niccolò Cusano", Roma, Italy
| | - Shima Yousefi
- Department of Agriculture and Food Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Merve Tomas
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Istanbul, Turkey
| | - Esra Capanoglu
- Faculty of Chemical and Metallurgical Engineering, Food Engineering Department, Istanbul Technical University, Istanbul, Turkey
| | - Ozgur Tarhan
- Department of Food Engineering, Engineering Faculty, Uşak University, Uşak, Turkey
| | - Ali Rashidinejad
- Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Atefe Rezaei
- Department of Food Science and Technology, School of Nutrition and Food Science, Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammed Bhia
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Nanomedicine Research Association (NRA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
4
|
Natarajan R, Saikia K, Ponnusamy SK, Rathankumar AK, Rajendran DS, Venkataraman S, Tannani DB, Arvind V, Somanna T, Banerjee K, Mohideen N, Vaidyanathan VK. Understanding the factors affecting adsorption of pharmaceuticals on different adsorbents - A critical literature update. CHEMOSPHERE 2022; 287:131958. [PMID: 34454222 DOI: 10.1016/j.chemosphere.2021.131958] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Remediation of emerging pharmaceutically active compounds (PhACs) as micropollutants in wastewater is of foremost importance as they can cause extremely detrimental effects on life upon bioaccumulation and generation of drug-resistance microorganisms. Presently used physicochemical treatments, such as electrochemical oxidation, nanofiltration and reverse osmosis, are not feasible owing to high operating costs, incomplete removal of contaminants along with toxic by-products formation. Adsorption with the utilization of facile and efficient nanoparticulate adsorbents having distinctive properties of high surface area, excellent adsorption capacity, ability to undergo surface engineering and good regeneration displays great potential in this aspect along with the incorporation of nanotechnology for effective treatment. The application of such nanosorbents provides optimal performance under a wide range of physicochemical conditions, decreased secondary pollution with reduced mechanical stress along with excellent organic compound sequestration capacity, which in turn improves the quality of potable water in a sustainable way compared to current treatments. The present review intends to consolidate the range of factors that affect the process of adsorption of different PhACs on to various nanosorbents and also highlights the adsorption mechanism aiding in the retrieval.
Collapse
Affiliation(s)
- Ramesh Natarajan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Kongkona Saikia
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, India
| | - Abiram Karanam Rathankumar
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Diya Bharat Tannani
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Varshni Arvind
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Tanya Somanna
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Koyena Banerjee
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Nizar Mohideen
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India
| | - Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, 603 203, India.
| |
Collapse
|
5
|
Quintero-Jaramillo JA, Carrero-Mantilla JI, Sanabria-González NR. A Review of Caffeine Adsorption Studies onto Various Types of Adsorbents. ScientificWorldJournal 2021; 2021:9998924. [PMID: 34335116 PMCID: PMC8315881 DOI: 10.1155/2021/9998924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/26/2021] [Accepted: 06/30/2021] [Indexed: 12/03/2022] Open
Abstract
A systematic literature review of publications from 2000 to 2020 was carried out to identify research trends on adsorbent materials for the removal of caffeine from aqueous solutions. Publications were retrieved from three databases (Scopus, Web of Science, and Google Scholar). Words "adsorption AND caffeine" were examined into titles, abstracts, and keywords. A brief bibliometric analysis was performed with emphasis on the type of publication and of most cited articles. Materials for the removal of caffeine were classified according to the type of material into three main groups: organic, inorganic, and composites, each of them subdivided into different subgroups consistent with their origin or production. Tables resume for each subgroup of adsorbents the key information: specific surface area, dose, pH, maximum adsorption capacity, and isotherm models for the removal of caffeine. The highest adsorption capacities were achieved by organic adsorbents, specifically those with granular activated carbon (1961.3 mg/g) and grape stalk activated carbon (916.7 mg/g). Phenyl-phosphate-based porous organic polymer (301 mg/g), natural sandy loam sediment (221.2 mg/g), composites of MCM-48 encapsulated graphene oxide (153.8 mg/g), and organically modified clay (143.7 mg/g) showed adsorption capacities lower than those of activated carbons. In some activated carbons, a relation between the specific surface area (SSA) and the maximum adsorption capacity (Q max) was found.
Collapse
Affiliation(s)
- Javier Andrés Quintero-Jaramillo
- Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 7 vía al Aeropuerto, AA 127, Manizales, Colombia
| | - Javier Ignacio Carrero-Mantilla
- Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 7 vía al Aeropuerto, AA 127, Manizales, Colombia
| | - Nancy Rocío Sanabria-González
- Departamento de Ingeniería Química, Universidad Nacional de Colombia Sede Manizales, Campus La Nubia, km 7 vía al Aeropuerto, AA 127, Manizales, Colombia
| |
Collapse
|
6
|
Abd El-Aziz HM, Farag RS, Abdel-Gawad SA. Removal of contaminant metformin from water by using Ficus benjamina zero-valent iron/copper nanoparticles. NANOTECHNOLOGY FOR ENVIRONMENTAL ENGINEERING 2020; 5:23. [DOI: 10.1007/s41204-020-00086-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/08/2020] [Indexed: 09/02/2023]
|