1
|
Lee J, Yang SN. Effectiveness of Extracorporeal Shock Wave Therapy after Botulinum Toxin Injection for Post-Stroke Upper Extremity Spasticity: A Randomized Controlled Study. Toxins (Basel) 2024; 16:197. [PMID: 38668622 PMCID: PMC11054781 DOI: 10.3390/toxins16040197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/29/2024] Open
Abstract
Post-stroke spasticity is a common complication that limits the functional performance of patients. Botulinum toxin (BTx) is an effective treatment for spasticity. Numerous researchers have applied extracorporeal shock wave therapy (ESWT) to address post-stroke spasticity, yielding positive clinical outcomes. We aimed to clarify the add-on effects of ESWT on BTx therapy for spasticity in patients with post-stroke. Sixteen eligible patients with upper extremity spasticity after stroke were recruited for this study. They were randomized to either a BTx with focused ESWT treatment group or a BTx alone group. Spasticity, measured using the modified Ashworth score (MAS) and modified Tardieu scale (MTS), showed statistically significant improvements in the elbow and wrist flexor muscles in both BTx + ESWT group and BTx alone groups. However, no significant differences were observed between the two groups with time flow. The BTx + ESWT group showed significantly decreased MAS of the finger flexors at follow-up and increased R1 (MTS) of the finger flexors at 3 weeks after treatment, which was not observed in the BTx alone group. This is the first study to identify the add-on effect of ESWT on BTx injections to improve post-stroke upper limb spasticity.
Collapse
Affiliation(s)
- Junhee Lee
- Department of Physical Medicine and Rehabilitation, Ewha Womans University Mokdong Hospital, 1071, Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea;
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seung Nam Yang
- Department of Physical Medicine and Rehabilitation, Korea University College of Medicine, 73, Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
de-la-Torre R, Oña ED, Victores JG, Jardón A. SpasticSim: a synthetic data generation method for upper limb spasticity modelling in neurorehabilitation. Sci Rep 2024; 14:1646. [PMID: 38238475 PMCID: PMC10796340 DOI: 10.1038/s41598-024-51993-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/11/2024] [Indexed: 01/22/2024] Open
Abstract
In neurorehabilitation, assessment of functional problems is essential to define optimal rehabilitation treatments. Usually, this assessment process requires distinguishing between impaired and non-impaired behavior of limbs. One of the common muscle motor disorders affecting limbs is spasticity, which is complicated to quantify objectively due to the complex nature of motor control. Thus, the lack of heterogeneous samples of patients constituting an acceptable amount of data is an obstacle which is relevant to understanding the behavior of spasticity and, consequently, quantifying it. In this article, we use the 3D creation suite Blender combined with the MBLab add-on to generate synthetic samples of human body models, aiming to be as sufficiently representative as possible to real human samples. Exporting these samples to OpenSim and performing four specific upper limb movements, we analyze the muscle behavior by simulating the six degrees of spasticity contemplated by the Modified Ashworth Scale (MAS). The complete dataset of patients and movements is open-source and available for future research. This approach advocates the potential to generate synthetic data for testing and validating musculoskeletal models.
Collapse
Affiliation(s)
- Rubén de-la-Torre
- Department of Systems Engineering and Automation, Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganés, 28911, Madrid, Spain
| | - Edwin Daniel Oña
- Department of Systems Engineering and Automation, Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganés, 28911, Madrid, Spain.
| | - Juan G Victores
- Department of Systems Engineering and Automation, Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganés, 28911, Madrid, Spain
| | - Alberto Jardón
- Department of Systems Engineering and Automation, Universidad Carlos III de Madrid, Avda. de la Universidad 30, Leganés, 28911, Madrid, Spain
| |
Collapse
|
3
|
Wang H, Zhang C, Zhu S, Gao C, Gao Q, Huang R, Liu S, Wei X, Zhang H, Wei Q, He C. Low-frequency whole-body vibration can enhance cartilage degradation with slight changes in subchondral bone in mice with knee osteoarthritis and does not have any morphologic effect on normal joints. PLoS One 2023; 18:e0270074. [PMID: 37590222 PMCID: PMC10434961 DOI: 10.1371/journal.pone.0270074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/20/2023] [Indexed: 08/19/2023] Open
Abstract
PURPOSES To evaluate the effects of low frequency whole-body vibration (WBV) on degeneration of articular cartilage and subchondral bone in mice with destabilization of the medial meniscus (DMM)induced osteoarthritis(OA) and mice with normal knee. METHODS Ten-week-old C57BL/6J male mice received DMM on right knees, while the left knees performed sham operation. There were six groups: DMM, SHAM DMM, DMM+WBV,SHAM DMM+WBV, DMM+ NON-WBV and SHAM DMM+NON-WBV. After four weeks, the knees were harvested from the DMM and SHAM DMM group. The remaining groups were treated with WBV (10 Hz) or NON-WBV. Four weeks later, the knees were harvested. Genes, containing Aggrecan(Acan) and CollagenⅡ(Col2a1), Matrix Metalloproteinases 3 and 13(MMP3,13), TNFα and IL6, were measured and staining was also performed. OA was graded with OARSI scores, and tibial plateaubone volume to tissue volume ratio(BV/TV), bone surface area to bone volume ratio (BS/BV), trabecular number(Tb.N) and trabecular thickness separation(TS) between groups were analyzed. RESULTS Increased OARSI scores and cartilage degradation were observed after WBV. BV/TV, Tb.N and TS were not significant between the groups. Significant reductions were observed in MMP3, MMP13, Col2a1, Acan, TNFα and IL6 in the DMM+WBV compared to SHAM DMM+WBV group. BV/TV, BS/BV, Tb.N, TS and OARSI scores were not significantly changed in the left knees. IL6 expression in the SHAM DMM+WBV group was significantly increased compared with the SHAM DMM+ NON-WBV group, while Col2a1, Acan and MMP13 expression decreased. CONCLUSION WBV accelerated cartilage degeneration and caused slight changes in subchondral bone in a DMM-induced OA model. WBV had no morphologic effect on normal joints.
Collapse
Affiliation(s)
- Haiming Wang
- Rehabilitation Medicine Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Center of Rehabilitation Engineering Technology Research, Henan Province, Zhengzhou, Henan, China
| | - Chi Zhang
- Rehabilitation Medicine Department, The Affiliated Hospital Of Southwest Medical University, Luzhou, Sichuan, China
- Department of Rehabilitation Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Siyi Zhu
- Rehabilitation Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Rehabilitation Medicine Key Laboratory of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Chengfei Gao
- Rehabilitation Medicine Department, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Qiang Gao
- Rehabilitation Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Rehabilitation Medicine Key Laboratory of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Ridong Huang
- Department of Respiratory and Critical Care Medicine, Targeted Tracer Research and Development Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sijia Liu
- Rehabilitation Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Rehabilitation Medicine Key Laboratory of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Xiangyang Wei
- Rehabilitation Medicine Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Center of Rehabilitation Engineering Technology Research, Henan Province, Zhengzhou, Henan, China
| | - Huakai Zhang
- Medical College of Zhengzhou University of Industrial technology, Zhengzhou, Henan, China
| | - Quan Wei
- Rehabilitation Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Rehabilitation Medicine Key Laboratory of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| | - Chengqi He
- Rehabilitation Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Rehabilitation Medicine Key Laboratory of Sichuan Province, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Howard IM, Patel AT. Spasticity evaluation and management tools. Muscle Nerve 2023; 67:272-283. [PMID: 36807901 DOI: 10.1002/mus.27792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/21/2023]
Abstract
Spasticity is a complex and often disabling symptom for patients with upper motor neuron syndromes. Although spasticity arises from neurological disease, it often cascades into muscle and soft tissue changes, which may exacerbate symptoms and further hamper function. Effective management therefore hinges on early recognition and treatment. To this end, the definition of spasticity has expanded over time to more accurately reflect the spectrum of symptoms experienced by persons with this disorder. Once identified, clinical and research quantitative assessments of spasticity are hindered by the uniqueness of presentations both for individuals and for specific neurological diagnoses. Objective measures in isolation often fail to reflect the complex functional impact of spasticity. Multiple tools exist to quantitatively or qualitatively assess the severity of spasticity, including clinician and patient-reported measures as well as electrodiagnostic, mechanical, and ultrasound measures. A combination of objective and patient-reported outcomes is likely required to better reflect the burden of spasticity symptoms in an individual. Therapeutic options exist for the treatment of spasticity along a broad spectrum from nonpharmacologic to interventional procedures. Treatment strategies may include exercise, physical agent modalities, oral medications, injections, pumps, and surgery. Optimal spasticity management most often requires a multimodal approach, combining pharmacological management with interventions that match the functional needs, goals, and preferences of the patient. Physicians and other healthcare providers who manage spasticity must be familiarized with the full array of spasticity interventions and must frequently reassess results of treatment to ensure the patient's goals of treatment are met.
Collapse
Affiliation(s)
- Ileana M Howard
- Rehabilitation Care Services, Veterans Affairs Sound, Seattle, Washington, DC, USA
- Department of Rehabilitation Medicine, University of Washington, Seattle, Washington, USA
| | - Atul T Patel
- Kansas Institute of Research, Overland Park, Kansas, USA
- Research Associate Professor, School of Medicine, University of Missouri Kansas City, Kansas City, Missouri, USA
| |
Collapse
|
5
|
Zhang Q, Zheng S, Li S, Zeng Y, Chen L, Li G, Li S, He L, Chen S, Zheng X, Zou J, Zeng Q. Efficacy and safety of whole-body vibration therapy for post-stroke spasticity: A systematic review and meta-analysis. Front Neurol 2023; 14:1074922. [PMID: 36779051 PMCID: PMC9909105 DOI: 10.3389/fneur.2023.1074922] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Background One of the main objectives of stroke rehabilitation is to alleviate post-stroke spasticity. Over the recent years, many studies have explored the potential benefits of whole-body vibration (WBV) treatment for post-stroke spasticity, but it is still controversial. Objective The current study aims to assess the efficacy and safety of WBV for post-stroke spasticity and determine the appropriate application situation. Methods From their establishment until August 2022, the following databases were searched: PubMed, Web of Science, Embase, Cochrane Central Register of Controlled Trials (CENTRAL), Medline, China National Knowledge Infrastructure (CNKI), and Wanfang. Only randomized controlled trials (RCTs) that were published in either English or Chinese were taken into consideration. We independently filtered the research, gathered the data from the studies, and evaluated the research quality (Cochrane RoB tool) and the overall evidence quality (GRADE). Rev Man 5.4 software was utilized to conduct statistical analysis. Results In this analysis, 11 RCTs with 475 patients that reported on the effectiveness of WBV therapy for post-stroke spasticity were taken into account. Compared to the control groups, the results revealed that WBV combined with conventional rehabilitation at a vibration frequency lower than 20 Hz (SMD = -0.58, 95% CI: -0.98 to -0.19, P = 0.004) was more effective in relieving upper (SMD = -0.53, 95% CI: -1.04 to 0.03, P = 0.03) and lower limb spasticity (SMD = -0.21, 95% CI: -0.40 to -0.01, P = 0.04); similarly, it was superior for patients aged under 60 years (SMD = -0.41, 95% CI: -0.66 to -0.17, P = 0.0008) with acute and subacute stroke (SMD = -0.39, 95% CI: -0.68 to -0.09, P = 0.01). The valid vibration for reducing spasticity was found to last for 10 min (SMD = -0.41, 95% CI: -0.75 to -0.07, P = 0.02). None of the included studies revealed any serious adverse impact. Conclusion Moderate-quality evidence demonstrated when WBV was used as an adjuvant, vibration <20 Hz for 10 min was effective and secure in treating upper and lower limb spasticity in patients with acute and subacute stroke under the age of 60 years. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42022293951.
Collapse
Affiliation(s)
- Qi Zhang
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China,Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqi Zheng
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China,Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuiyan Li
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China,Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yuting Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Chen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Gege Li
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China,Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shilin Li
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China,Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Longlong He
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China,Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuping Chen
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China,Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoyan Zheng
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Xiaoyan Zheng ✉
| | - Jihua Zou
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China,Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China,Faculty of Health and Social Sciences, The Hong Kong Polytechnic University, Hong Kong, China,Jihua Zou ✉
| | - Qing Zeng
- School of Rehabilitation Sciences, Southern Medical University, Guangzhou, China,Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China,Qing Zeng ✉
| |
Collapse
|
6
|
Analysis of Vibration Frequency and Direction for Facilitating Upper-Limb Muscle Activity. BIOLOGY 2022; 12:biology12010048. [PMID: 36671741 PMCID: PMC9855852 DOI: 10.3390/biology12010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
We aimed to determine the effect of vibration frequency and direction on upper-limb muscle activation using a handheld vibrator. We recruited 19 healthy participants who were instructed to hold a handheld vibrator in their dominant hand and maintain the elbow at 90° flexion, while vertical and horizontal vibrations were applied with frequencies of 15, 30, 45, and 60 Hz for 60 s each. Surface electromyography (EMG) measured the activities of the flexor digitorum superficialis (FDS), flexor carpi radialis (FCR), extensor carpi ulnaris (ECU), extensor carpi radialis (ECR), biceps, triceps, and deltoid anterior muscles. EMG changes were evaluated as the difference in muscle activity between vibration and no-vibration (0 Hz) conditions. Muscle activity was induced under vibration conditions in both vertical and horizontal (p < 0.05) directions. At 45 Hz, FDS and FCR activities increased during horizontal vibrations, compared with those during vertical vibrations. ECU activity significantly increased under 15-Hz vertical vibrations compared with that during horizontal vibrations. Vibrations from the handheld vibrator significantly induced upper-limb muscle activity. The maximum muscle activations for FDS, ECR, ECU, biceps, and triceps were induced by 45-Hz horizontal vibration. The 60-Hz vertical and 30-Hz horizontal vibrations facilitated maximum muscle activations for the FCR and deltoid anterior, respectively.
Collapse
|
7
|
Moggio L, de Sire A, Marotta N, Demeco A, Ammendolia A. Vibration therapy role in neurological diseases rehabilitation: an umbrella review of systematic reviews. Disabil Rehabil 2022; 44:5741-5749. [PMID: 34225557 DOI: 10.1080/09638288.2021.1946175] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 05/17/2021] [Accepted: 06/14/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE To summarize the findings and evaluate the role of vibratory therapy in the rehabilitation of neurological diseases. METHODS We systematically research PubMed, Scopus, Embase, Physiotherapy Evidence Database (PEDro), Web of Science, and Cochrane library databases from the inception until November 2020. We included studies that compared whole-body vibration (WBV) or focal muscle vibration (FMV) with placebo, sham, or another form of exercise in neurological disease rehabilitation in children and adults that result in motor impairments and disability. RESULTS We included 16 systematic reviews with good methodological quality evaluated using the Joanna Briggs Institute Umbrella Review Assessment and Review of Information appraisal tool. In stroke patients, WBV appears to play a role in improving gait and balance, while FMV is more effective in reducing spasticity. In multiple sclerosis and cerebral palsy, no evidence suggested that vibration therapy increases some patient outcomes. CONCLUSION WBV and FMV appear to play a considerable role in reducing spasticity and improving gait, balance, and motor function in stroke patients. By contrast, vibration therapy seems to be unable to reduce spasticity in multiple sclerosis and cerebral palsy. Also, correct use parameters for this therapy could not be defined.IMPLICATIONS FOR REHABILITATIONBased on the growing number of systematic reviews, this umbrella review aimed to summarize the findings and evaluate the role of vibration therapy in the rehabilitation of neurological diseases.Whole-body vibration and focal muscle vibration appear to play a considerable role in reducing spasticity and improving gait, balance, and motor function in patients affected by stroke.Focal muscle vibration appears to be more useful if applied to non-spastic antagonist muscles with reciprocal inhibitory action on spastic muscles in subjects affected by stroke.Vibration therapy seems not to be able to reduce spasticity in multiple sclerosis and cerebral palsy.
Collapse
Affiliation(s)
- Lucrezia Moggio
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Alessandro de Sire
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Nicola Marotta
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Andrea Demeco
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| | - Antonio Ammendolia
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Catanzaro, Italy
| |
Collapse
|
8
|
Tan J, Wu X, Clark CCT, Barton V, Chen S, Liu S, Zhou X, Xu C, Ma T, Qi B, Han J, Zou Y. The effect of whole body vibration on sensorimotor deficits in people with chronic ankle instability: A systematic review and meta-analysis. Clin Rehabil 2022; 36:1016-1031. [PMID: 35535548 DOI: 10.1177/02692155221095651] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To investigate the effects of whole body vibration on chronic ankle instability-associated sensorimotor deficits in balance, strength, joint position sense and muscle activity. DATA SOURCES Electronic databases including Cochrane Library, PubMed, Embase, Web of Science, EBSCO, China National Knowledge Infrastructure and WanFang were searched from database inception up to 31 March 2022. METHODS The risk of bias and methodological quality of included studies were assessed using the Cochrane tool and Physiotherapy Evidence Database (PEDro) scale respectively. Standardized mean difference (SMD) and mean differences (MD) with 95% confidence interval (CI) were calculated using the RevMan 5.3 software. Meta-regression was conducted with Stata 16. RESULTS Eight studies, with 315 subjects were eventually included in this review with an average PEDro score of 6.1/10. Significant effects of whole body vibration on balance (SMD = 0.61, 95% CI: 0.12 to 1.09, P = 0.01), and on the posterolateral direction (MD = 5.52, 95% CI: 1.02 to 10.01, P = 0.02) and medial direction (MD = 3.90, 95% CI: 0.87 to 6.94, P = 0.01) of the star excursion balance test were found. Whole body vibration significantly improved the peak torque (SMD = 0.36, 95% CI: 0.04 to 0.69, P = 0.03), joint position sense (SMD = 0.60, 95% CI: 0.10 to 1.11, P = 0.02), and muscle activity in tibialis anterior (SMD = 0.46, 95% CI: 0.04 to 0.88, P = 0.03) and gastrocnemius (SMD = 0.68, 95% CI: 0.14 to 1.23, P = 0.01). CONCLUSIONS The current evidence supports the use of whole body vibration to improve sensorimotor deficits involving balance, strength, joint position sense, and muscle activity in people with chronic ankle instability.
Collapse
Affiliation(s)
- Jingwang Tan
- Department of Sport and Exercise Science, College of Education, 12377Zhejiang University, Hangzhou, China
| | - Xueping Wu
- School of Physical Education and Training, 66315Shanghai University of Sport, Shanghai, China
| | - Cain C T Clark
- Research Institute of Health and Well-being, 2706Coventry University, Coventry, UK
| | - Victoria Barton
- Research Institute of Health and Well-being, 2706Coventry University, Coventry, UK
| | - Sitong Chen
- Institute for Health and Sport, 5399Victoria University, Melbourne, Australia
| | - Shijie Liu
- School of Physical Education and Training, 66315Shanghai University of Sport, Shanghai, China
| | - Xuan Zhou
- School of Physical Education, 34747Shanghai University, Shanghai, China
| | - Chunxin Xu
- Three Dimensional Gait Analysis Lab of 435846Yangzhi Rehabilitation Affiliated to Tongji University, Shanghai, China
| | - Tao Ma
- School of Physical Education and Training, 66315Shanghai University of Sport, Shanghai, China
| | - Bote Qi
- Department of Sport and Exercise Science, College of Education, 12377Zhejiang University, Hangzhou, China
| | - Jia Han
- College of Rehabilitation Sciences, 34747Shanghai University of Medicine and Health Sciences, Shanghai, China.,Research Institute for Sport and Exercise, 2234University of Canberra, Canberra, Australia.,Faculty of Health, Arts and Design, 3783Swinburne University of Technology, Canberra, Australia
| | - Yu Zou
- Department of Sport and Exercise Science, College of Education, 12377Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Abu Omar AJ, Al Baradie MS, Al Dera H, Vannabouathong C, Bartel L. Management of pain due to cervical multilevel disk bulges and spinal stenosis with a focused vibro-percussion wave treatment: A case report. Clin Case Rep 2022; 10:e05344. [PMID: 35387283 PMCID: PMC8978778 DOI: 10.1002/ccr3.5344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 11/08/2022] Open
Abstract
A patient presenting with low back pain received 18 treatments of FDA-approved low-frequency vibro-percussion wave stimulation known as Khan Kinetic Treatment (KKT). Following KKT, he demonstrated improvement in pain, function, quality of life, sleep, and trunk range of motion with no adverse events.
Collapse
Affiliation(s)
| | | | - Hussain Al Dera
- KKT Orthopedic Spine CenterRiyadhKingdom of Saudi Arabia
- Department of Basic Medical SciencesCollege of Medicine at King SaudAbdulaziz University for Health Sciences (KSAU‐HS)RiyadhKingdom of Saudi Arabia
- King Abdullah International Medical Research Center (KAIMRC)RiyadhKingdom of Saudi Arabia
| | | | - Lee Bartel
- Research DepartmentNeuro Spinal InnovationsMississaugaOntarioCanada
- University of TorontoTorontoOntarioCanada
| |
Collapse
|
10
|
Ruhde L, Hulla R. An overview of the effects of whole-body vibration on individuals with cerebral palsy. J Pediatr Rehabil Med 2022; 15:193-210. [PMID: 35275570 DOI: 10.3233/prm-201508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The purpose of this review is to examine how whole-body vibration can be used as a tool in therapy to help improve common physical weaknesses in balance, bone density, gait, spasticity, and strength experienced by individuals with cerebral palsy. Cerebral palsy is the most common movement disorder in children, and whole-body vibration is quickly becoming a potential therapeutic tool with some advantages compared to traditional therapies for individuals with movement disorders. The advantages of whole-body vibration include less strain and risk of injury, more passive training activity, and reduced time to complete an effective therapeutic session, all of which are appealing for populations with physiological impairments that cause physical weakness, including individuals with cerebral palsy. This review involves a brief overview of cerebral palsy, whole-body vibration's influence on physical performance measures, its influence on physical performance in individuals with cerebral palsy, and then discusses the future directions of whole-body vibration therapy in the cerebral palsy population.
Collapse
Affiliation(s)
- Logan Ruhde
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX, USA
| | - Ryan Hulla
- Department of Psychology, University of Texas at Arlington, Arlington, TX, USA
| |
Collapse
|
11
|
Escaldi S, Bianchi F, Bavikatte G, Molteni F, Moraleda S, Deltombe T, Francisco G. Module 1: Pathophysiology and assessment of spasticity; Goal setting. THE JOURNAL OF THE INTERNATIONAL SOCIETY OF PHYSICAL AND REHABILITATION MEDICINE 2022. [DOI: 10.4103/2349-7904.347807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
12
|
Odano I, Maeyatsu F, Asari M, Yamaguchi S, Miura T, Taki Y. Whole-body vibration exercise and training increase regional CBF in mild cognitive impairment with enhanced cognitive function. Ann Nucl Med 2022; 36:82-94. [PMID: 34762232 DOI: 10.1007/s12149-021-01687-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/17/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Preclinical and non-medicinal interventions are essential for preventing and treating cognitive decline in patients with mild cognitive impairment (MCI). Whole-body vibration (WBV) exercise is conducted on a platform that generates vertical sinusoidal vibrations, and WBV training may improve regional cerebral blood flow (rCBF) and cognitive function, however, the underlying mechanism remains unclear. The aim of the present study was to investigate whether WBV exercise and a 24-week WBV training protocol increased rCBF and enhanced cognitive function in patients with amnestic MCI (aMCI). METHODS [99mTc]-ECD and SPECT studies were performed on 16 aMCI patients at baseline, during WBV exercise, and on 6 of the 16 patients after 24-week WBV training. To diagnose SPECT images and select the patients, a Z-score mapping approach was used, which revealed pathological hypoperfusion in the parietal association cortex, precuneus and/or posterior cingulate gyrus for MCI at baseline. rCBF was semi-quantitatively measured and underestimation in the high flow range was corrected. Since it is difficult to quantitatively measure rCBF during WBV exercise, the rCBFratio was obtained by standardizing with the average of individual mean SPECT counts with correcting underestimation in the high flow range. The rCBFratios at baseline and after WBV training were also obtained in a similar manner. Since the changes in rCBF were regarded as corresponding to the changes in rCBFratio, the ratios were compared. Cognitive function was also evaluated and compared. RESULTS We found that the rCBFratio changed with an average range of 11.5% during WBV exercise, and similar changes were observed after 24-week WBV training with a 13.0% change, resulting in improved cognitive function (MoCA-J, P = 0.028). The rCBFratio increased in the parietal association cortex and occipital lobes, including the precuneus and posterior cingulate gyrus, at which hypoperfusion was detected at baseline, but decreased in the frontal lobe and anterior cingulate gyrus. The rCBFratio increased on the right side of several motion-suppressive nuclei by WBV exercise; the bilateral red nuclei and right medial globus pallidus by WBV training. CONCLUSION WBV exercise and training increase rCBF in aMCI patients, and WBV training enhances cognitive function and may increase the cognitive reserve. Further investigation is necessary.
Collapse
Affiliation(s)
- Ikuo Odano
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan.
- Department of Neurology and Radiology, Miyagi Koseikyokai, Izumi Hospital, Sendai, Japan.
| | - Fumio Maeyatsu
- Department of Neurology and Radiology, Miyagi Koseikyokai, Izumi Hospital, Sendai, Japan
| | - Mami Asari
- Department of Neurology and Radiology, Miyagi Koseikyokai, Izumi Hospital, Sendai, Japan
| | - Sayaka Yamaguchi
- Department of Neurology and Radiology, Miyagi Koseikyokai, Izumi Hospital, Sendai, Japan
| | - Tsukasa Miura
- Department of Neurology and Radiology, Miyagi Koseikyokai, Izumi Hospital, Sendai, Japan
| | - Yasuyuki Taki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, 4-1 Seiryo-cho, Aoba-ku, Sendai, 980-8575, Japan
| |
Collapse
|
13
|
Mihai EE, Mihai IV, Berteanu M. Effectiveness of Radial Extracorporeal Shock Wave Therapy and Visual Feedback Balance Training on Lower Limb Post-Stroke Spasticity, Trunk Performance, and Balance: A Randomized Controlled Trial. J Clin Med 2021; 11:jcm11010147. [PMID: 35011889 PMCID: PMC8745149 DOI: 10.3390/jcm11010147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/18/2022] Open
Abstract
Stroke remains one of the leading causes of disability in adults, and lower limb spasticity, affected stance, and balance impact everyday life and activities of such patients. Robotic therapy and assessment are becoming important tools to clinical evaluation for post-stroke rehabilitation. The aim of this study was to determine in a more objective manner the effects of visual feedback balance training through a balance trainer system and radial extracorporeal shock wave therapy (rESWT), along with conventional physiotherapy, on lower limb post-stroke spasticity, trunk control, and static and dynamic balance through clinical and stabilometric assessment. The study was designed as a randomized controlled trial. The experimental group underwent conventional physiotherapy, visual feedback balance training, and rESWT. The control group underwent conventional physiotherapy, visual feedback training and sham rESWT. The statistical analysis was performed using GraphPad Software and MATLAB. Primary clinical outcome measures were The Modified Ashworth Scale (MAS), passive range of motion (PROM), Visual Analogue Scale (VAS), and Clonus score. Secondary outcome measures were trunk performance, sensorimotor, and lower limb function. Stabilometric outcome measures were trunk control, static balance, and dynamic balance. Visual feedback training using the Prokin system and rESWT intervention, along with conventional physiotherapy, yielded statistically significant improvement both on clinical and stabilometric outcome measures, enhancing static and dynamic balance, trunk performance, sensorimotor outcome, and limb function and considerably diminishing lower limb spasticity, pain intensity, and clonus score in the experimental group.
Collapse
Affiliation(s)
- Emanuela Elena Mihai
- Physical and Rehabilitation Medicine Department, Carol Davila University of Medicine and Pharmacy Bucharest, 050451 Bucharest, Romania; (E.E.M.); (M.B.)
| | - Ilie Valentin Mihai
- Department of Telecommunications, University Politehnica of Bucharest, 060042 Bucharest, Romania
- Correspondence:
| | - Mihai Berteanu
- Physical and Rehabilitation Medicine Department, Carol Davila University of Medicine and Pharmacy Bucharest, 050451 Bucharest, Romania; (E.E.M.); (M.B.)
- Physical and Rehabilitation Medicine Department, Elias University Emergency Hospital, 011461 Bucharest, Romania
| |
Collapse
|
14
|
Miyara K, Etoh S, Kawamura K, Maruyama A, Kuronita T, Ohwatashi A, Shimodozono M. Effects of lower limb segmental muscle vibration on primary motor cortex short-latency intracortical inhibition and spinal excitability in healthy humans. Exp Brain Res 2021; 240:311-320. [PMID: 34724095 DOI: 10.1007/s00221-021-06257-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 10/23/2021] [Indexed: 12/19/2022]
Abstract
We examined the effects of lower limb segmental muscle vibration (SMV) on intracortical and spinal excitability in 13 healthy participants (mean age: 34.9 ± 7.8 years, 12 males, 1 female). SMV at 30 Hz was applied to the hamstrings, gastrocnemius, and soleus muscles for 5 min. Paired-pulse transcranial magnetic stimulation protocols were used to investigate motor-evoked potential (MEP) amplitude, short-interval intracortical inhibition (SICI) and short-interval intracortical facilitation (SICF) from the abductor hallucis muscle (AbdH). These assessments were compared to the results of a control experiment (i.e., non-vibration) in the same participants. F-waves were evaluated from the AbdH on the right (vibration side) and left (non-vibration side) sides, and we calculated the ratio of the F-wave amplitude to the M-response amplitude (F/M ratio). These assessments were obtained before, immediately after, and 10, 20, and 30 min after SMV. For SICI, there was no change immediately after SMV, but there was a decrease over time (before vs. 30 min after, p = 0.021; immediately after vs. 30 min after, p = 0.015). There were no changes in test MEP amplitude, SICF, or the F/M ratio. SMV causes a gradual decrease in SICI over time perhaps owing to long-term potentiation. The present results may have implications for the treatment of spasticity.
Collapse
Affiliation(s)
- Kodai Miyara
- Department of Rehabilitation, Kagoshima University Hospital, 8-35-1, Sakuragaoka, Kagoshima-city, Kagoshima, 890-8520, Japan. .,Doctoral Program, Graduate School of Health Sciences, Kagoshima University, Kagoshima, Japan.
| | - Seiji Etoh
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Kentaro Kawamura
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Atsuo Maruyama
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Takehiro Kuronita
- Master's Program, Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Akihiko Ohwatashi
- Faculty of Medicine, Course of Physical Therapy, School of Health Sciences, Kagoshima University, Kagoshima, Japan
| | - Megumi Shimodozono
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
15
|
Song W, Yang Y. The effect of whole-body vibration training with different amplitudes on bone mineral density in elderly women. ISOKINET EXERC SCI 2021. [DOI: 10.3233/ies-200271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: The effects of whole-body vibration training (WBVT) with same frequency and different amplitudes on bone mineral density (BMD) in the elderly is not reported. OBJECTIVE: To compare the effect of 45-Hz WBVT with different amplitudes on the BMD in elderly women. METHODS: Age-, height-, and weight-matched patients were assigned to a low-amplitude group (n= 19, amplitude of 2 mm), medium-amplitude group (n= 18, amplitude of 3 mm), high-amplitude group (n= 19, amplitude 4 mm), and control group (n= 20). The WBVT was conducted for 24 weeks in the three amplitude groups. The BMD at lumbar vertebrae L2-4 and the proximal femur was measured at 0 and 24 weeks. RESULTS: The BMD at lumbar vertebrae L2-4 was higher in the high-amplitude group than in the low-amplitude and middle-amplitude groups, and the BMD of the greater trochanter was significantly higher than that in the low-amplitude group (p< 0.05). The BMD of the greater trochanter was significantly higher in the middle- than low-amplitude group (p< 0.05). CONCLUSION: A higher amplitude should be considered when WBVT is performed in elderly patients to increase bone density and prevent osteoporosis.
Collapse
|
16
|
Cheng L, Xu H, He B, Zhou J. Effect of the frequency of weight-free vibration training on the isokinetic strength of knee muscles in juvenile football players. ISOKINET EXERC SCI 2021. [DOI: 10.3233/ies-210177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND: Vibration training can affect strength improvement. However, the role of the vibration frequency, in terms of knee muscle strength, is unclear. OBJECTIVE: To evaluate the effect of vibration training with the same amplitude and different frequencies on the isokinetic muscle strength of the knee in juvenile football players. METHODS: Juvenile football players were divided into four groups: low frequency (n= 13, 25 Hz), medium frequency (n= 14, 40 Hz), high frequency (n= 14, 50 Hz), and control (n= 13). The frequency groups completed 12 weeks of weight-free vibration training (three times/week) with the same amplitude (3 mm) but different frequency. RESULTS: Compared with baseline, the peak extension torque of the knee at 60∘/s and 240∘/s increased by 8.4% and 12.9%, respectively, in the medium-frequency group, and by 8.9% and 15.5%, respectively, in the high-frequency group. The extensor endurance (the ability of joint muscle groups to maintain a force output over time) of the knee in the high-frequency group increased by 4.3%. At 12 weeks, the high-frequency group had greater knee extensor endurance than the low- and medium-frequency groups. CONCLUSION: In juvenile football players, weight-free vibration training at 40 Hz and 50 Hz improves peak torque of the knee extensors at 60∘/s and 240∘/s, while training at 50 Hz improves endurance of the knee extensors.
Collapse
Affiliation(s)
- Liang Cheng
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Hanxiao Xu
- College of Physical Education, Chengdu University of TCM, Chengdu, Sichuan, China
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Benxiang He
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan, China
| | - Jianan Zhou
- Dean’s Office, Sichuan Sports College, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Zago M, Luzzago M, Marangoni T, De Cecco M, Tarabini M, Galli M. 3D Tracking of Human Motion Using Visual Skeletonization and Stereoscopic Vision. Front Bioeng Biotechnol 2020; 8:181. [PMID: 32195243 PMCID: PMC7066370 DOI: 10.3389/fbioe.2020.00181] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/24/2020] [Indexed: 11/24/2022] Open
Abstract
The design of markerless systems to reconstruct human motion in a timely, unobtrusive and externally valid manner is still an open challenge. Artificial intelligence algorithms based on automatic landmarks identification on video images opened to a new approach, potentially e-viable with low-cost hardware. OpenPose is a library that t using a two-branch convolutional neural network allows for the recognition of skeletons in the scene. Although OpenPose-based solutions are spreading, their metrological performances relative to video setup are still largely unexplored. This paper aimed at validating a two-cameras OpenPose-based markerless system for gait analysis, considering its accuracy relative to three factors: cameras' relative distance, gait direction and video resolution. Two volunteers performed a walking test within a gait analysis laboratory. A marker-based optical motion capture system was taken as a reference. Procedures involved: calibration of the stereoscopic system; acquisition of video recordings, simultaneously with the reference marker-based system; video processing within OpenPose to extract the subject's skeleton; videos synchronization; triangulation of the skeletons in the two videos to obtain the 3D coordinates of the joints. Two set of parameters were considered for the accuracy assessment: errors in trajectory reconstruction and error in selected gait space-temporal parameters (step length, swing and stance time). The lowest error in trajectories (~20 mm) was obtained with cameras 1.8 m apart, highest resolution and straight gait, and the highest (~60 mm) with the 1.0 m, low resolution and diagonal gait configuration. The OpenPose-based system tended to underestimate step length of about 1.5 cm, while no systematic biases were found for swing/stance time. Step length significantly changed according to gait direction (p = 0.008), camera distance (p = 0.020), and resolution (p < 0.001). Among stance and swing times, the lowest errors (0.02 and 0.05 s for stance and swing, respectively) were obtained with the 1 m, highest resolution and straight gait configuration. These findings confirm the feasibility of tracking kinematics and gait parameters of a single subject in a 3D space using two low-cost webcams and the OpenPose engine. In particular, the maximization of cameras distance and video resolution enabled to achieve the highest metrological performances.
Collapse
Affiliation(s)
- Matteo Zago
- Department of Electronics, Information and Bioengineering, Polytechnic of Milan, Milan, Italy
| | - Matteo Luzzago
- Department of Mechanical Engineering, Polytechnic of Milan, Milan, Italy
| | - Tommaso Marangoni
- Department of Mechanical Engineering, Polytechnic of Milan, Milan, Italy
| | - Mariolino De Cecco
- Department of Industrial Engineering, University of Trento, Trento, Italy
| | - Marco Tarabini
- Department of Mechanical Engineering, Polytechnic of Milan, Milan, Italy
| | - Manuela Galli
- Department of Electronics, Information and Bioengineering, Polytechnic of Milan, Milan, Italy
| |
Collapse
|
18
|
Huang M, Miller T, Ying M, Pang MYC. Whole-body vibration modulates leg muscle reflex and blood perfusion among people with chronic stroke: a randomized controlled crossover trial. Sci Rep 2020; 10:1473. [PMID: 32001783 PMCID: PMC6992671 DOI: 10.1038/s41598-020-58479-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/13/2020] [Indexed: 01/06/2023] Open
Abstract
This study aimed to investigate the acute effect of whole-body vibration (WBV) on the reflex and non-reflex components of spastic hypertonia and intramuscular blood perfusion among individuals with chronic stroke. Thirty-six people with chronic stroke (age: 61.4 ± 6.9 years) participated in this randomized controlled cross-over study. Each participant underwent two testing conditions: static standing for 5 minutes with WBV (30 Hz, 1.5 mm) or no-vibration. We assessed the soleus H-reflex, shear modulus (ultrasound elastography) and vascular index (color power Doppler ultrasound) of the medial gastrocnemius (MG) muscle on either paretic or non-paretic side at baseline and every 1-min post-intervention up to 5 minutes. The results revealed a significant inhibition of the H/M ratio bilaterally for the WBV condition (absolute change on paretic side: 0.61 ± 0.35, p = 0.001; non-paretic side: 0.34 ± 0.23, p = 0.001), but not the control condition. The inhibition of H-reflex was sustained up to 4 minutes and 3 minutes on the paretic and non-paretic side, respectively. The vascular index of MG muscle was significantly increased only for the WBV condition [paretic: from 0.55 ± 0.07 to 1.08 ± 0.18 (p = 0.001); non-paretic: from 0.82 ± 0.09 to 1.01 ± 0.13 (p < 0.001)], which lasted for 3 minutes and 5 minutes, respectively. No significant change of the shear modulus in the MG muscle was observed, regardless of the testing condition. Based on our results, WBV had an acute effect on modulating spastic hypertonia dominated by hyperreflexia in people with chronic stroke and facilitating greater intramuscular blood perfusion. No acute effect on passive muscle stiffness was observed.
Collapse
Affiliation(s)
- Meizhen Huang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong.,Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Maryland, United States
| | - Tiev Miller
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Michael Ying
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Marco Y C Pang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| |
Collapse
|
19
|
Kantor J, Kantorová L, Marečková J, Peng D, Vilímek Z. Potential of Vibroacoustic Therapy in Persons with Cerebral Palsy: An Advanced Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3940. [PMID: 31623221 PMCID: PMC6843730 DOI: 10.3390/ijerph16203940] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 11/17/2022]
Abstract
Vibroacoustic therapy (VAT) is a treatment method that uses sinusoidal low-frequency sound and music. The purpose of this narrative review is to describe the effects of VAT on motor function in people with spastic cerebral palsy (CP) according to study design as well as providing information about the age of the participants, measurement tools, and sound frequencies that were used. The systematic search strategy based on the first two steps of a standard evidence-based approach were used: (1) formulation of a search question and (2) structured documented search including assessment of the relevance of abstracts and full texts to the search question and inclusion criteria. Out of 823 results of the search in 13 scholarly databases and 2 grey literature sources, 7 papers were relevant. Most of the relevant studies in children and adults presented significant improvement of motor function. According to the study design, only five experimental studies and two randomized controlled trial (RCT) studies were available. In the discussion, findings of this review are compared to other related methods that use mechanical vibrations without music. The authors recommend continuing to research the effects of VAT on motor function and spasticity in adolescents and young adults with spastic CP.
Collapse
Affiliation(s)
- Jiří Kantor
- Institute of Special Education Studies, Faculty of Education, Palacky University Olomouc, Žižkovo nám. 5, 77900 Olomouc, Czech Republic.
| | - Lucia Kantorová
- Institute of Special Education Studies, Faculty of Education, Palacky University Olomouc, Žižkovo nám. 5, 77900 Olomouc, Czech Republic.
| | - Jana Marečková
- Department of Anthropology and Health Education, Faculty of Education, Palacky University Olomouc, Žižkovo nám. 5, 77900 Olomouc, Czech Republic.
| | - Danping Peng
- Institute of Education and Social Studies, Faculty of Education, Palacky University Olomouc, Žižkovo nám. 5, 77900 Olomouc, Czech Republic.
| | - Zdeněk Vilímek
- Institute of Special Education Studies, Faculty of Education, Palacky University Olomouc, Žižkovo nám. 5, 77900 Olomouc, Czech Republic.
| |
Collapse
|
20
|
Miyara K, Kawamura K, Matsumoto S, Ohwatashi A, Itashiki Y, Uema T, Noma T, Ikeda K, Shimodozono M. Acute changes in cortical activation during active ankle movement after whole-body vibration for spasticity in hemiplegic legs of stroke patients: a functional near-infrared spectroscopy study. Top Stroke Rehabil 2019; 27:67-74. [DOI: 10.1080/10749357.2019.1659639] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Kodai Miyara
- Department of Rehabilitation, Kagoshima University Hospital, Kagoshima, Japan
| | - Kentaro Kawamura
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Shuji Matsumoto
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Rehabilitation and Physical Medicine, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan
| | - Akihiko Ohwatashi
- Course of Physical Therapy, School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
| | - Yuki Itashiki
- Department of Rehabilitation, Kagoshima University Hospital, Kagoshima, Japan
| | - Tomohiro Uema
- Department of Rehabilitation, Kagoshima University Hospital, Kagoshima, Japan
| | - Tomokazu Noma
- Department of Rehabilitation, Faculty of Health Science, Nihon Fukushi University, Aichi, Japan
| | - Keiko Ikeda
- Department of Rehabilitation, Kagoshima University Hospital, Kagoshima, Japan
| | - Megumi Shimodozono
- Department of Rehabilitation and Physical Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
21
|
The effect of whole body vibration on health-related quality of life in patients with chronic conditions: a systematic review. Qual Life Res 2019; 28:2859-2870. [DOI: 10.1007/s11136-019-02274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 12/19/2022]
|
22
|
Effectiveness of Physiotherapy Interventions on Spasticity in People With Multiple Sclerosis: A Systematic Review and Meta-Analysis. Am J Phys Med Rehabil 2019; 97:793-807. [PMID: 29794531 DOI: 10.1097/phm.0000000000000970] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE The aim of the study was to examine the effectiveness of physiotherapy (PT) interventions on spasticity in people with multiple sclerosis. DESIGN A systematic search was performed using PRISMA guidance. Studies evaluate the effect of PT interventions on spasticity were included. People with multiple sclerosis, spasticity, disability and PT interventions characteristics were extracted in included studies. Level of evidence was synthesized by the Grade of Recommendation, Assessment, Development and Evaluation approach. Meta-analyses were performed by calculating Hedges g at 95% confidence interval. RESULTS A total of 29 studies were included in the review, and 25 were included in the meta-analyses. The included PT interventions were exercise therapy, electrical stimulation, radial shock wave therapy, vibration, and standing. The review and meta-analyses showed different evidences of benefits and nonbenefits for PT interventions on some spasticity outcomes. The best quality evidences were for beneficial effects of exercise therapy especially robot gait training and outpatient exercise programs on self-perceived spasticity and muscle tone respectively. The review results were positive regarding the acute effects, follow-up measurements, safety, progressive MS, and nonambulatory people with multiple sclerosis. The included articles were heterogeneous and badly reported in PT interventions and people with multiple sclerosis characteristics. CONCLUSIONS Physiotherapy interventions can be a safe and beneficial option for spasticity in people with multiple sclerosis. No firm conclusion can be drawn on overall spasticity. Further researches in different spasticity aspects are needed.
Collapse
|
23
|
Picelli A, Santamato A, Chemello E, Cinone N, Cisari C, Gandolfi M, Ranieri M, Smania N, Baricich A. Adjuvant treatments associated with botulinum toxin injection for managing spasticity: An overview of the literature. Ann Phys Rehabil Med 2018; 62:291-296. [PMID: 30219307 DOI: 10.1016/j.rehab.2018.08.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND OBJECTIVE A wide range of adjunct therapies after botulinum toxin administration have been proposed. The aim of the present paper is to provide an overview of major writings dealing with adjuvant (non-pharmacological) treatments associated with botulinum toxin for managing spasticity in order to provide some up-to-date information about the usefulness of the most commonly used procedures. METHODS The literature in PubMed was searched with the MeSH terms botulinum toxins, muscle spasticity, physical therapy modalities, and rehabilitation. The results were limited to studies focusing on adjuvant treatments associated with botulinum toxin for managing spasticity. We excluded papers on the use of non-drug treatments for spasticity not associated with botulinum toxin serotype A (BoNT-A) injection. Relevant literature known to the authors along with this complementary search represented the basis for this overview of the literature. RESULTS Adhesive taping and casting effectively improved the botulinum toxin effect in patients with upper- and lower-limb spasticity. There is level 1 evidence that casting is better than taping for outcomes including spasticity, range of motion and gait. However, consensus about their most appropriate timing, duration, target and material is lacking. In terms of physical modalities combined with botulinum toxin injection, we found level 1 evidence that extracorporeal shock wave therapy is better than electrical stimulation for some post-injection outcomes including spasticity and pain. Furthermore, electrical stimulation of injected muscles might be useful to boost the toxin effect. However, the best stimulation protocol has not been defined. In addition, we found level 2b evidence that whole-body vibration therapy might reduce spasticity with cerebral palsy. CONCLUSION Future research in this field should focus on investigating the most appropriate post-injection treatment protocol for each goal to achieve.
Collapse
Affiliation(s)
- Alessandro Picelli
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Neurorehabilitation Unit, Department of Neurosciences, Hospital Trust of Verona, Verona, Italy.
| | - Andrea Santamato
- Physical Medicine & Rehabilitation Section, 'OORR' Hospital, University of Foggia, Foggia, Italy
| | - Elena Chemello
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Nicoletta Cinone
- Physical Medicine & Rehabilitation Section, 'OORR' Hospital, University of Foggia, Foggia, Italy
| | - Carlo Cisari
- Health Sciences Department, Università del Piemonte Orientale, Novara, Italy
| | - Marialuisa Gandolfi
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Neurorehabilitation Unit, Department of Neurosciences, Hospital Trust of Verona, Verona, Italy
| | - Maurizio Ranieri
- Physical Medicine & Rehabilitation Section, 'OORR' Hospital, University of Foggia, Foggia, Italy
| | - Nicola Smania
- Neuromotor and Cognitive Rehabilitation Research Center, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy; Neurorehabilitation Unit, Department of Neurosciences, Hospital Trust of Verona, Verona, Italy
| | - Alessio Baricich
- Health Sciences Department, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
24
|
Alp A, Efe B, Adalı M, Bilgiç A, Demir Türe S, Coşkun Ş, Karabulut M, Ertem U, Günay SM. The Impact of Whole Body Vibration Therapy on Spasticity and Disability of the Patients with Poststroke Hemiplegia. Rehabil Res Pract 2018; 2018:8637573. [PMID: 30225145 PMCID: PMC6129331 DOI: 10.1155/2018/8637573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 02/11/2018] [Accepted: 03/12/2018] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE To determine if whole body vibration therapy (WBV) effectively improves functional outcome in patients with poststroke hemiplegia. MATERIALS AND METHODS In this single-blind RCT, WBV group (n = 10) had 40 hz frequency/4 mm amplitude vibration during 5 minutes/session, 3 days a week, for a duration of 4 weeks. The control group (n = 11) had no vibration therapy for the same duration while standing on the same platform. Patients in both of the groups did 15 minutes of stretching and active range of motion exercises before the intervention. Outcome measures were Modified Ashworth Scale (MAS), Functional Independence Measurement (FIM), and Timed 10-Meter Walk Test (10 mWT). RESULTS Only 10 mWT improved at the 1st week (p = 0.002), 1st month (p < 0.001), and 3rd month (p < 0.001) in favor of the intervention group. There was positive correlation also between 10 mWT and ankle spasticity (p < 0.001, r = 0.931). CONCLUSION This study suggests that WBV therapy may be a complementary therapy in gait rehabilitation and functional outcome of the patients with calf muscle spasticity.
Collapse
Affiliation(s)
- Alev Alp
- Faculty of Medicine, Physical Therapy and Rehabilitation Department, Uludag University, Bursa, Turkey
| | - Bilge Efe
- Faculty of Medicine, Physical Therapy and Rehabilitation Department, Uludag University, Bursa, Turkey
| | - Mihriban Adalı
- Faculty of Medicine, Physical Therapy and Rehabilitation Department, Uludag University, Bursa, Turkey
| | - Adnan Bilgiç
- Faculty of Medicine, Physical Therapy and Rehabilitation Department, Uludag University, Bursa, Turkey
| | - Sevda Demir Türe
- Faculty of Medicine, Physical Therapy and Rehabilitation Department, Uludag University, Bursa, Turkey
| | - Şeyma Coşkun
- Faculty of Medicine, Physical Therapy and Rehabilitation Department, Uludag University, Bursa, Turkey
| | - Merve Karabulut
- Faculty of Medicine, Physical Therapy and Rehabilitation Department, Uludag University, Bursa, Turkey
| | - Uğur Ertem
- Faculty of Medicine, Physical Therapy and Rehabilitation Department, Uludag University, Bursa, Turkey
| | - Selim Mahmut Günay
- Faculty of Medicine, Physical Therapy and Rehabilitation Department, Uludag University, Bursa, Turkey
| |
Collapse
|
25
|
Veneri D, Gannotti M, Bertucco M, Fournier Hillman SE. Using the International Classification of Functioning, Disability, and Health Model to Gain Perspective of the Benefits of Yoga in Stroke, Multiple Sclerosis, and Children to Inform Practice for Children with Cerebral Palsy: A Meta-Analysis. J Altern Complement Med 2018; 24:439-457. [DOI: 10.1089/acm.2017.0030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Diana Veneri
- Department of Physical Therapy, Sacred Heart University, Fairfield, CT
| | - Mary Gannotti
- Department of Rehabilitation Sciences, University of Hartford, West Hartford, CT
| | - Matteo Bertucco
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | | |
Collapse
|
26
|
Comparison of the Effectiveness of Whole Body Vibration in Stroke Patients: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5083634. [PMID: 29487869 PMCID: PMC5816889 DOI: 10.1155/2018/5083634] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/21/2017] [Accepted: 09/06/2017] [Indexed: 11/17/2022]
Abstract
Objectives The goals of this study were to assess the effectiveness of WBV (whole body vibration) training through an analysis of effect sizes, identify advantages of WBV training, and suggest other effective treatment methods. Methods Four databases, namely, EMBASE, PubMed, EBSCO, and Web of Science, were used to collect articles on vibration. Keywords such as "vibration" and "stroke" were used in the search for published articles. Consequently, eleven studies were selected in the second screening using meta-analyses. Results The total effect size of patients with dementia in the studies was 0.25, which was small. The effect size of spasticity was the greatest at 1.24 (high), followed by metabolism at 0.99 (high), balance, muscle strength, gait, and circulation in the decreasing order of effect size. Conclusions The effect sizes for muscle strength and balance and gait function, all of which play an important role in performance of daily activities, were small. In contrast, effect sizes for bone metabolism and spasticity were moderate. This suggests that WBV training may provide a safe, alternative treatment method for improving the symptoms of stroke in patients.
Collapse
|
27
|
Khan F, Amatya B, Bensmail D, Yelnik A. Non-pharmacological interventions for spasticity in adults: An overview of systematic reviews. Ann Phys Rehabil Med 2017; 62:265-273. [PMID: 29042299 DOI: 10.1016/j.rehab.2017.10.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Spasticity causes significant long-term disability-burden, requiring comprehensive management. This review evaluates evidence from published systematic reviews of clinical trials for effectiveness of non-pharmacological interventions for improved spasticity outcomes. METHODS Data sources: a literature search was conducted using medical and health science electronic (MEDLINE, EMBASE, CINAHL, PubMed, and the Cochrane Library) databases for published systematic reviews up to 15th June 2017. DATA EXTRACTION AND SYNTHESIS two reviewers applied inclusion criteria to select potential systematic reviews, independently extracted data for methodological quality using Assessment of Multiple Systematic Reviews (AMSTAR). Quality of evidence was critically appraised with Grades of Recommendation, Assessment, Development and Evaluation (GRADE). RESULTS Overall 18 systematic reviews were evaluated for evidence for a range of non-pharmacological interventions currently used in managing spasticity in various neurological conditions. There is "moderate" evidence for electro-neuromuscular stimulation and acupuncture as an adjunct therapy to conventional routine care (pharmacological and rehabilitation) in persons following stroke. "Low" quality evidence for rehabilitation programs targeting spasticity (such as induced movement therapy, stretching, dynamic elbow-splinting, occupational therapy) in stroke and other neurological conditions; extracorporeal shock-wave therapy in brain injury; transcranial direct current stimulation in stroke; transcranial magnetic stimulation and transcutaneous electrical nerve stimulation for other neurological conditions; physical activity programs and repetitive magnetic stimulation in persons with MS, vibration therapy for SCI and stretching for other neurological condition. For other interventions, evidence was inconclusive. CONCLUSIONS Despite the available range of non-pharmacological interventions for spasticity, there is lack of high-quality evidence for many modalities. Further research is needed to judge the effect with appropriate study designs, timing and intensity of modalities, and associate costs of these interventions.
Collapse
Affiliation(s)
- Fary Khan
- Department of rehabilitation medicine, Royal Melbourne Hospital, 34-54, Poplar Road, Parkville, VIC 3052, Victoria, Australia; Department of medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia; Australian Rehabilitation Research Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia.
| | - Bhasker Amatya
- Department of rehabilitation medicine, Royal Melbourne Hospital, 34-54, Poplar Road, Parkville, VIC 3052, Victoria, Australia; Department of medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Victoria, Australia; Australian Rehabilitation Research Centre, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Djamel Bensmail
- UMR1179, Inserm, department of physical and rehabilitation medicine, Spinal Cord Injury Unit, Raymond-Poincaré Hospital, AP-HP, University of Versailles-Saint-Quentin-en-Yvelines, Graces, France
| | - Alain Yelnik
- PRM Department, St-Louis-Lariboisière, F. Widal University Hospital, Paris, France
| |
Collapse
|
28
|
Acute and chronic neuromuscular adaptations to local vibration training. Eur J Appl Physiol 2017; 117:1939-1964. [PMID: 28766150 DOI: 10.1007/s00421-017-3688-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 07/22/2017] [Indexed: 12/19/2022]
Abstract
Vibratory stimuli are thought to have the potential to promote neural and/or muscular (re)conditioning. This has been well described for whole-body vibration (WBV), which is commonly used as a training method to improve strength and/or functional abilities. Yet, this technique may present some limitations, especially in clinical settings where patients are unable to maintain an active position during the vibration exposure. Thus, a local vibration (LV) technique, which consists of applying portable vibrators directly over the tendon or muscle belly without active contribution from the participant, may present an alternative to WBV. The purpose of this narrative review is (1) to provide a comprehensive overview of the literature related to the acute and chronic neuromuscular changes associated with LV, and (2) to show that LV training may be an innovative and efficient alternative method to the 'classic' training programs, including in the context of muscle deconditioning prevention or rehabilitation. An acute LV application (one bout of 20-60 min) may be considered as a significant neuromuscular workload, as demonstrated by an impairment of force generating capacity and LV-induced neural changes. Accordingly, it has been reported that a training period of LV is efficient in improving muscular performance over a wide range of training (duration, number of session) and vibration (frequency, amplitude, site of application) parameters. The functional improvements are principally triggered by adaptations within the central nervous system. A model illustrating the current research on LV-induced adaptations is provided.
Collapse
|
29
|
Annino G, Iellamo F, Palazzo F, Fusco A, Lombardo M, Campoli F, Padua E. Acute changes in neuromuscular activity in vertical jump and flexibility after exposure to whole body vibration. Medicine (Baltimore) 2017; 96:e7629. [PMID: 28816944 PMCID: PMC5571681 DOI: 10.1097/md.0000000000007629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/23/2017] [Accepted: 07/10/2017] [Indexed: 12/01/2022] Open
Abstract
This study was aimed to investigate the neuromuscular activity after 10 minutes of exposure to a whole body vibration (WBV) session.Twenty male young adults (24.8 ± 2.5 year olds) were randomized and divided into 2 groups: the vibration group (VG) was exposed to 10 minutes of WBV at 35 Hz; performed 10 minutes of WBV at 35 Hz (displacement = 5 mm; magnitude = 5 g); the nonvibrated group (NVG) was the placebo group that maintained the same position on the plate but without exposure to any type of vibration. Subjects were evaluated with counter movement jump (CMJ) and muscular flexibility by means of electromyographic (EMG) analysis recorded on the vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), and gastrocnemius lateralis (LG).The 10 minutes of WBV showed an increase in muscular flexibility, associated with a decrease of EMG activity in BF (P < .01) and jump height. The latter was associated with a reduction of EMGs activity in BF (P < .01). The control group did not show any significant difference in all considered parameters.These results support the hypothesis that 10 minutes of WBV had effects on flexibility and explosive strength performance influencing neuromuscular behavior through inhibitor effects on antagonist muscles more than the stretch reflex activity on agonist muscles.
Collapse
Affiliation(s)
- Giuseppe Annino
- Movement Science Institute
- Department of Systems Medicine, Faculty of Medicine and Surgery, Tor Vergata University of Rome
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University
| | | | | | - Augusto Fusco
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University
- Clinical Laboratory of Experimental Medicine, Fondazione Santa Lucia IRCCS
| | - Mauro Lombardo
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University
| | - Francesca Campoli
- Movement Science Institute
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University
| | - Elvira Padua
- Movement Science Institute
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University
| |
Collapse
|
30
|
Park C, Park ES, Choi JY, Cho Y, Rha DW. Immediate Effect of a Single Session of Whole Body Vibration on Spasticity in Children With Cerebral Palsy. Ann Rehabil Med 2017; 41:273-278. [PMID: 28503461 PMCID: PMC5426268 DOI: 10.5535/arm.2017.41.2.273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 08/30/2016] [Indexed: 11/27/2022] Open
Abstract
Objective To investigate the immediate effect of a single session of whole body vibration (WBV) on lower extremity spasticity in children with cerebral palsy (CP). Methods Seventeen children with spastic CP were included. A single session of WBV was administered: 10-minute WBV, 1-minute rest, and 10-minute WBV. The effects of WBV were clinically assessed with the Modified Ashworth Scale (MAS) and Modified Tardieu Scale (MTS) before and immediately, 30 minutes, 1 hour, 2 hours, 3 hours, and 4 hours after WBV. Results Spasticity of the ankle plantarflexor, as assessed by MAS and MTS scores, was reduced after WBV. Post-hoc analysis demonstrated that, compared to baseline, the MAS significantly improved for a period of 1 hour after WBV, and the R1 and R2–R1 of the MTS significantly improved for a period of 2 hours after WBV. Conclusion A single session of WBV improves spasticity of ankle plantarflexors for 1–2 hours in children with CP. Future studies are needed to test whether WBV is an effective preparation before physiotherapy and occupational therapy.
Collapse
Affiliation(s)
- Chunung Park
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Eun Sook Park
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Ja Young Choi
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Yoona Cho
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dong-Wook Rha
- Department of Rehabilitation Medicine and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Elsayed SEB, Raoof NAA, Elsayed OM. Effect of whole-body vibration on motor neuron excitability in healthy young men. BULLETIN OF FACULTY OF PHYSICAL THERAPY 2016. [DOI: 10.4103/1110-6611.188027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|