1
|
Mulvey JF, Shaheed SU, Charles PD, Snashall C, Lo Faro ML, Sutton CW, Jochmans I, Pirenne J, van Kooten C, Leuvenink HGD, Kaisar M, Ploeg RJ. Perfusate Proteomes Provide Biological Insight Into Oxygenated Versus Standard Hypothermic Machine Perfusion in Kidney Transplantation. Ann Surg 2023; 278:676-682. [PMID: 37503631 DOI: 10.1097/sla.0000000000006046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
OBJECTIVE To provide mechanistic insight into key biological alterations in donation after circulatory death kidneys during continuous pefusion we performed mass spectrometry profiling of perfusate samples collected during a phase 3 randomized double-blind paired clinical trial of hypothermic machine perfusion with and without oxygen (COMPARE). BACKGROUND Despite the clinical benefits of novel perfusion technologies aiming to better preserve donor organs, biological processes that may be altered during perfusion have remained largely unexplored. The collection of serial perfusate samples during the COMPARE clinical trial provided a unique resource to study perfusate proteomic profiles, with the hypothesis that in-depth profiling may reveal biologically meaningful information on how donor kidneys benefit from this intervention. METHODS Multiplexed liquid chromatography-tandem mass spectrometry was used to obtain a proteome profile of 210 perfusate samples. Partial least squares discriminant analysis and multivariate analysis involving clinical and perfusion parameters were used to identify associations between profiles and clinical outcomes. RESULTS Identification and quantitation of 1716 proteins indicated that proteins released during perfusion originate from the kidney tissue and blood, with blood-based proteins being the majority. Data show that the overall hypothermic machine perfusion duration is associated with increasing levels of a subgroup of proteins. Notably, high-density lipoprotein and complement cascade proteins are associated with 12-month outcomes, and blood-derived proteins are enriched in the perfusate of kidneys that developed acute rejection. CONCLUSIONS Perfusate profiling by mass spectrometry was informative and revealed proteomic changes that are biologically meaningful and, in part, explain the clinical observations of the COMPARE trial.
Collapse
Affiliation(s)
- John F Mulvey
- Nuffield Department of Surgical Sciences, and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Sadr Ul Shaheed
- Nuffield Department of Surgical Sciences, and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Philip D Charles
- Nuffield Department of Medicine, Big Data Institute, University of Oxford, Oxford, UK
| | - Corinna Snashall
- Nuffield Department of Surgical Sciences, and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Maria Letizia Lo Faro
- Nuffield Department of Surgical Sciences, and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | | | - Ina Jochmans
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
- Lab of Abdominal Transplantation, Transplantation Research Group, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Jacques Pirenne
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
- Lab of Abdominal Transplantation, Transplantation Research Group, Leuven, Belgium; Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Cees van Kooten
- Department of Internal Medicine Nephrology, Leiden University Medical Centre, Leiden, The Netherlands
- Transplant Center, Leiden University Medical Centre, Leiden, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery, University Medical Centre Groningen, Groningen, The Netherlands
| | - Maria Kaisar
- Nuffield Department of Surgical Sciences, and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Research and Development, NHS Blood and Transplant Oxford & Bristol, UK
| | - Rutger J Ploeg
- Nuffield Department of Surgical Sciences, and Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
- Transplant Center, Leiden University Medical Centre, Leiden, The Netherlands
- Research and Development, NHS Blood and Transplant Oxford & Bristol, UK
| |
Collapse
|
2
|
Verstraeten L, Den Abt R, Ghesquière B, Jochmans I. Current Insights into the Metabolome during Hypothermic Kidney Perfusion-A Scoping Review. J Clin Med 2023; 12:jcm12113613. [PMID: 37297808 DOI: 10.3390/jcm12113613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
This scoping review summarizes what is known about kidney metabolism during hypothermic perfusion preservation. Papers studying kidney metabolism during hypothermic (<12 °C) perfusion were identified (PubMed, Embase, Web of Science, Cochrane). Out of 14,335 initially identified records, 52 were included [dog (26/52), rabbit (2/52), pig (20/52), human (7/52)]. These were published between 1970-2023, partially explaining study heterogeneity. There is a considerable risk of bias in the reported studies. Studies used different perfusates, oxygenation levels, kidney injury levels, and devices and reported on perfusate and tissue metabolites. In 11 papers, (non)radioactively labeled metabolites (tracers) were used to study metabolic pathways. Together these studies show that kidneys are metabolically active during hypothermic perfusion, regardless of the perfusion setting. Although tracers give us more insight into active metabolic pathways, kidney metabolism during hypothermic perfusion is incompletely understood. Metabolism is influenced by perfusate composition, oxygenation levels, and likely also by pre-existing ischemic injury. In the modern era, with increasing donations after circulatory death and the emergence of hypothermic oxygenated perfusion, the focus should be on understanding metabolic perturbations caused by pre-existing injury levels and the effect of perfusate oxygen levels. The use of tracers is indispensable to understanding the kidney's metabolism during perfusion, given the complexity of interactions between different metabolites.
Collapse
Affiliation(s)
- Laurence Verstraeten
- Laboratory of Abdominal Transplantation KU Leuven, Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Rutger Den Abt
- Laboratory of Abdominal Transplantation KU Leuven, Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Bart Ghesquière
- Metabolomics Expertise Center, Center for Cancer Biology, VIB, 3000 Leuven, Belgium
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Ina Jochmans
- Laboratory of Abdominal Transplantation KU Leuven, Transplantation Research Group, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
- Department of Abdominal Transplant Surgery, University Hospitals Leuven, 3000 Leuven, Belgium
| |
Collapse
|
3
|
Normothermic Machine Perfusion in Renal Transplantation. CURRENT TRANSPLANTATION REPORTS 2022. [DOI: 10.1007/s40472-022-00378-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Abstract
Purpose of Review
Normothermic machine perfusion (NMP) is a promising new tool in kidney transplantation to improve the outcome of marginal donor kidney transplantation. This review examines the current evidence for NMP in clinical practice and considers how the technology may be used in the future.
Recent Findings and Summary
There is emerging evidence to suggest that NMP has the potential to expand the donor pool of transplantable organs. The safety and feasibility of NMP have been established in a number of clinical studies but more research is needed to optimise the perfusion conditions. NMP shows promise as a viability assessment tool with particular focus on biomarkers and imaging techniques which provide real-time information to facilitate transplantation decision-making. Moreover, the exciting development of new potential therapeutics such as cell and gene-based therapies which are deliverable during NMP may also improve and recondition grafts prior to implantation.
Collapse
|
4
|
Zulpaite R, Miknevicius P, Leber B, Strupas K, Stiegler P, Schemmer P. Ex-vivo Kidney Machine Perfusion: Therapeutic Potential. Front Med (Lausanne) 2022; 8:808719. [PMID: 35004787 PMCID: PMC8741203 DOI: 10.3389/fmed.2021.808719] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 01/11/2023] Open
Abstract
Kidney transplantation remains the gold standard treatment for patients suffering from end-stage kidney disease. To meet the constantly growing organ demands grafts donated after circulatory death (DCD) or retrieved from extended criteria donors (ECD) are increasingly utilized. Not surprisingly, usage of those organs is challenging due to their susceptibility to ischemia-reperfusion injury, high immunogenicity, and demanding immune regulation after implantation. Lately, a lot of effort has been put into improvement of kidney preservation strategies. After demonstrating a definite advantage over static cold storage in reduction of delayed graft function rates in randomized-controlled clinical trials, hypothermic machine perfusion has already found its place in clinical practice of kidney transplantation. Nevertheless, an active investigation of perfusion variables, such as temperature (normothermic or subnormothermic), oxygen supply and perfusate composition, is already bringing evidence that ex-vivo machine perfusion has a potential not only to maintain kidney viability, but also serve as a platform for organ conditioning, targeted treatment and even improve its quality. Many different therapies, including pharmacological agents, gene therapy, mesenchymal stromal cells, or nanoparticles (NPs), have been successfully delivered directly to the kidney during ex-vivo machine perfusion in experimental models, making a big step toward achievement of two main goals in transplant surgery: minimization of graft ischemia-reperfusion injury and reduction of immunogenicity (or even reaching tolerance). In this comprehensive review current state of evidence regarding ex-vivo kidney machine perfusion and its capacity in kidney graft treatment is presented. Moreover, challenges in application of these novel techniques in clinical practice are discussed.
Collapse
Affiliation(s)
- Ruta Zulpaite
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Povilas Miknevicius
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria.,Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | | | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Peter Schemmer
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
Hosgood SA, Brown RJ, Nicholson ML. Advances in Kidney Preservation Techniques and Their Application in Clinical Practice. Transplantation 2021; 105:e202-e214. [PMID: 33982904 PMCID: PMC8549459 DOI: 10.1097/tp.0000000000003679] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/03/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
The use of cold preservation solutions to rapidly flush and cool the kidney followed by static cold storage in ice has been the standard kidney preservation technique for the last 50 y. Nonetheless, changing donor demographics that include organs from extended criteria donors and donation after circulatory death donors have led to the adoption of more diverse techniques of preservation. Comparison of hypothermic machine perfusion and static cold storage techniques for deceased donor kidneys has long been debated and is still contested by some. The recent modification of hypothermic machine perfusion techniques with the addition of oxygen or perfusion at subnormothermic or near-normothermic temperatures are promising strategies that are emerging in clinical practice. In addition, the use of normothermic regional perfusion to resuscitate abdominal organs of donation after circulatory death donors in situ before cold flushing is also increasingly being utilized. This review provides a synopsis of the different types of preservation techniques including their mechanistic effects and the outcome of their application in clinical practice for different types of donor kidney.
Collapse
Affiliation(s)
- Sarah A. Hosgood
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Rachel J. Brown
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| | - Michael L. Nicholson
- Department of Surgery, University of Cambridge, Addenbrooke’s Hospital, Cambridge, United Kingdom
| |
Collapse
|
6
|
Schutter R, Lantinga VA, Hamelink TL, Pool MBF, van Varsseveld OC, Potze JH, Hillebrands JL, van den Heuvel MC, Dierckx RAJO, Leuvenink HGD, Moers C, Borra RJH. Magnetic resonance imaging assessment of renal flow distribution patterns during ex vivo normothermic machine perfusion in porcine and human kidneys. Transpl Int 2021; 34:1643-1655. [PMID: 34448269 PMCID: PMC9290094 DOI: 10.1111/tri.13991] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023]
Abstract
Acceptance criteria of deceased donor organs have gradually been extended toward suboptimal quality, posing an urgent need for more objective pre‐transplant organ assessment. Ex vivo normothermic machine perfusion (NMP) combined with magnetic resonance imaging (MRI) could assist clinicians in deciding whether a donor kidney is suitable for transplantation. Aim of this study was to characterize the regional distribution of perfusate flow during NMP, to better understand how ex vivo kidney assessment protocols should eventually be designed. Nine porcine and 4 human discarded kidneys underwent 3 h of NMP in an MRI‐compatible perfusion setup. Arterial spin labeling scans were performed every 15 min, resulting in perfusion‐weighted images that visualize intrarenal flow distribution. At the start of NMP, all kidneys were mainly centrally perfused and it took time for the outer cortex to reach its physiological dominant perfusion state. Calculated corticomedullary ratios based on the perfusion maps reached a physiological range comparable to in vivo observations, but only after 1 to 2 h after the start of NMP. Before that, the functionally important renal cortex appeared severely underperfused. Our findings suggest that early functional NMP quality assessment markers may not reflect actual physiology and should therefore be interpreted with caution.
Collapse
Affiliation(s)
- Rianne Schutter
- Department of Surgery - Organ Donation and Transplantation, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Veerle A Lantinga
- Department of Surgery - Organ Donation and Transplantation, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Tim L Hamelink
- Department of Surgery - Organ Donation and Transplantation, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Merel B F Pool
- Department of Surgery - Organ Donation and Transplantation, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Otis C van Varsseveld
- Department of Surgery - Organ Donation and Transplantation, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Jan Hendrik Potze
- Department of Radiology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Marius C van den Heuvel
- Department of Pathology & Medical Biology, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Department of Radiology, University of Groningen, University Medical Center, Groningen, The Netherlands.,Department of Nuclear Medicine, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Henri G D Leuvenink
- Department of Surgery - Organ Donation and Transplantation, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Cyril Moers
- Department of Surgery - Organ Donation and Transplantation, University of Groningen, University Medical Center, Groningen, The Netherlands
| | - Ronald J H Borra
- Department of Radiology, University of Groningen, University Medical Center, Groningen, The Netherlands.,Department of Nuclear Medicine, University of Groningen, University Medical Center, Groningen, The Netherlands
| |
Collapse
|
7
|
Mesnard B, Ogbemudia AE, Karam G, Dengu F, Hackim G, Rigaud J, Blancho G, Drouin S, Timsit MO, Branchereau J. What is the evidence for oxygenation during kidney preservation for transplantation in 2021? A scoping review. World J Urol 2021; 40:2141-2152. [PMID: 34432136 DOI: 10.1007/s00345-021-03757-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022] Open
Abstract
PURPOSE The main objective of static cold storage is to reduce cellular metabolic demands to extend the period of ischaemia prior to transplantation. Hypothermia does not halt metabolism and the absence of oxygen causes a cellular shift toward anaerobic respiratory pathways. There is emerging evidence that the introduction of oxygenation during organ preservation may help ameliorate the degree of ischaemia reperfusion injury and improve post-transplantation outcomes. This review aims to appraise and summarise all published literature that utilises oxygenation to improve kidney preservation for purposes of transplantation. METHODS We performed a scoping review of the literature using the bibliographic databases Embase and MEDLINE. The final date for searches was 20 March 2021. All research studies included were those that reported oxygen delivery during kidney preservation as well as providing a description of the oxygenation technique. RESULTS 17 human and 48 animal studies met the inclusion criteria. The oxygen delivery methods investigated included hypothermic oxygenated machine perfusion (HOPE), oxygen carriers, two-layer method, venous systemic persufflation, hyperbaric oxygenation, normothermic machine perfusion and sub-normothermic machine perfusion. The COMPARE trial was the only study carried out with the most methodological robustness being a randomised, double blind, controlled, phase III trial that investigated the efficacy of HOPE versus HMP. CONCLUSION A variety of studies reflect the evolution of oxygenation with useful lessons and encouraging outcomes. The first in human studies investigating HOPE and oxygen carriers are most robustly investigated strategies for oxygenation during kidney preservation and are, therefore, the best clinical references.
Collapse
Affiliation(s)
- B Mesnard
- Department of Urology and Transplantation Surgery, University Hospital Center, 1 Place Alexis Ricordeau, 44093, Nantes Cedex 03, France
| | | | - G Karam
- Department of Urology and Transplantation Surgery, University Hospital Center, 1 Place Alexis Ricordeau, 44093, Nantes Cedex 03, France
| | - F Dengu
- Nuffield Department of Surgical Science, Oxford, UK
| | - G Hackim
- Nuffield Department of Surgical Science, Oxford, UK
| | - J Rigaud
- Department of Urology and Transplantation Surgery, University Hospital Center, 1 Place Alexis Ricordeau, 44093, Nantes Cedex 03, France
| | - G Blancho
- Centre de Recherche en Transplantation et Immunologie (ou CRTI), Inserm, Nantes University, Nantes, France
| | - S Drouin
- Department of Urology, Hôpital Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Sorbonne University, 75013, Paris, France
| | - M O Timsit
- Department of Urology and Transplant Surgery, HEGP-Necker, APHP Université Paris Descartes, Paris, France
| | - J Branchereau
- Department of Urology and Transplantation Surgery, University Hospital Center, 1 Place Alexis Ricordeau, 44093, Nantes Cedex 03, France. .,Nuffield Department of Surgical Science, Oxford, UK. .,Centre de Recherche en Transplantation et Immunologie (ou CRTI), Inserm, Nantes University, Nantes, France. .,Institut de Transplantation Urologie Néphrologie (ITUN), Centre Hospitalier Universitaire de Nantes, 44093, Nantes, France.
| |
Collapse
|
8
|
Improved Normothermic Machine Perfusion After Short Oxygenated Hypothermic Machine Perfusion of Ischemically Injured Porcine Kidneys. Transplant Direct 2021; 7:e653. [PMID: 33490378 PMCID: PMC7817286 DOI: 10.1097/txd.0000000000001108] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 10/17/2020] [Accepted: 10/21/2020] [Indexed: 12/15/2022] Open
Abstract
Supplemental Digital Content is available in the text. Background. In an era where global kidney shortage has pushed the field of transplantation towards using more marginal donors, modified kidney preservation techniques are currently being reviewed. Some techniques require further optimization before implementation in full scale transplantation studies. Using a porcine donation after circulatory death kidney model, we investigated whether initial kidney hemodynamics improved during normothermic machine perfusion if this was preceded by a short period of oxygenated hypothermic machine perfusion (oxHMP) rather than static cold storage (SCS). Methods. Kidneys subjected to 75 minutes of warm ischemia were randomly assigned to either SCS (n = 4) or SCS + oxHMP (n = 4), with a total cold storage time of 240 minutes. Cold preservation was followed by 120 minutes of normothermic machine perfusion with continuous measurement of hemodynamic parameters and renal function. Results. oxHMP preserved kidneys maintained significantly lower renal resistance throughout the normothermic machine perfusion period compared to SCS kidneys (P < 0.001), reaching lowest levels at 60 minutes with means of 0.71 ± 0.35 mm Hg/mL/min/100 g (SCS) and 0.45 ± 0.15 mm Hg/mL/min/100 g (oxHMP). Accordingly, the oxHMP group had a higher mean renal blood flow versus SCS kidneys (P < 0.001). oxHMP kidneys had higher oxygen consumption during normothermic machine perfusion compared to SCS preserved kidneys (P < 0.001). Creatinine clearance remained similar between groups (P = 0.665). Conclusions. Preceding oxHMP significantly improved initial normothermic machine perfusion hemodynamics and increased total oxygen consumption. With the long period of warm ischemia, immediate kidney function was not observed, reflected by the findings of low creatinine clearance in both groups.
Collapse
|
9
|
Jochmans I, Brat A, Davies L, Hofker HS, van de Leemkolk FEM, Leuvenink HGD, Knight SR, Pirenne J, Ploeg RJ. Oxygenated versus standard cold perfusion preservation in kidney transplantation (COMPARE): a randomised, double-blind, paired, phase 3 trial. Lancet 2020; 396:1653-1662. [PMID: 33220737 DOI: 10.1016/s0140-6736(20)32411-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 08/11/2020] [Accepted: 08/25/2020] [Indexed: 01/23/2023]
Abstract
BACKGROUND Deceased donor kidneys are preserved in cold hypoxic conditions. Providing oxygen during preservation might improve post-transplant outcomes, particularly for kidneys subjected to greater degrees of preservation injury. This study aimed to investigate whether supplemental oxygen during hypothermic machine perfusion (HMP) could improve the outcome of kidneys donated after circulatory death. METHODS This randomised, double-blind, paired, phase 3 trial was done in 19 European transplant centres. Kidney pairs from donors aged 50 years or older, donated after circulatory death, were eligible if both kidneys were transplanted into two different recipients. One kidney from each donor was randomly assigned using permuted blocks to oxygenated hypothermic machine perfusion (HMPO2), the other to HMP without oxygenation. Perfusion was maintained from organ retrieval to implantation. The primary outcome was 12-month estimated glomerular filtration rate (eGFR) using the Chronic Kidney Disease Epidemiology Collaboration equation in pairs of donated kidneys in which both transplanted kidneys were functioning at the end of follow-up. Safety outcomes were reported for all transplanted kidneys. Intention-to-treat analyses were done. This trial is registered with the ISRCTN Registry, ISRCTN32967929, and is now closed. FINDINGS Between March 15, 2015, and April 11, 2017, 197 kidney pairs were randomised with 106 pairs transplanted into eligible recipients. 23 kidney pairs were excluded from the primary analysis because of kidney failure or patient death. Mean eGFR at 12 months was 50·5 mL/min per 1·73 m2 (SD 19·3) in the HMPO2 group versus 46·7 mL/min per 1·73m2 (17·1) in HMP (mean difference 3·7 mL/min per 1·73m2, 95% CI -1·0 to 8·4; p=0·12). Fewer severe complications (Clavien-Dindo grade IIIb or more) were reported in the HMPO2 group (46 of 417, 11%, 95% CI 8% to 14%) than in the HMP group (76 of 474, 16%, 13% to 20%; p=0·032). Graft failure was lower with HMPO2 (three [3%] of 106) compared with HMP (11 [10%] of 106; hazard ratio 0·27, 95% CI 0·07 to 0·95; p=0·028). INTERPRETATION HMPO2 of kidneys donated after circulatory death is safe and reduces post-transplant complications (grade IIIb or more). The 12-month difference in eGFR between the HMPO2 and HMP groups was not significant when both kidneys from the same donor were still functioning 1-year post-transplant, but potential beneficial effects of HMPO2 were suggested by analysis of secondary outcomes. FUNDING European Commission 7th Framework Programme.
Collapse
Affiliation(s)
- Ina Jochmans
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium; Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium.
| | - Aukje Brat
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Lucy Davies
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - H Sijbrand Hofker
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | | | - Henri G D Leuvenink
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands
| | - Simon R Knight
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Jacques Pirenne
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven, Belgium; Department of Abdominal Transplant Surgery, University Hospitals Leuven, Leuven, Belgium
| | - Rutger J Ploeg
- Department of Surgery, University Medical Center Groningen, Groningen, Netherlands; Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK; NIHR Oxford Biomedical Research Centre, Oxford, UK; Transplant Center, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
10
|
Influence of Different Partial Pressures of Oxygen During Continuous Hypothermic Machine Perfusion in a Pig Kidney Ischemia-reperfusion Autotransplant Model. Transplantation 2020; 104:731-743. [PMID: 31764761 DOI: 10.1097/tp.0000000000003051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The optimal perfusate partial pressure of oxygen (PO2) during hypothermic machine perfusion (HMP) is unknown. The aims of the study were to determine the functional, metabolic, structural, and flow dynamic effects of low and high perfusate PO2 during continuous HMP in a pig kidney ischemia-reperfusion autotransplant model. METHODS The left kidneys of a ±40 kg pigs were exposed to 30 minutes of warm ischemia and randomized to receive 22-hour HMP with either low perfusate PO2 (30% oxygen, low oxygenated HMP [HMPO2]) (n = 8) or high perfusate PO2 (90% oxygen, HMPO2high) (n = 8), before autotransplantation. Kidneys stored in 22-hour standard HMP (n = 6) and 22-hour static cold storage (n = 6) conditions served as controls. The follow-up after autotransplantation was 13 days. RESULTS High PO2 resulted in a 3- and 10-fold increase in perfusate PO2 compared with low HMPO2 and standard HMP, respectively. Both HMPO2 groups were associated with superior graft recovery compared with the control groups. Oxygenation was associated with a more rapid and sustained decrease in renal resistance. While there was no difference in functional outcomes between both HMPO2 groups, there were clear metabolic differences with an inverse correlation between oxygen provision and the concentration of major central metabolites in the perfusion fluid but no differences were observed by oxidative stress and metabolic evaluation on preimplantation biopsies. CONCLUSIONS While this animal study does not demonstrate any advantages for early graft function for high perfusate PO2, compared with low perfusate PO2, perfusate metabolic profile analysis suggests that aerobic mechanism is better supported under high perfusate PO2 conditions.
Collapse
|
11
|
Kvietkauskas M, Zitkute V, Leber B, Strupas K, Stiegler P, Schemmer P. The Role of Metabolomics in Current Concepts of Organ Preservation. Int J Mol Sci 2020; 21:ijms21186607. [PMID: 32927605 PMCID: PMC7555311 DOI: 10.3390/ijms21186607] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
In solid organ transplantation (Tx), both survival rates and quality of life have improved dramatically over the last few decades. Each year, the number of people on the wait list continues to increase, widening the gap between organ supply and demand. Therefore, the use of extended criteria donor grafts is growing, despite higher susceptibility to ischemia-reperfusion injury (IRI) and consecutive inferior Tx outcomes. Thus, tools to characterize organ quality prior to Tx are crucial components for Tx success. Innovative techniques of metabolic profiling revealed key pathways and mechanisms involved in IRI occurring during organ preservation. Although large-scale trials are needed, metabolomics appears to be a promising tool to characterize potential biomarkers, for the assessment of graft quality before Tx and evaluate graft-related outcomes. In this comprehensive review, we summarize the currently available literature on the use of metabolomics in solid organ Tx, with a special focus on metabolic profiling during graft preservation to assess organ quality prior to Tx.
Collapse
Affiliation(s)
- Mindaugas Kvietkauskas
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Viktorija Zitkute
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, M. K. Ciurlionio 21, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
- Correspondence: ; Tel.: +43-316-385-84094
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, Graz 8036, Austria; (M.K.); (V.Z.); (B.L.); (P.S.)
| |
Collapse
|
12
|
Mariager CØ, Hansen ESS, Bech SK, Munk A, Kjaergaard U, Lyhne MD, Søberg K, Nielsen PF, Ringgaard S, Laustsen C. Graft assessment of the ex vivo perfused porcine kidney using hyperpolarized [1- 13 C]pyruvate. Magn Reson Med 2020; 84:2645-2655. [PMID: 32557782 DOI: 10.1002/mrm.28363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 05/07/2020] [Accepted: 05/21/2020] [Indexed: 01/06/2023]
Abstract
PURPOSE Normothermic perfusion is an emerging strategy for donor organ preservation and therapy, incited by the high worldwide demand for organs for transplantation. Hyperpolarized MRI and MRS using [1-13 C]pyruvate and other 13 C-labeled molecules pose a novel way to acquire highly detailed information about metabolism and function in a noninvasive manner. This study investigates the use of this methodology as a means to study and monitor the state of ex vivo perfused porcine kidneys, in the context of kidney graft preservation research. METHODS Kidneys from four 40-kg Danish domestic pigs were perfused ex vivo with whole blood under normothermic conditions, using an MR-compatible perfusion system. Kidneys were investigated using 1 H MRI as well as hyperpolarized [1-13 C]pyruvate MRI and MRS. Using the acquired anatomical, functional and metabolic data, the state of the ex vivo perfused porcine kidney could be quantified. RESULTS Four kidneys were successfully perfused for 120 minutes and verified using a DCE perfusion experiment. Renal metabolism was examined using hyperpolarized [1-13 C]pyruvate MRI and MRS, and displayed an apparent reduction in pyruvate turnover compared with the usual case in vivo. Perfusion and blood gas parameters were in the normal ex vivo range. CONCLUSION This study demonstrates the ability to monitor ex vivo graft metabolism and function in a large animal model, resembling human renal physiology. The ability of hyperpolarized MRI and MRS to directly compare the metabolic state of an organ in vivo and ex vivo, in combination with the simple MR implementation of normothermic perfusion, renders this methodology a powerful future tool for graft preservation research.
Collapse
Affiliation(s)
| | | | - Sabrina Kahina Bech
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Anders Munk
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Uffe Kjaergaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mads Dam Lyhne
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karsten Søberg
- Department of Anesthesia and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Peter Fast Nielsen
- Department of Anesthesia and Intensive Care, Aarhus University Hospital, Aarhus, Denmark
| | - Steffen Ringgaard
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, Aarhus, Denmark
| | - Christoffer Laustsen
- Department of Clinical Medicine, The MR Research Centre, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Hypothermic Oxygenated New Machine Perfusion System in Liver and Kidney Transplantation of Extended Criteria Donors:First Italian Clinical Trial. Sci Rep 2020; 10:6063. [PMID: 32269237 PMCID: PMC7142134 DOI: 10.1038/s41598-020-62979-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/04/2020] [Indexed: 02/08/2023] Open
Abstract
With the aim to explore innovative tools for organ preservation, especially in marginal organs, we hereby describe a clinical trial of ex-vivo hypothermic oxygenated perfusion (HOPE) in the field of liver (LT) and kidney transplantation (KT) from Extended Criteria Donors (ECD) after brain death. A matched-case analysis of donor and recipient variables was developed: 10 HOPE-ECD livers and kidneys (HOPE-L and HOPE-K) were matched 1:3 with livers and kidneys preserved with static cold storage (SCS-L and SCS-K). HOPE and SCS groups resulted with similar basal characteristics, both for recipients and donors. Cumulative liver and kidney graft dysfunction were 10% (HOPE L-K) vs. 31.7%, in SCS group (p = 0.05). Primary non-function was 3.3% for SCS-L vs. 0% for HOPE-L. No primary non-function was reported in HOPE-K and SCS-K. Median peak aspartate aminotransferase within 7-days post-LT was significantly higher in SCS-L when compared to HOPE-L (637 vs.344 U/L, p = 0.007). Graft survival at 1-year post-transplant was 93.3% for SCS-L vs. 100% of HOPE-L and 90% for SCS-K vs. 100% of HOPE-K. Clinical outcomes support our hypothesis of machine perfusion being a safe and effective system to reduce ischemic preservation injuries in KT and in LT.
Collapse
|
14
|
Bellini MI, Yiu J, Nozdrin M, Papalois V. The Effect of Preservation Temperature on Liver, Kidney, and Pancreas Tissue ATP in Animal and Preclinical Human Models. J Clin Med 2019; 8:jcm8091421. [PMID: 31505880 PMCID: PMC6780500 DOI: 10.3390/jcm8091421] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/30/2019] [Accepted: 09/02/2019] [Indexed: 02/06/2023] Open
Abstract
The recent advances in machine perfusion (MP) technology involve settings ranging between hypothermic, subnormothermic, and normothermic temperatures. Tissue level adenosine triphosphate (ATP) is a long-established marker of viability and functionality and is universal for all organs. In the midst of a growing number of complex clinical parameters for the quality assessment of graft prior to transplantation, a revisit of ATP may shed light on the underlying reconditioning mechanisms of different perfusion temperatures in the form of restoration of metabolic and energy status. This article aims to review and critically analyse animal and preclinical human studies (discarded grafts) during MP of three abdominal organs (liver, kidney, and pancreas) in which ATP was a primary endpoint. A selective review of recent novel reconditioning approaches relevant to mitigation of graft ischaemia-reperfusion injury via MP and for different perfusion temperatures was also conducted. With a current reiterated interest for oxygenation during MP, a re-introduction of tissue ATP levels may be valuable for graft viability assessment prior to transplantation. Further studies may help delineate the benefits of selective perfusion temperatures on organs viability.
Collapse
Affiliation(s)
| | - Janice Yiu
- School of Medicine, University College London, London WC1E 6BT, UK
| | - Mikhail Nozdrin
- School of Medicine, Imperial College London, London SW72AZ, UK
| | - Vassilios Papalois
- Renal and Transplant Directorate, Imperial College Healthcare NHS Trust, London W120HS, UK
- Department of Surgery and Cancer, Imperial College London, London SW72AZ, UK
| |
Collapse
|
15
|
Optimizing Temperature and Oxygen Supports Long-term Culture of Human Islets. Transplantation 2019; 103:299-306. [PMID: 29781952 DOI: 10.1097/tp.0000000000002280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Islet transplantation is a promising treatment for type-1 diabetes; however, donor shortage is a concern. Even when a pancreas is available, low islet yield limits the success of transplantation. Islet culture enables pooling of multiple low-yield isolations into an effective islet mass, but isolated islets rapidly deteriorate under conventional culture conditions. Oxygen (O2) depletion in the islet core, which leads to central necrosis and volume loss, is one of the major reasons for this deterioration. METHODS To promote long-term culture of human islets in PIM-R medium (used for islet research), we adjusted temperature (12°C, 22°C, and 37°C) and O2 concentration (21% and 50%). We simulated the O2 distribution in islets based on islet O2 consumption rate and dissolved O2 in the medium. We determined the optimal conditions for O2 distribution and volume maintenance in a 2-week culture and assessed viability and insulin secretion compared to noncultured islets. In vivo islet engraftment was assessed by transplantation into diabetic nonobese diabetic-severe combined immunodeficiency mouse kidneys. We validated our results using CMRL 1066 medium (used for clinical islet transplantation). RESULTS Simulation revealed that 12°C of 50% O2 PIM-R culture supplied O2 effectively into the islet core. This condition maintained islet volume at greater than 90% for 2 weeks. There were no significant differences in viability and function in vitro or diabetic reversal rate in vivo between 2-week cultured and noncultured islets. Similar results were obtained using CMRL 1066. CONCLUSIONS By optimizing temperature and O2 concentration, we cultured human islets for 2 weeks with minimal loss of volume and function.
Collapse
|
16
|
The Effects of Oxygenation on Ex Vivo Kidneys Undergoing Hypothermic Machine Perfusion. Transplantation 2019; 103:314-322. [PMID: 30461718 DOI: 10.1097/tp.0000000000002542] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Supplemental oxygenation of the standard hypothermic machine perfusion (HMP) circuit has the potential to invoke favorable changes in metabolism, optimizing cadaveric organs before transplantation. METHODS Eight pairs of porcine kidneys underwent 18 hours of either oxygenated (HMP/O2) or aerated (HMP/Air) HMP in a paired donation after circulatory death model of transplantation. Circulating perfusion fluid was supplemented with the metabolic tracer universally labeled glucose.Perfusate, end-point renal cortex, and medulla samples underwent metabolomic analysis using 1-dimension and 2-dimension nuclear magnetic resonance experiments in addition to gas chromatography-mass spectrometry. Analysis of C-labeled metabolic products was combined with adenosine nucleotide levels and differences in tissue architecture. RESULTS Metabolomic analysis revealed significantly higher concentrations of universally labeled lactate in the cortex of HMP/Air versus HMP/O2 kidneys (0.056 mM vs 0.026 mM, P < 0.05). Conversely, newly synthesized [4,5-C] glutamate concentrations were higher in the cortex of HMP/O2 kidneys inferring relative increases in tricarboxylic acid cycle activity versus HMP/Air kidneys (0.013 mmol/L vs 0.003 mmol/L, P < 0.05). This was associated with greater amounts of adenoside triphosphate in the cortex HMP/O2 versus HMP/Air kidneys (19.8 mmol/mg protein vs 2.8 mmol/mg protein, P < 0.05). Improved flow dynamics and favorable ultrastructural features were also observed in HMP/O2 kidneys. There were no differences in thiobarbituric acid reactive substances and reduced glutathione levels, tissue markers of oxidative stress, between groups. CONCLUSIONS The supplementation of perfusion fluid with high-concentration oxygen (95%) results in a greater degree of aerobic metabolism versus aeration (21%) in the nonphysiological environment of HMP, with reciprocal changes in adenoside triphosphate levels.
Collapse
|
17
|
Moeckli B, Sun P, Lazeyras F, Morel P, Moll S, Pascual M, Bühler LH. Evaluation of donor kidneys prior to transplantation: an update of current and emerging methods. Transpl Int 2019; 32:459-469. [PMID: 30903673 DOI: 10.1111/tri.13430] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 03/18/2019] [Indexed: 02/06/2023]
Abstract
The lack of suitable kidney donor organs has led to rising numbers of patients with end stage renal disease waiting for kidney transplantation. Despite decades of clinical experience and research, no evaluation process that can reliably predict the outcome of an organ has yet been established. This review is an overview of current methods and emerging techniques in the field of donor kidney evaluation prior to transplantation. Established techniques like histological evaluation, clinical scores, and machine perfusion systems offer relatively reliable predictions of delayed graft function but are unable to consistently predict graft survival. Emerging techniques including molecular biomarkers, new imaging technologies, and normothermic machine perfusion offer innovative approaches toward a more global evaluation of an organ with better outcome prediction and possibly even identification of targets for therapeutic interventions prior to transplantation. These techniques should be studied in randomized controlled trials to determine whether they can be safely used in routine clinical practice to ultimately reduce the discard rate and improve graft outcomes.
Collapse
Affiliation(s)
- Beat Moeckli
- Department of Surgery and Transplantation, Zurich University Hospital, Zurich, Switzerland
| | - Pamela Sun
- Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, CIBM, Geneva University Hospital, Geneva, Switzerland
| | - Philippe Morel
- Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| | - Solange Moll
- Department of Pathology, Geneva University Hospital, Geneva, Switzerland
| | - Manuel Pascual
- Transplantation Center Lausanne, University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Léo H Bühler
- Department of Surgery, Geneva University Hospital, Geneva, Switzerland
| |
Collapse
|
18
|
Abramowicz D, Oberbauer R, Heemann U, Viklicky O, Peruzzi L, Mariat C, Crespo M, Budde K, Oniscu GC. Recent advances in kidney transplantation: a viewpoint from the Descartes advisory board. Nephrol Dial Transplant 2018; 33:1699-1707. [PMID: 29342289 PMCID: PMC6168736 DOI: 10.1093/ndt/gfx365] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023] Open
Abstract
Transplantation medicine is a rapidly evolving field. Keeping afloat of the published literature to offer the best clinical care to our patients is a daunting task. As part of its educational mission, the Descartes advisory board identified seven topics in kidney transplantation where there has been substantial progresses over the last years: kidney allocation within Eurotransplant; kidney exchange strategies; kidney machine perfusion strategies; the changing landscape of anti-human leukocyte antigen (HLA) antibodies; the new immunosuppressive drugs in the pipeline; strategies for immunosuppression minimization; and the continuous enigma of focal segmental glomerular sclerosis recurrence after transplantation. Here, we have summarized the main knowledge and the main challenges of these seven topics with the aim to provide transplant professionals at large with key bullet points to successfully understand these new concepts.
Collapse
Affiliation(s)
- Daniel Abramowicz
- Department of Nephrology, Universitair Ziekenhuis Antwerpen, Edegem, Belgium
| | - Rainer Oberbauer
- Department of Nephrology, Medical University of Vienna, Vienna, Austria
- Department of Nephrology, KH Elisabethinen, Linz, Austria
| | - Uwe Heemann
- Department of Nephrology, Klinikum Rechts der Isar, München, Germany
| | - Ondrej Viklicky
- Department of Nephrology, Institute for Clinical and Experimental Medicine, Prague 4, Czech Republic
| | - Licia Peruzzi
- Nephrology and Dialysis Department, Regina Margherita Hospital, Torino, Italy
| | - Christophe Mariat
- Department of Nephrological Intensive Care, University Jean Monnet, Saint Etienne, France
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar Barcelona, Barcelona, Spain
| | - Klemens Budde
- Department of Nephrology, Charité—Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW Machine perfusion technologies provide an opportunity for improved preservation, organ assessment, and resuscitation of damaged kidneys. This review summarizes the recent advances in hypothermic and normothermic kidney machine perfusion technologies. RECENT FINDINGS Modifications to the perfusion conditions with the addition of oxygen during hypothermic machine perfusion can support a low level of metabolism, which in experimental settings improves graft function. Normothermic machine perfusion technologies are evolving in different directions including short-duration resuscitation, more prolonged periods of perfusion, and the transition between hypothermic and normothermic conditions. Clinical trials are ongoing in both hypothermic and normothermic settings. Functional parameters can be used to assess kidney quality and although normothermic machine perfusion may hold an advantage over hypothermic machine perfusion, new metabolomic, proteomic, and genomic technologies may be applied in the future to both technologies to provide more rigorous information on kidney quality. Promoting recovery by introducing an intervention during perfusion is an attractive area of research and therapies targeting the endothelium are a particular area of interest. SUMMARY A great deal of research is still needed to optimize and logistically place hypothermic and normothermic perfusion technologies. In the future, we may progress toward organ-tailored preservation whereby high-risk kidneys can undergo assessment and repair before transplantation.
Collapse
|
20
|
Ex vivo machine perfusion for renal graft preservation. Transplant Rev (Orlando) 2017; 32:1-9. [PMID: 28483273 DOI: 10.1016/j.trre.2017.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 04/04/2017] [Accepted: 04/17/2017] [Indexed: 12/22/2022]
Abstract
Kidney transplantation is the treatment of choice for end-stage renal disease. Despite its superiority over dialysis, the persisting organ shortage remains a major drawback. Additional sources to increase the donor pool are grafts recovered from extended criteria donors (ECD) and donation after circulatory death (DCD). Although transplantation of marginal grafts demonstrates promising outcomes, increased rates of primary non-function, delayed graft function, and reduced graft survival have been reported. Cold ischemic injury, caused by static cold storage is a significant risk factor for poor outcome. Machine perfusion (MP) at various temperatures bears the potential to improve organ preservation, assessment, and repair. While hypothermic machine perfusion (HMP) is well established in clinical practice, modified HMP, subnormothermic machine perfusion (SMP), and normothermic machine perfusion (NMP) are novel emerging strategies with the potential to significantly improve the outcome of marginal kidney grafts. This review summarizes findings and recent advances from pre-clinical and clinical machine perfusion studies, organized by temperature, and discusses potential future developments for graft assessment and repair.
Collapse
|
21
|
Nuclear Magnetic Resonance Strategies for Metabolic Analysis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 965:45-76. [DOI: 10.1007/978-3-319-47656-8_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
22
|
Jochmans I, Akhtar MZ, Nasralla D, Kocabayoglu P, Boffa C, Kaisar M, Brat A, O'Callaghan J, Pengel LHM, Knight S, Ploeg RJ. Past, Present, and Future of Dynamic Kidney and Liver Preservation and Resuscitation. Am J Transplant 2016; 16:2545-55. [PMID: 26946212 DOI: 10.1111/ajt.13778] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/03/2016] [Accepted: 02/23/2016] [Indexed: 01/25/2023]
Abstract
The increased demand for organs has led to the increased usage of "higher risk" kidney and liver grafts. These grafts from donation after circulatory death or expanded criteria donors are more susceptible to preservation injury and have a higher risk of unfavorable outcomes. Dynamic, instead of static, preservation could allow for organ optimization, offering a platform for viability assessment, active organ repair and resuscitation. Ex situ machine perfusion and in situ regional perfusion in the donor are emerging as potential tools to preserve and resuscitate vulnerable grafts. Preclinical findings have ignited clinical organ preservation research that investigates dynamic preservation, its various modes (continuous, preimplantation) and temperatures (hypo-, sub, or normothermic). This review outlines the current status of dynamic preservation of kidney and liver grafts and describes ongoing research and emerging clinical trials.
Collapse
Affiliation(s)
- I Jochmans
- Abdominal Transplant Surgery, KU Leuven, University Hospitals Leuven, Leuven, Belgium
| | - M Z Akhtar
- Biomedical Research Centre and Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - D Nasralla
- Biomedical Research Centre and Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - P Kocabayoglu
- Department of General, Visceral and Transplant Surgery, University Hospital Essen, Essen, Germany
| | - C Boffa
- Biomedical Research Centre and Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - M Kaisar
- Biomedical Research Centre and Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - A Brat
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - J O'Callaghan
- Biomedical Research Centre and Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Clinical Effectiveness Unit, Centre for Evidence in Transplantation, Royal College of Surgeons of England, London, University of Oxford, Oxford, UK
| | - L H M Pengel
- Biomedical Research Centre and Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Clinical Effectiveness Unit, Centre for Evidence in Transplantation, Royal College of Surgeons of England, London, University of Oxford, Oxford, UK
| | - S Knight
- Biomedical Research Centre and Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.,Clinical Effectiveness Unit, Centre for Evidence in Transplantation, Royal College of Surgeons of England, London, University of Oxford, Oxford, UK
| | - R J Ploeg
- Biomedical Research Centre and Oxford Transplant Centre, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
23
|
Nath J, Smith T, Hollis A, Ebbs S, Canbilen SW, Tennant DA, Ready AR, Ludwig C. (13)C glucose labelling studies using 2D NMR are a useful tool for determining ex vivo whole organ metabolism during hypothermic machine perfusion of kidneys. Transplant Res 2016; 5:7. [PMID: 27499851 PMCID: PMC4974776 DOI: 10.1186/s13737-016-0037-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 07/27/2016] [Indexed: 12/02/2022] Open
Abstract
Background The aim of this study is to determine the feasibility of using nuclear magnetic resonance (NMR) tracer studies (13C-enriched glucose) to detect ex vivo de novo metabolism in the perfusion fluid and cortical tissue of porcine kidneys during hypothermic machine perfusion (HMP). Methods Porcine kidneys (n = 6) were subjected to 24 h of HMP using the Organ Recovery Systems LifePort Kidney perfusion device. Glucose, uniformly enriched with the stable isotope 13C ([U-13C] glucose), was incorporated into KPS-1-like perfusion fluid at a concentration of 10 mM. Analysis of perfusate was performed using both 1D 1H and 2D 1H,13C heteronuclear single quantum coherence (HSQC) NMR spectroscopy. The metabolic activity was then studied by quantifying the proportion of key metabolites containing 13C in both perfusate and tissue samples. Results There was significant enrichment of 13C in a number of central metabolites present in both the perfusate and tissue extracts and was most pronounced for lactate and alanine. The total amount of enriched lactate (per sample) in perfusion fluid increased during HMP (31.1 ± 12.2 nmol at 6 h vs 93.4 ± 25.6 nmol at 24 h p < 0.01). The total amount of enriched alanine increased in a similar fashion (1.73 ± 0.89 nmol at 6 h vs 6.80 ± 2.56 nmol at 24 h p < 0.05). In addition, small amounts of enriched acetate and glutamic acid were evident in some samples. Conclusions This study conclusively demonstrates that de novo metabolism occurs during HMP and highlights active metabolic pathways in this hypothermic, hypoxic environment. Whilst the majority of the 13C-enriched glucose is metabolised into glycolytic endpoint metabolites such as lactate, the presence of non-glycolytic pathway derivatives suggests that metabolism during HMP is more complex than previously thought. Isotopic labelled ex vivo organ perfusion studies using 2D NMR are feasible and informative.
Collapse
Affiliation(s)
- Jay Nath
- Department of Renal Surgery, University Hospitals Birmingham, Birmingham, UK ; Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Tom Smith
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Alex Hollis
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sam Ebbs
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Sefa W Canbilen
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Daniel A Tennant
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Andrew R Ready
- Department of Renal Surgery, University Hospitals Birmingham, Birmingham, UK
| | - Christian Ludwig
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
24
|
Should Pulsatile Preservation Be the Gold Standard in Kidney Transplantation? CURRENT TRANSPLANTATION REPORTS 2015. [DOI: 10.1007/s40472-015-0063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Abstract
PURPOSE OF REVIEW Pretransplant assessment of kidney graft viability may help clinicians to decide whether to accept or discard a kidney for transplantation. With the increasing demand for donor kidneys and the increased use of marginal kidneys, the need of viability markers has increased to pursue superior transplant outcomes. Hypothermic machine perfusion (HMP) provides the theoretical opportunity to assess the viability of donor kidneys. We discuss the novel developments in viability testing during HMP and address the future prospects. RECENT FINDINGS HMP viability testing has focused on the analysis of machine perfusion parameters and perfusate biomarkers. Renal resistance and the biomarkers lactate dehydrogenase, aspartate transaminase, glutathione-S-transferase, N-acetyl-β-D-glucosaminidase, heart-type fatty acid binding protein, lipid peroxidation products, redox-active iron and IL-18 are correlated with transplant outcome in terms of development of delayed graft function or graft survival. However, they all lack adequate predictive value for transplant outcome. New techniques including contrast-enhanced ultrasound, three-dimensional ultrasound and magnetic resonance spectrometry are promising methods to test kidney viability during HMP, but their value has to be established. The introduction of normothermic machine perfusion offers other promising opportunities for viability testing. SUMMARY Machine perfusion characteristics and perfusate biomarkers have been extensively studied. They often correlate with the transplant outcome, but the present viability tests are not reliable predictors of transplant outcome. New developments in kidney graft viability assessment are necessary to have a chance of being clinically useful in the future.
Collapse
|
26
|
Gallinat A, Lüer B, Swoboda S, Rauen U, Paul A, Minor T. Use of the new preservation solution Custodiol-N supplemented with dextran for hypothermic machine perfusion of the kidney. Cryobiology 2013; 66:131-5. [DOI: 10.1016/j.cryobiol.2012.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 01/25/2023]
|
27
|
Role of Oxygenation in Hypothermic Machine Perfusion of Kidneys From Heart Beating Donors. Transplantation 2012; 94:809-13. [DOI: 10.1097/tp.0b013e318266401c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Abstract
Improving preservation techniques to minimize injury is of particular importance in organs from marginal donors. Since the introduction of transplantation and routine use of hypothermic temperatures for kidney preservation, there has been much debate on whether it is necessary to add oxygen to support the low level of metabolism under these conditions. Supplementing the kidney with oxygen during hypothermic preservation is not common practice. However, there is evidence to support its application. Oxygen can be added by various techniques such as retrograde persufflation whereby filtered and humidified oxygen is bubbled through the vasculature; under hyperbaric conditions using specialized pressurized chambers; during hypothermic machine perfusion; with the addition of oxygen carriers; and under normothermic conditions. Evidence suggests that oxygenation is particularly beneficial in restoring cellular levels of adenosine triphosphate after kidneys have been subjected to warm or cold ischemic injury. However, under normal conditions, the benefits are less convincing, but the evidence is insufficient to draw any conclusions. This overview explores the ways in which oxygen can be administered during preservation in experimental and clinical models of kidney transplantation.
Collapse
|
29
|
Minor T, Efferz P, Lüer B. Hypothermic reconditioning by gaseous oxygen persufflation after cold storage of porcine kidneys. Cryobiology 2012; 65:41-4. [PMID: 22516034 DOI: 10.1016/j.cryobiol.2012.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 03/29/2012] [Accepted: 03/30/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Delayed graft function still represents a major complication in clinical kidney transplantation. Here we tested the possibility to improve functional outcome of cold stored kidneys a posteriori by hypothermic reconditioning using retrograde oxygen persufflation (ROP) immediately prior to reperfusion. METHODS Kidneys from female German Landrace pigs were flushed with Histidine-Tryptophan-Ketoglutarate (HTK) solution and cold-stored for 18 h (control). Some grafts were subsequently subjected to 90 min of retrograde oxygen persufflation (ROP) via the renal vein during cold preservation. Early graft function of all kidneys was assessed thereafter by warm reperfusion in vitro (n=6, resp.). RESULTS Renal function upon reperfusion was significantly enhanced by ROP with an approximately twofold increase in renal clearances of creatinine and urea. ROP also led to higher renal vascular flow rates, enhanced urine output and mitigated histological alterations. CONCLUSION It is concluded that initial graft function can be improved by 90 min of hypothermic gaseous oxygenation after arrival of the preserved organ in the transplantation clinic.
Collapse
Affiliation(s)
- Thomas Minor
- Surgical Research Division, University Clinic of Surgery, Bonn, Germany.
| | | | | |
Collapse
|