1
|
Favoretto CA, Righi T, Fernandes GJD, Bertagna NB, Rodolpho BT, Janisset NDRLDL, Jovita-Farias C, Costa GVL, Anjos-Santos AD, Romualdo da Silva FB, Leão RM, Cruz FC. Animal models for studying therapeutic targets and treatments for alcohol use disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:355-381. [PMID: 39523060 DOI: 10.1016/bs.irn.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Over the decades, preclinical models have been developed and refined to investigate the rewarding effects of addictive substances and the neurobiological underpinnings of alcohol and other drug use disorders. This chapter delves into the methodological foundations, advantages, and limitations of leading animal models used to study alcohol use disorders (AUDs). Some models focus on the early stages of alcohol use and abuse. For instance, conditioned place preference assesses associative learning between a specific context and the effects of the drug, while locomotor sensitization measures increased locomotor activity following repeated drug exposure. In contrast, contingent models such as operant and non-operant alcohol self-administration protocols gauge voluntary intake, preference, motivation, and seeking behavior for alcohol solutions among experimental subjects. Additionally, we discuss the chronic intermittent alcohol vapor model, extensively utilized to induce a phenotype resembling dependence through non-contingent inhalation of alcohol vapor, resulting in elevated blood alcohol concentrations. Given the focus on pharmacological treatments for AUDs, we explore how different animal models can be employed to evaluate potential therapies and extrapolate findings to alcohol-related behaviors in humans. This chapter aims to provide readers with a comprehensive understanding of various animal models for AUDs, aiding in the interpretation of preclinical studies and the selection of suitable models for future research endeavors.
Collapse
Affiliation(s)
- Cristiane Aparecida Favoretto
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States
| | - Thamires Righi
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Gustavo Juliate Damaceno Fernandes
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Natalia Bonetti Bertagna
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Ben Tagami Rodolpho
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Nilma do Rocio Lara de Lima Janisset
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Caio Jovita-Farias
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Giovanna Victória Lopes Costa
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | - Alexia Dos Anjos-Santos
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil
| | | | - Rodrigo Molini Leão
- Laboratory of Pharmacology, Biomedical Sciences Institute, Department of Pharmacology, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Fábio Cardoso Cruz
- Molecular and Behavioral Neuroscience Laboratory, Department of Pharmacology, Universidade Federal de São Paulo (UNIFESP), São Paulo, São Paulo, Brazil.
| |
Collapse
|
2
|
Stępnik K, Kukula-Koch W, Boguszewska-Czubara A, Gawel K. Astragaloside IV as a Memory-Enhancing Agent: In Silico Studies with In Vivo Analysis and Post Mortem ADME-Tox Profiling in Mice. Int J Mol Sci 2024; 25:4021. [PMID: 38612831 PMCID: PMC11012721 DOI: 10.3390/ijms25074021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Many people around the world suffer from neurodegenerative diseases associated with cognitive impairment. As life expectancy increases, this number is steadily rising. Therefore, it is extremely important to search for new treatment strategies and to discover new substances with potential neuroprotective and/or cognition-enhancing effects. This study focuses on investigating the potential of astragaloside IV (AIV), a triterpenoid saponin with proven acetylcholinesterase (AChE)-inhibiting activity naturally occurring in the root of Astragalus mongholicus, to attenuate memory impairment. Scopolamine (SCOP), an antagonist of muscarinic cholinergic receptors, and lipopolysaccharide (LPS), a trigger of neuroinflammation, were used to impair memory processes in the passive avoidance (PA) test in mice. This memory impairment in SCOP-treated mice was attenuated by prior intraperitoneal (ip) administration of AIV at a dose of 25 mg/kg. The attenuation of memory impairment by LPS was not observed. It can therefore be assumed that AIV does not reverse memory impairment by anti-inflammatory mechanisms, although this needs to be further verified. All doses of AIV tested did not affect baseline locomotor activity in mice. In the post mortem analysis by mass spectrometry of the body tissue of the mice, the highest content of AIV was found in the kidneys, then in the spleen and liver, and the lowest in the brain.
Collapse
Affiliation(s)
- Katarzyna Stępnik
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie–Skłodowska University in Lublin, Pl. M. Curie-Skłodowskiej 3, 20-031 Lublin, Poland
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki St., 20-093 Lublin, Poland;
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki St., 20-093 Lublin, Poland;
| | - Anna Boguszewska-Czubara
- Department of Medical Chemistry, Medical University of Lublin, 4A Chodźki St., 20-093 Lublin, Poland;
| | - Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 8B Jaczewskiego St., 20-090 Lublin, Poland;
| |
Collapse
|
3
|
Palombo P, Maeda R, Riberti Zaniboni C, Antonagi Engi S, Yokoyama T, Bonetti Bertagna N, Anesio A, Cristina Bianchi P, Righi T, Emily Boaventura Tavares G, Souccar C, da Silva FBR, Cardoso Cruz F. Unlocking the role of dorsal hippocampal α4β2 nicotinic acetylcholine receptors in Ethanol-Induced conditioned place preference in mice. Neurosci Lett 2024; 824:137666. [PMID: 38331019 DOI: 10.1016/j.neulet.2024.137666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/22/2024] [Accepted: 02/01/2024] [Indexed: 02/10/2024]
Abstract
Alcohol Use Disorder (AUD) presents a significant and challenging public health concern, marked by a dearth of effective pharmacological treatments. Understanding the neurobiological underpinnings of AUD is of paramount importance for the development of efficacious interventions. The process of addiction entails the acquisition of associative behaviors, prominently engaging the dorsal region of the hippocampus for encoding these associative memories. Nicotinic receptor systems have been implicated in mediating the rewarding effects of ethanol, as well as memory and learning processes. In our current investigation, we delved into the role of α4β2 nicotinic acetylcholine receptors (nAChRs) within the dorsal hippocampus in the context of ethanol-induced conditioned place preference (CPP), a robust model for scrutinizing the rewarding properties and drug-associated behaviors. To establish CPP, ethanol (2 g/kg) was administered intraperitoneally during a 8-day conditioning phase. Fos immunohistochemistry was employed to assess the involvement of discrete subregions within the dorsal hippocampus in ethanol-induced CPP. Additionally, we probed the influence of α4β2 nAChRs on CPP via microinjections of a selective nAChR antagonist, dihydro-β-erythroidine (DHBE, at dosages of 6, 12, and 18 µg/0.5 µL per hemisphere) within the hippocampus. Our results unveiled that ethanol-induced CPP was associated with an increase Fos -positive cells in various subregions of the dorsal hippocampus, including CA1, CA2, CA3, and the dentate gyrus. Intrahippocampal administration of DHBE (at doses of 6 and 18 µg/0.50 µL per hemisphere) effectively blocked ethanol-induced CPP, while leaving locomotor activity unaffected. These findings underscore the critical involvement of the dorsal hippocampus and α4β2 nAChRs in the acquisition of ethanol-associated learning and reward.
Collapse
Affiliation(s)
- Paola Palombo
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - Roberta Maeda
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Caroline Riberti Zaniboni
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sheila Antonagi Engi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thais Yokoyama
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Natalia Bonetti Bertagna
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Augusto Anesio
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Paula Cristina Bianchi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thamires Righi
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Caden Souccar
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Fabio Cardoso Cruz
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Hung HY, Chow LH, Kotlinska JH, Drabik A, Silberring J, Chen YH, Huang EYK. LVV-hemorphin-7 (LVV-H7) plays a role in antinociception in a rat model of alcohol-induced pain disorders. Peptides 2021; 136:170455. [PMID: 33253777 DOI: 10.1016/j.peptides.2020.170455] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 02/08/2023]
Abstract
Alcohol can increase the sensitivity to painful stimulation or convert insensibility to pain at different stages. We hypothesized that chronic alcohol consumption changes the level of LVV-hemorphin-7 (abbreviated as LVV-H7, an opioid-like peptide generated from hemoglobin β-chain), thereby affecting pain sensation. We established a chronic alcohol-exposed rat model to investigate the effects of LVV-H7. Adult male Sprague-Dawley rats were subjected to daily intraperitoneal injection of 10 % ethanol (w/v) at 0.5 g/kg for 15 days and subsequent alcohol withdrawal for 5 days. Using different pharmacological strategies to affect the LVV-H7 level, we investigated the correlation between LVV-H7 and pain-related behavior. Tail-flick and hot plate tests were employed to investigate alcohol-induced pain-related behavioral changes. The serum level of LVV-H7 was determined by ELISA. Our results showed that alcohol first induced an analgesia followed by a hyperalgesia during alcohol withdrawal, which could be driven by the quantitative change of LVV-H7. A positive correlation between the level of LVV-H7 and Δtail-flick latency (measured latency minus basal latency) confirmed this finding. Moreover, we revealed that the LVV-H7 levels were determined by the activity of cathepsin D and red blood cell/hemoglobin counts, which could be affected by alcohol. These results suggest that the deterioration of anti-nociception induced by alcohol is correlated to the decreased level of LVV-H7, and this could be due to alcohol-induced anemia. This study may help to develop LVV-H7 structure-based novel analgesics for treating alcohol-induced pain disorders and thus ameliorate the complications in alcoholics.
Collapse
Affiliation(s)
- Hao-Yuan Hung
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Lok-Hi Chow
- Department of Anesthesiology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan; Department of Anesthesiology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jolanta H Kotlinska
- Department of Pharmacology and Pharmacodynamics, Faculty of Pharmacy With Division of Medical Analytics, Medical University of Lublin, Lublin, Poland
| | - Anna Drabik
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland
| | - Jerzy Silberring
- Department of Biochemistry and Neurobiology, Faculty of Materials Science and Ceramics, AGH University of Science and Technology, Krakow, Poland
| | - Yuan-Hao Chen
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan; Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Eagle Yi-Kung Huang
- Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
5
|
Palombo P, Engi SA, Yokoyama TS, Bezerra AG, Curado DF, Anésio A, Leão RM, Santos PCJDL, Cruz FC, Galduróz JCF. Effects of biperiden (cholinergic muscarinic m1/m4 receptor antagonist) on ethanol conditioned place preference in mice. Neurosci Lett 2020; 745:135551. [PMID: 33346074 DOI: 10.1016/j.neulet.2020.135551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/01/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Previous studies suggest that muscarinic cholinergic receptors might act upon the dopamine release in the mesolimbic system and alter drug-reinforcing values related to drug craving. AIMS We examined the effects of systemic biperiden administration, a muscarinic cholinergic (M1/M4) receptor antagonist, on ethanol (dose of 2 g/Kg) conditioned place preference (CPP), neuronal activation, dopamine and its metabolites levels in the nucleus accumbens. METHODS Thirty minutes before the ethanol-induced CPP test, mice received saline or biperiden at doses of 1.0, 5.0, or 10.0 mg/kg. The time spent in each compartment was recorded for 15 min. After the CPP protocol, animals were euthanized, and we investigated the activation of the nucleus accumbens by immunohistochemistry for Fos. We also quantified dopamine, homovanillic acid (HVA), and dihydroxyphenylacetic acid (DOPAC) levels in the nucleus accumbens by high-performance liquid chromatography (HPLC). Additionally, the rotarod was employed to evaluate the effects of biperiden on motor coordination. RESULTS Biperiden at different doses (1.0, 5.0, and 10.0 mg/kg) blocked the expression of ethanol-induced CPP. These biperiden doses increased the number of Fos-positive cells and the dopamine turnover in the nucleus accumbens. None of the doses affected the motor coordination evaluated by the rotarod. CONCLUSIONS Our results show that biperiden can modulate the effect of alcohol reward, and its mechanism of action may involve a change in dopamine and cholinergic mesolimbic neurotransmission.
Collapse
Affiliation(s)
- Paola Palombo
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sheila Antonagi Engi
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Thais Suemi Yokoyama
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | - Augusto Anésio
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Rodrigo Molini Leão
- Laboratório de Farmacologia, Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia - UFU, Uberlândia, Brazil
| | | | - Fábio Cardoso Cruz
- Departamento de Farmacologia, Universidade Federal de São Paulo, São Paulo, Brazil.
| | | |
Collapse
|
6
|
Sharma N, Zameer S, Akhtar M, Vohora D. Effect of lacosamide on ethanol induced conditioned place preference and withdrawal associated behavior in mice: Possible contribution of hippocampal CRMP-2. Pharmacol Rep 2019; 71:804-810. [PMID: 31377562 DOI: 10.1016/j.pharep.2019.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 12/25/2018] [Accepted: 04/13/2019] [Indexed: 11/26/2022]
Abstract
BACKGROUND Excessive consumption of ethanol is known to activate the mTORC1 pathway and to enhance the Collapsin Response Mediator Protein-2 (CRMP-2) levels in the limbic region of brain. The latter helps in forming microtubule assembly that is linked to drug taking or addiction-like behavior in rodents. Therefore, in this study, we investigated the effect of lacosamide, an antiepileptic drug and a known CRMP-2 inhibitor, which binds to CRMP-2 and inhibits the formation of microtubule assembly, on ethanol-induced conditioned place preference (CPP) in mice. METHODS The behavior of mice following ethanol addiction and withdrawal was assessed by performing different behavioral paradigms. Mice underwent ethanol-induced CPP training with alternate dose of ethanol (2 g/kg, po) and saline (10 ml/kg, po). The effect of lacosamide on the expression of ethanol-induced CPP and on ethanol withdrawal associated anxiety and depression-like behavior was evaluated. The effect of drug on locomotor activity was also assessed and hippocampal CRMP-2 levels were measured. RESULTS Ethanol-induced CPP was associated with enhanced CRMP-2 levels in the hippocampus. Lacosamide significantly reduced the expression of ethanol-induced CPP and alleviated the levels of hippocampal CRMP-2 but aggravated withdrawal-associated anxiety and depression in mice. CONCLUSION The present study demonstrated the beneficial effect of lacosamide in attenuation of expression of ethanol induced conditioned place preference via reduction of hippocampal CRMP-2 level. These findings suggest that lacosamide may be investigated further for ethanol addiction but not for managing withdrawal.
Collapse
Affiliation(s)
- Nidhi Sharma
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Saima Zameer
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Mohd Akhtar
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Divya Vohora
- Neurobehavioral Pharmacology Laboratory, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
7
|
Hilderbrand ER, Lasek AW. Studying Sex Differences in Animal Models of Addiction: An Emphasis on Alcohol-Related Behaviors. ACS Chem Neurosci 2018; 9:1907-1916. [PMID: 29227676 DOI: 10.1021/acschemneuro.7b00449] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animal models are essential for understanding the biological factors that contribute to drug and alcohol addiction and discovering new pharmacotherapies to treat these disorders. Alcohol (ethanol) is the most commonly abused drug in the world, and as the prevalence of alcohol use disorder (AUD) increases, so does the need for effective pharmacotherapies. In particular, treatments with high efficacy in the growing number of female AUD sufferers are needed. Female animals remain underrepresented in biomedical research and sex differences in the brain's response to alcohol are poorly understood. To help bridge the gender gap in addiction research, this Review discusses strategies that researchers can use to examine sex differences in the context of several common animal models of AUD. Self-administration, two-bottle choice, drinking in the dark, and conditioned place preference are discussed, with a focus on the role of estrogen as a mediator of sex differences in alcohol-related behaviors.
Collapse
|
8
|
Mannangatti P, Ramamoorthy S, Jayanthi LD. Interference of norepinephrine transporter trafficking motif attenuates amphetamine-induced locomotor hyperactivity and conditioned place preference. Neuropharmacology 2017; 128:132-141. [PMID: 28986281 DOI: 10.1016/j.neuropharm.2017.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/15/2017] [Accepted: 10/03/2017] [Indexed: 11/28/2022]
Abstract
Amphetamine (AMPH)-mediated norepinephrine transporter (NET) downregulation requires NET-T258/S259 trafficking motif. The present study utilizes cell permeable NET-T258/S259 motif interfering peptide, which blocks AMPH-induced NET downregulation, to explore the role of this form of NET regulation in AMPH-mediated behaviors. In rats receiving intra-accumbal microinjections of TAT-conjugated peptides encompassing NET-T258/S259 motif, acute systemic AMPH failed to inhibit NE transport in the TAT-NET-T258/S259 wild-type (WT) peptide injected hemisphere but not in the vehicle or scrambled peptide injected hemisphere. Acute AMPH-induced hyperactivity was significantly reduced in rats receiving intra-accumbal TAT-NET-T258/S259 WT peptide compared to those receiving intra-accumbal vehicle or TAT-NET-T258A/S259A mutant peptide or corresponding TAT-conjugated scrambled peptide. Basal locomotor activity was not altered by peptide infusions alone. Similarly AMPH-induced locomotor sensitization was significantly reduced in rats receiving intra-accumbal TAT-NET-T258/S259 WT peptide prior to AMPH challenge and not in rats receiving the mutant or scrambled peptide. In conditioned place preference (CPP) paradigm, a single bilateral intra-accumbal microinjection of TAT-NET-T258/S259 WT peptide prior to CPP testing significantly reduced AMPH-induced CPP expression. Likewise, a single bilateral intra-accumbal microinjection of TAT-NET-T258/S259 WT peptide prior to drug-challenge significantly attenuated AMPH-primed CPP reinstatement. On the other hand, bilateral intra-accumbal microinjection of scrambled peptide did not affect AMPH-induced CPP expression or reinstatement. These data demonstrate a role for T258/S259-dependent NET regulation in AMPH-induced hyperactivity and sensitization as well as AMPH-induced CPP expression and reinstatement.
Collapse
Affiliation(s)
- Padmanabhan Mannangatti
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Sammanda Ramamoorthy
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | | |
Collapse
|
9
|
Cholinergic System and Oxidative Stress Changes in the Brain of a Zebrafish Model Chronically Exposed to Ethanol. Neurotox Res 2017; 33:749-758. [DOI: 10.1007/s12640-017-9816-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/17/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023]
|