1
|
Azarfarin M, Ghadiri T, Dadkhah M, Sahab-Negah S. The interaction between cannabinoids and long-term synaptic plasticity: A survey on memory formation and underlying mechanisms. Cell Biochem Funct 2024; 42:e4100. [PMID: 39090824 DOI: 10.1002/cbf.4100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/05/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024]
Abstract
Synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), is an essential phenomenon in memory formation as well as maintenance along with many other cognitive functions, such as those needed for coping with external stimuli. Synaptic plasticity consists of gradual changes in the biochemistry and morphology of pre- and postsynaptic neurons, particularly in the hippocampus. Consuming marijuana as a primary source of exocannabinoids immediately impairs attention and working memory-related tasks. Evidence regarding the effects of cannabinoids on LTP and memory is contradictory. While cannabinoids can affect a variety of specific cannabinoid receptors (CBRs) and nonspecific receptors throughout the body and brain, they exert miscellaneous systemic and local cerebral effects. Given the increasing use of cannabis, mainly among the young population, plus its potential adverse long-term effects on learning and memory processes, it could be a future global health challenge. Indeed, the impact of cannabinoids on memory is multifactorial and depends on the dosage, timing, formula, and route of consumption, plus the background complex interaction of the endocannabinoids system with other cerebral networks. Herein, we review how exogenously administrated organic cannabinoids, CBRs agonists or antagonists, and endocannabinoids can affect LTP and synaptic plasticity through various receptors in interaction with other cerebral pathways and primary neurotransmitters.
Collapse
Affiliation(s)
- Maryam Azarfarin
- Department of Neuroscience,Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tahereh Ghadiri
- Department of Neuroscience,Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Masoomeh Dadkhah
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajad Sahab-Negah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
The role of hippocampal 5-HT 1D and 5-HT 1F receptors on learning and memory in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02411-x. [PMID: 36749399 DOI: 10.1007/s00210-023-02411-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 01/27/2023] [Indexed: 02/08/2023]
Abstract
Serotonin is a neurotransmitter, which is involved in memory via its receptors. The 5-HT1D and 5-HT1F receptors mainly exist in the hippocampus, which plays an important role in memory processing. However, few studies have assessed the effect of these serotonin receptors on memory. We evaluated the effect of a 5-HT1D receptor agonist, PNU142633, 5-HT1D receptor antagonist, BRL15572 hydrochloride, and 5-HT1F receptor agonist, LY344864, on the recognition and avoidance memory in the hippocampus area. Fifty adult male Wistar rats weighing 200-250 g were divided into the control, sham-operated, PNU, BRL, and LY groups (n=10 per group). Bilateral guide cannulas were implanted into the dentate gyrus area of the hippocampus. The drugs were administered at the dose of 1 μg/μl before the novel object recognition (NOR) and passive avoidance learning (PAL) tests. The results showed that in the NOR test, the administration of PNU and LY had no significant effect on recognition index; however, the recognition index was increased by BRL. In the PAL test, the administration of PNU had no significant effect on recognition index, but the administration of BRL and LY increased the time spent in the dark compartment of the apparatus and decreased the step-through latency into the dark compartment apparatus. It can be concluded that the inhibition of the hippocampal 5-HT1D receptor improved cognition memory but impaired avoidance memory. Activation of the hippocampal 5-HT1F receptor had no effect on cognitive memory but impaired avoidance memory.
Collapse
|
3
|
Jafari-Sabet M, Amiri S, Aghamiri H, Fatahi N. Cross state-dependent memory retrieval between cannabinoid CB1 and serotonergic 5-HT1A receptor agonists in the mouse dorsal hippocampus. Neurobiol Learn Mem 2022; 192:107638. [PMID: 35595026 DOI: 10.1016/j.nlm.2022.107638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/23/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Understanding the neurobiological mechanisms of drug-related learning and memory formation may help the treatment of cognitive disorders. Dysfunction of the cannabinoid and serotonergic systems has been demonstrated in learning and memory disorders. The present paper investigates the phenomenon called state-dependent memory (SDM) induced by ACPA (a selective cannabinoid CB1 receptor agonist) and 8-OH-DPAT (a nonselective 5-HT1A receptor agonist) with special focus on the role of the 5-HT1A receptor in the effects of both ACPA and 8-OH-DPAT SDM and cross state-dependent memory retrieval between ACPA and 8-OH-DPAT in a step-down inhibitory avoidance task. The dorsal hippocampal CA1 regions of adult male NMRI mice were bilaterally cannulated, and all drugs were microinjected into the intended injection sites. A single-trial step-down inhibitory avoidance task was used to assess memory retrieval and state-dependence. Post-training and/or pre-test microinjections of ACPA (1 and 2 ng/mouse) and 8-OH-DPAT (0.5 and 1 μg/mouse) dose-dependently induced amnesia. Pre-test administration of the same doses of ACPA and 8-OH-DPAT reversed the post-training ACPA- and 8-OH-DPAT-induced amnesia, respectively. This phenomenon has been named SDM. 8-OH-DPAT (1 μg/mouse) reversed the amnesia induced by ACPA (0.5, 1, and 2 ng/mouse) and induced ACPA SDM. ACPA (2 ng/mouse) reversed the amnesia induced by 8-OH-DPAT (0.25, 0.5, and 1 μg/mouse) and induced 8-OH-DPAT SDM. Pre-test administration of a 5-HT1A receptor antagonist, (S)-WAY 100135 (0.25 and 0.5 μg/mouse), 5 min before ACPA and 8-OH-DPAT dose-dependently inhibited ACPA- and 8-OH-DPAT-induced SDM, respectively. The present study results demonstrated ACPA- and 8-OH-DPAT- induced SDM. Overall, the data revealed that dorsal hippocampal 5-HT1A receptor mechanisms play a pivotal role in modulating cross state-dependent memory retrieval between ACPA and 8-OH-DPAT.
Collapse
Affiliation(s)
- Majid Jafari-Sabet
- Razi Drug Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Shiva Amiri
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran; Department of Toxicology and Pharmacology, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Helia Aghamiri
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Navid Fatahi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Vaseghi S, Arjmandi-Rad S, Eskandari M, Ebrahimnejad M, Kholghi G, Zarrindast MR. Modulating role of serotonergic signaling in sleep and memory. Pharmacol Rep 2021; 74:1-26. [PMID: 34743316 DOI: 10.1007/s43440-021-00339-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 01/02/2023]
Abstract
Serotonin is an important neurotransmitter with various receptors and wide-range effects on physiological processes and cognitive functions including sleep, learning, and memory. In this review study, we aimed to discuss the role of serotonergic receptors in modulating sleep-wake cycle, and learning and memory function. Furthermore, we mentioned to sleep deprivation, its effects on memory function, and the potential interaction with serotonin. Although there are thousands of research articles focusing on the relationship between sleep and serotonin; however, the pattern of serotonergic function in sleep deprivation is inconsistent and it seems that serotonin has not a certain role in the effects of sleep deprivation on memory function. Also, we found that the injection type of serotonergic agents (systemic or local), the doses of these drugs (dose-dependent effects), and up- or down-regulation of serotonergic receptors during training with various memory tasks are important issues that can be involved in the effects of serotonergic signaling on sleep-wake cycle, memory function, and sleep deprivation-induced memory impairments. This comprehensive review was conducted in the PubMed, Scopus, and ScienceDirect databases in June and July 2021, by searching keywords sleep, sleep deprivation, memory, and serotonin.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | - Shirin Arjmandi-Rad
- Institute for Cognitive and Brain Sciences, Shahid Beheshti University, Tehran, Iran
| | - Maliheh Eskandari
- Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahshid Ebrahimnejad
- Department of Physiology, Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Islamic Azad University, Tonekabon Branch, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Looti Bashiyan M, Nasehi M, Vaseghi S, Khalifeh S. Investigating the effect of crocin on memory deficits induced by total sleep deprivation (TSD) with respect to the BDNF, TrkB and ERK levels in the hippocampus of male Wistar rats. J Psychopharmacol 2021; 35:744-754. [PMID: 33899577 DOI: 10.1177/02698811211000762] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Sleep deprivation (SD) induces cognitive impairments such as memory deficit. Brain-derived neurotrophic factor (BDNF) is considered as the most critical neurotrophin in the central nervous system that is involved in sleep and memory. The main receptor of BDNF, tropomyosin receptor kinase B (TrkB), is dramatically expressed in the hippocampus. Also, extracellular signal-regulated kinase (ERK) has a significant role in memory function. Crocin is a carotenoid chemical compound and the active component of the flower Crocus sativus L. (saffron) that improves memory function and increases the level of BDNF, TrkB and ERK. AIMS In this research, we aimed to investigate the effect of total SD (TSD, 24 h) and crocin on memory performance, and BDNF, TrkB and ERK hippocampal levels. METHODS Passive avoidance memory was assessed using step-through, and working memory was measured using Y-maze tasks. The level of proteins in both hemispheres of the hippocampus was evaluated using Western blotting. Crocin was injected intraperitoneally at doses of 1, 5 and 15 mg/kg. RESULTS Twenty-four-hour TSD impaired both types of memories and decreased the level of all proteins in both hemispheres of the hippocampus. Crocin at all doses restored TSD-induced memory deficits. Crocin (15 mg/kg) reversed the effect of TSD on levels of all proteins. CONCLUSIONS The adverse effect of TSD on the level of proteins in the hippocampus may disrupt synaptic plasticity and transmission, which induces memory impairment. Additionally, the restoration effect of crocin on the decrease in protein levels may be involved in its improvement effect on memory performance.
Collapse
Affiliation(s)
- Malihe Looti Bashiyan
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Solmaz Khalifeh
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Vaseghi S, Nasehi M, Zarrindast MR. How do stupendous cannabinoids modulate memory processing via affecting neurotransmitter systems? Neurosci Biobehav Rev 2020; 120:173-221. [PMID: 33171142 DOI: 10.1016/j.neubiorev.2020.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/17/2020] [Accepted: 10/26/2020] [Indexed: 12/27/2022]
Abstract
In the present study, we wanted to review the role of cannabinoids in learning and memory in animal models, with respect to their interaction effects with six principal neurotransmitters involved in learning and memory including dopamine, glutamate, GABA (γ-aminobutyric acid), serotonin, acetylcholine, and noradrenaline. Cannabinoids induce a wide-range of unpredictable effects on cognitive functions, while their mechanisms are not fully understood. Cannabinoids in different brain regions and in interaction with different neurotransmitters, show diverse responses. Previous findings have shown that cannabinoids agonists and antagonists induce various unpredictable effects such as similar effect, paradoxical effect, or dualistic effect. It should not be forgotten that brain neurotransmitter systems can also play unpredictable roles in mediating cognitive functions. Thus, we aimed to review and discuss the effect of cannabinoids in interaction with neurotransmitters on learning and memory. In addition, we mentioned to the type of interactions between cannabinoids and neurotransmitter systems. We suggested that investigating the type of interactions is a critical neuropharmacological issue that should be considered in future studies.
Collapse
Affiliation(s)
- Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Rezaie M, Nasehi M, Vaseghi S, Alimohammadzadeh K, Islami Vaghar M, Mohammadi-Mahdiabadi-Hasani MH, Zarrindast MR. The interaction effect of sleep deprivation and cannabinoid type 1 receptor in the CA1 hippocampal region on passive avoidance memory, depressive-like behavior and locomotor activity in rats. Behav Brain Res 2020; 396:112901. [PMID: 32920013 DOI: 10.1016/j.bbr.2020.112901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 12/19/2022]
Abstract
Increasing evidence shows the interaction effect of cannabinoids and sleep on cognitive functions. In the present study, we aimed to investigate the interaction effect of cannabinoids type 1 receptor (CB1r) in the CA1 hippocampal region and sleep deprivation (SD) on passive avoidance memory and depressive-like behavior in male Wistar rats. We used water box apparatus to induce total SD (TSD) for 24 h. The shuttle-box was applied to assess passive avoidance memory and locomotion apparatus was applied to assess locomotor activity. Forced swim test (FST) was used to evaluate rat's behavior. ACPA (CB1r agonist) at the doses of 0.01, 0.001 and 0.0001 μg/rat, and AM251 (CB1r antagonist) at the doses of 100, 10 and 1 ng/rat were injected intra-CA1, five minutes after training via stereotaxic surgery. Results showed SD impaired memory. ACPA at the doses of 0.01 and 0.001 μg/rat impaired memory and at all doses did not alter the effect of SD on memory. AM251 by itself did not alter memory, while at lowest dose (1 ng/rat) restored SD-induced memory deficit. Both drugs induced depressive-like behavior in a dose-dependent manner. Furthermore, both drugs decreased swimming at some doses (ACPA at 0.0001 μg/rat, AM251 at 0.001 and 0.01 ng/rat). Also, ACPA at the highest dose increased climbing of SD rats. In conclusion, we suggest CB1r may interact with the effect of SD on memory. Additionally, cannabinoids may show a dose-dependent manner in modulating mood and behavior. Interestingly, CB1r agonists and antagonists may exhibit a similar effect in some behavioral assessments.
Collapse
Affiliation(s)
- Maede Rezaie
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran.
| | - Khalil Alimohammadzadeh
- Department of Health Services Management, North Tehran Branch, Islamic Azad University, Tehran, Iran; Health Economics Policy Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Islami Vaghar
- Department of Nursing, Faculity of Nursing and Midwifery, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Javad-Moosavi BZ, Nasehi M, Vaseghi S, Jamaldini SH, Zarrindast MR. Activation and Inactivation of Nicotinic Receptnors in the Dorsal Hippocampal Region Restored Negative Effects of Total (TSD) and REM Sleep Deprivation (RSD) on Memory Acquisition, Locomotor Activity and Pain Perception. Neuroscience 2020; 433:200-211. [PMID: 32200080 DOI: 10.1016/j.neuroscience.2020.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 12/13/2022]
Abstract
Sleep deprivation (SD) is a common issue in today's society. Sleep is essential for proper cognitive functions, including learning and memory. Furthermore, sleep disorders can alter pain information processing. Meanwhile, hippocampal nicotinic receptors have a role in modulating pain and memory. The goal of this study is to investigate the effect of dorsal hippocampal (CA1) nicotinic receptors on behavioral changes induced by Total (TSD) and REM Sleep Deprivation (RSD). A modified water box and multi-platform apparatus were used to induce TSD and RSD, respectively. To investigate the interaction between nicotinic receptors and hippocampus-dependent memory, nicotinic receptor agonist (nicotine) or antagonist (mecamylamine) was injected into the CA1 region. The results showed, nicotine at the doses of 0.001 and 0.1 µg/rat and mecamylamine at the doses of 0.01 and 0.1 µg/rat decreased memory acquisition, while both at the doses of 0.01 and 0.1 µg/rat enhanced locomotor activity. Additionally, all doses used for both drugs did not alter pain perception. Also, 24 h TSD or RSD attenuated memory acquisition with no effect on locomotor activity and only TSD induced an analgesic effect. Intra-CA1 administration of subthreshold dose of nicotine (0.0001 µg/rat) and mecamylamine (0.001 µg/rat) did not alter memory acquisition, pain perception and locomotor activity in sham of TSD/RSD rats. Both drugs reversed all behavioral changes induced by TSD. Furthermore, both drugs reversed the effect of RSD on memory acquisition, while only mecamylamine reversed the effect of RSD on locomotor activity. In conclusion, CA1 nicotinic receptors play a significant role in TSD/RSD-induced behavioral changes.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Hamid Jamaldini
- Department of Genetic, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| |
Collapse
|
9
|
Malboosi N, Nasehi M, Hashemi M, Vaseghi S, Zarrindast MR. The neuroprotective effect of NeuroAid on morphine-induced amnesia with respect to the expression of TFAM, PGC-1α, ΔfosB and CART genes in the hippocampus of male Wistar rats. Gene 2020; 742:144601. [PMID: 32198124 DOI: 10.1016/j.gene.2020.144601] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/16/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Morphine is a natural alkaloid which derived from the opium poppy Papaver somniferum. Many studies have reported the effect of morphine on learning, memory and gene expression. CART (cocaine-amphetamine regulated transcript)is an important neuropeptide which has a critical role in physiological processes including drug dependence and antioxidant activity. ΔfosB is a transcription factor which modulates synaptic plasticity and affects learning and memory. TFAM (the mitochondrial transcription factor A) and PGC-1α (Peroxisome proliferator-activated receptor γ coactivator-1α) are critically involved in mitochondrial biogenesis and antioxidant pathways. NeuroAid is a Chinese medicine that induces neuroprotective and anti-apoptotic effects. In this research, we aimed to investigate the effect of NeuroAid on morphine-induced amnesia with respect to the expression of TFAM, PGC-1α, ΔfosB and CART in the rat's hippocampus. In this study, Morphine sulfate (at increasing doses), Naloxone hydrochloride (2.5 mg/kg) and NeuroAid (2.5 mg/kg) were administered intraperitoneal and real-time PCR reactions were done to assess gene expression. The results showed, morphine impaired memory of step-through passive avoidance, while NeuroAid had no effect. NeuroAid attenuated (but not reversed) morphine-induced memory impairment in morphine-addicted rats. Morphine increased the expression of PGC-1α and decreased the expression of CART. However, NeuroAid increased the expression of TFAM, PGC-1α, ΔfosB and CART. NeuroAid restored the effect of morphine on the expression of CART and PGC-1α. In conclusion, morphine impaired memory of step-through passive avoidance and NeuroAid attenuated this effect. The effect of NeuroAid on morphine-induced memory impairment/gene expression may be related to its anti-apoptotic and neuroprotective effects.
Collapse
Affiliation(s)
- Nasrin Malboosi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Eydipour Z, Nasehi M, Vaseghi S, Jamaldini SH, Zarrindast MR. The role of 5-HT4 serotonin receptors in the CA1 hippocampal region on memory acquisition impairment induced by total (TSD) and REM sleep deprivation (RSD). Physiol Behav 2019; 215:112788. [PMID: 31863855 DOI: 10.1016/j.physbeh.2019.112788] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/06/2019] [Accepted: 12/18/2019] [Indexed: 01/20/2023]
Abstract
Sleep is a circadian rhythm that is modulated by endogenous circadian clock located in the suprachiasmatic nucleus (SCN). Sleep modulates memory acquisition and promotes memory consolidation. Studies have shown that sleep deprivation (SD) impairs different types of memory including passive avoidance. Furthermore, the hippocampus plays a significant role in modulating passive avoidance memory. On the other hand, 5-HT4 receptors are expressed in the hippocampus and involved in learning and memory processes. In this study, we aimed to investigate the role of CA1 hippocampal 5-HT4 receptors in memory acquisition impairment induced by total sleep deprivation (TSD: 24 h) and REM sleep deprivation (RSD: 24 h). The water box apparatus was used to induce TSD, while multi-platform apparatus was applied to induce RSD. Passive avoidance memory test was also used to evaluate memory acquisition. The results showed that, intra-CA1 pre-training injection of RS67333 (5-HT4 agonist) and RS23597 (5-HT4 antagonist) at the doses of 0.01 and 0.1 µg/rat decreased memory acquisition, but did not alter pain perception and locomotor activity. Furthermore, TSD and RSD decreased memory acquisition; however, only TSD decreased locomotor activity and induced analgesic effect. The sub-threshold doses of RS67333 and RS23597, 0.001 and 0.0001 µg/rat, respectively, reversed the effect of TSD on memory acquisition and locomotor activity. In addition, only RS23597 reversed TSD-induced analgesia. In RSD condition, the subthreshold dose of RS23597 improved RSD-induced memory acquisition deficit. In conclusion, CA1 hippocampal 5-HT4 receptors play an important role in TSD/RSD-induced cognitive alterations.
Collapse
Affiliation(s)
- Zainab Eydipour
- Department of Biology, Damghan Branch, Islamic Azad University, Semnan, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Hamid Jamaldini
- Department of Genetic, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Vaseghi S, Babapour V, Nasehi M, Zarrindast MR. The role of CA1 CB1 receptors on lithium-induced spatial memory impairment in rats. EXCLI JOURNAL 2018; 17:916-934. [PMID: 30564071 PMCID: PMC6295625 DOI: 10.17179/excli2018-1511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Lithium, a glycogen synthase kinase-3β (GSK-3β) inhibitor, prevents cannabinoid withdrawal syndrome, but there is limited data exploring the interaction between lithium and cannabinoid system on memory processes. The present study aimed to test the interaction between dorsal hippocampal (CA1 region) cannabinoid system and lithium on spatial memory in rats. Spatial memory was assessed in Morris Water Maze (MWM) apparatus by a single training session of eight trials. The results showed that pre-training intra-CA1 microinjection of ACPA, the cannabinoid type 1 receptor (CB1r) agonist, at doses of 0.001, 0.01 or 1 µg/rat, or AM251, the cannabinoid type 1 receptor (CB1r) antagonist, at doses of 1, 10 or 100 ng/rat, increased escape latency and traveled distance to the platform, suggesting a spatial learning impairment, whereas intraperitoneal administration of lithium (0.5, 1 or 5 mg/kg) had no effect on spatial learning. Also, rats that received lithium plus a lower dose of ACPA (0.001 µg/rat) or AM251 (1 ng/rat) had successful performance in the MWM. In the probe test, the results showed that pre-training administration of lithium (5 mg/kg) and ACPA (0.01 or 1 µg/rat) but not AM251 (at all doses used) impaired spatial memory retrieval. Also, lower dose of ACPA (0.001 µg/rat) or AM251 (1 ng/rat) potentiated the effect of ineffective doses of lithium (0.5 and 1 mg/kg) on spatial memory retrieval, while restored the effect of effective dose of lithium (5 mg/kg). In conclusion, cannabinoids may have a dual effect on lithium-induced spatial memory impairment in rats.
Collapse
Affiliation(s)
- Salar Vaseghi
- Department of Physiology, Faculty of Veterinary Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahab Babapour
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Institute for Cognitive Science Studies (ICSS), Tehran, Iran.,Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Javad-Moosavi BZ, Vaezi G, Nasehi M, Haeri-Rouhani SA, Zarrindast MR. Critical role of CA1 muscarinic receptors on memory acquisition deficit induced by total (TSD) and REM sleep deprivation (RSD). Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:128-135. [PMID: 28571775 DOI: 10.1016/j.pnpbp.2017.05.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 05/12/2017] [Accepted: 05/29/2017] [Indexed: 12/29/2022]
Abstract
AIM Despite different theories regarding sleep physiological function, an overall census indicates that sleep is useful for neural plasticity which eventually strengthens cognition and brain performance. Different studies show that sleep deprivation (SD) leads to impaired learning and hippocampus dependent memory. According to some studies, cholinergic system plays an important role in sleep (particularly REM sleep), learning, memory, and its retrieval. So this study has been designed to investigate the effect of CA1 Cholinergic Muscarinic Receptors on memory acquisition deficit induced by total sleep deprivation (TSD) and REM sleep deprivation (RSD). METHOD A modified water box (locomotor activity may be provide a limiting factor in this method of SD) or multiple platforms were used for induction of TSD or RSD, respectively. Inhibitory passive avoidance apparatus has been used to determine the effects of SD and its changes by physostigmine (as cholinesterase inhibitor) or scopolamine (muscarinic receptor antagonist) on memory formation. Because locomotor activity and pain perception induce critical roles in passive avoidance memory formation, we also measured these factors by open field and hot-plate instruments, respectively. RESULTS The results showed that TSD and RSD for 24 hours impaired memory formation but they did not alter locomotor activity. TSD also induced analgesia effect, but RSD did not alter it. Intra-CA1 injection of physostigmine (0.0001μg/rat) and scopolamine (0.01μg/rat) did not alter memory acquisition in the sham-TSD or sham-RSD, by themselves. Moreover, intra-CA1 injection of sub-threshold dose of physostigmine (0.0001μg/rat) and scopolamine (0.01μg/rat) could restore the memory acquisition deficit induced by RSD, while scopolamine could restore TSD-induced amnesia. Both drugs reversed analgesia induced by TSD. None of previous interventions altered locomotor activity. CONCLUSION According to this study, CA1 cholinergic muscarinic receptors play an important role in amnesia induced by both TSD and RSD. However further studies are needed for showing cellular and molecular mechanisms of surprising result of similar pharmacological effects using compounds with opposite profiles.
Collapse
Affiliation(s)
| | - Gholamhassan Vaezi
- Department of Biology, Damghan Branch, Islamic Azad University, Semnan, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| | - Seyed-Ali Haeri-Rouhani
- Department of Animal Biology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Medical Genomics Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Zarrabian S, Nasehi M, Farrahizadeh M, Zarrindast MR. The role of CA3 GABA B receptors on anxiolytic-like behaviors and avoidance memory deficit induced by D-AP5 with respect to Ca 2+ ions. Prog Neuropsychopharmacol Biol Psychiatry 2017; 79:515-524. [PMID: 28800869 DOI: 10.1016/j.pnpbp.2017.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/03/2017] [Accepted: 08/07/2017] [Indexed: 01/21/2023]
Abstract
Glutamatergic and GABAergic systems play key roles in the hippocampus and affect the pathogenesis of anxiety- and memory-related processes. Some investigations have assessed the role of balancing the function of these two systems in different areas of the central nervous system (CNS) as an approach to manage the related disorders. We investigated the anxiety and avoidance memory states using the test-retest protocol in the elevated plus maze to understand the role of GABAB receptors (GABABRs) in relation to the NMDA receptor blockade by D-AP5 (an NMDA receptor antagonist). Also, we examined the function of Ca2+ ions by blocking its entrance to the cell using SKF96365 (a Ca2+ channel blocker). The drugs were injected into the CA3 region before the test. Our data showed that D-AP5 induced anxiolytic-like behaviors and impaired the avoidance memory. Injection of baclofen (a GABABR agonist), but not phaclofen (a GABABR antagonist) induced anxiolytic-like behaviors. Neither baclofen nor phaclofen altered avoidance memory-related behaviors. When baclofen was injected before D-AP5, it potentiated the anxiolytic-like behaviors induced by D-AP5, but counteracted its effect on avoidance memory. Phaclofen pretreatment attenuated D-AP5-induced anxiolytic-like behaviors, but potentiated its effect on avoidance memory. The effect of baclofen application before D-AP5 on anxiety and phaclofen application before D-AP5 on avoidance memory at the heist doses were accompanied by a decrease in locomotion. The application of SKF96365 did not alter anxiety-like behaviors but induced avoidance memory impairment. SKF96365 application before the combination of baclofen and D-AP5 counteracted the effects produced by the combination of baclofen and D-AP5 on anxiety and memory states. Our findings showed that the CA3 GABABRs had a critical role in anxiolytic-like behaviors and avoidance memory deficit induced by D-AP5 and confirmed the role of Ca2+ ions in the observed results.
Collapse
Affiliation(s)
- Shahram Zarrabian
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran.
| | - Maryam Farrahizadeh
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Cognitive and Neuroscience Research Center (CNRC), Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran; Medical Genomics Research Center, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
14
|
The effect of CA1 α2 adrenergic receptors on memory retention deficit induced by total sleep deprivation and the reversal of circadian rhythm in a rat model. Neurobiol Learn Mem 2016; 133:53-60. [DOI: 10.1016/j.nlm.2016.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 06/01/2016] [Accepted: 06/08/2016] [Indexed: 01/24/2023]
|
15
|
Mohammadmirzaei N, Rezayof A, Ghasemzadeh Z. Activation of cannabinoid CB1 receptors in the ventral hippocampus improved stress-induced amnesia in rat. Brain Res 2016; 1646:219-226. [DOI: 10.1016/j.brainres.2016.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/03/2016] [Accepted: 06/05/2016] [Indexed: 12/17/2022]
|