1
|
Liu J, Yang W, Ma Y, Dong Q, Li Y, Hu B. Effective hyper-connectivity network construction and learning: Application to major depressive disorder identification. Comput Biol Med 2024; 171:108069. [PMID: 38394798 DOI: 10.1016/j.compbiomed.2024.108069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 02/25/2024]
Abstract
Functional connectivity (FC) derived from resting-state fMRI (rs-fMRI) is a primary approach for identifying brain diseases, but it is limited to capturing the pairwise correlation between regions-of-interest (ROIs) in the brain. Thus, hyper-connectivity which describes the higher-order relationship among multiple ROIs is receiving increasing attention. However, most hyper-connectivity methods overlook the directionality of connections. The direction of information flow constitutes a pivotal factor in shaping brain activity and cognitive processes. Neglecting this directional aspect can lead to an incomplete understanding of high-order interactions within the brain. To this end, we propose a novel effective hyper-connectivity (EHC) network that integrates direction detection and hyper-connectivity modeling. It characterizes the high-order directional information flow among multiple ROIs, providing a more comprehensive understanding of brain activity. Then, we develop a directed hypergraph convolutional network (DHGCN) to acquire deep representations from EHC network and functional indicators of ROIs. In contrast to conventional hypergraph convolutional networks designed for undirected hypergraphs, DHGCN is specifically tailored to handle directed hypergraph data structures. Moreover, unlike existing methods that primarily focus on fMRI time series, our proposed DHGCN model also incorporates multiple functional indicators, providing a robust framework for feature learning. Finally, deep representations generated via DHGCN, combined with demographic factors, are used for major depressive disorder (MDD) identification. Experimental results demonstrate that the proposed framework outperforms both FC and undirected hyper-connectivity models, as well as surpassing other state-of-the-art methods. The identification of EHC abnormalities through our framework can enhance the analysis of brain function in individuals with MDD.
Collapse
Affiliation(s)
- Jingyu Liu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China
| | - Wenxin Yang
- School of Information Science and Engineering, Lanzhou University, 730000, Lanzhou, China
| | - Yulan Ma
- School of Automation Science and Electrical Engineering, State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, 100191, China
| | - Qunxi Dong
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| | - Yang Li
- School of Automation Science and Electrical Engineering, State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing, 100191, China.
| | - Bin Hu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Ministry of Education, and the School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
2
|
Xie X, Shi Y, Ma L, Yang W, Pu J, Shen Y, Liu Y, Zhang H, Lv F, Hu L. Altered neurometabolite levels in the brains of patients with depression: A systematic analysis of magnetic resonance spectroscopy studies. J Affect Disord 2023; 328:95-102. [PMID: 36521666 DOI: 10.1016/j.jad.2022.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Numerous magnetic resonance spectroscopy (MRS) studies have reported metabolic abnormalities in the brains of patients with depression, although inconsistent results have been reported. The aim of this study was to explore changes in neurometabolite levels in patients with depression across large-scale MRS studies. METHOD A total of 307 differential metabolite entries associated with depression were retrieved from 180 MRS studies retrieved from the Metabolite Network of Depression Database. The vote-counting method was used to identify consistently altered metabolites in the whole brain and specific brain regions of patients with depression. RESULTS Only few differential neurometabolites showed a stable change trend. The levels of total choline (tCho) and the tCho/N-acetyl aspartate (NAA) ratio were consistently higher in the brains of patients with depression, and that the levels of NAA, glutamate and glutamine (Glx), and gamma-aminobutyric acid (GABA) were lower. For specific brain regions, we found lower Glx levels in the prefrontal cortex and lower GABA concentrations in the occipital cortex. We also found lower concentrations of NAA in the anterior cingulate cortex and prefrontal cortex. The levels of tCho were higher in the prefrontal cortex and putamen. CONCLUSION Our results revealed that most altered neurometabolites in previous studies lack of adequate reproducibility. Through vote-counting method with large-scale studies, downregulation of glutamatergic neurometabolites, impaired neuronal integrity, and disturbed membrane metabolism were found in the pathobiology of depression, which contribute to existing knowledge of neurometabolic changes in depression. Further studies based on a larger dataset are needed to confirm our findings.
Collapse
Affiliation(s)
- Xiongfei Xie
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Shi
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Ma
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Wenqin Yang
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiqing Shen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hanping Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China; NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Liangbo Hu
- Department of Radiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Fjærli HH, Sømhovd MJ, Bergly TH. Difference between psychostimulant users and opioid users in recovery of cognitive impairment, measured with the Montreal Cognitive Assessment (MoCA®). JOURNAL OF SUBSTANCE USE 2021. [DOI: 10.1080/14659891.2021.1967487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Gudayol-Ferré E, Duarte-Rosas P, Peró-Cebollero M, Guàrdia-Olmos J. THE EFFECT OF SECOND-GENERATION ANTIDEPRESSANT TREATMENT ON THE EXECUTIVE FUNCTIONS OF PATIENTS WITH MAJOR DEPRESSIVE DISORDER: A META-ANALYSIS STUDY WITH STRUCTURAL EQUATION MODELS. Psychiatry Res 2021; 296:113690. [PMID: 33387749 DOI: 10.1016/j.psychres.2020.113690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 12/25/2020] [Indexed: 10/22/2022]
Abstract
Major depressive disorder (MDD) has been linked to executive functions (EF) deficits that can be improved after pharmacological treatment, but it is unclear whether there is a class of antidepressants that is more effective than others to ameliorate these deficits in MDD. Additionally, the possible effects of clinical and demographic variables on the improvement of MDD EF deficits after pharmacological treatment are currently unknown. Our aim was to study the possible neuropsychological effects of second-generation antidepressant classes on the EF of MDD patients and the potential influence of clinical and demographic variables as moderators of these effects through a meta-analytic approach. Twenty-one papers were included in our study. A structural equation model meta-analysis was performed. The improvement of EF after pharmacological treatment is clinically relevant, but it is incomplete. This effect is influenced by age and years of education of the patients. Selective serotonin reuptake inhibitors (SSRIs) and dual inhibitors are the drugs causing the greatest improvement in EF of MDD patients. Antidepressant class is an important variable linked to EF improvement after MDD treatment, but the degree of improvement in these cognitive functions is strongly influenced by some clinical and demographic variables of patients with depression.
Collapse
Affiliation(s)
- Esteve Gudayol-Ferré
- Facultad de Psicología. Universidad Michoacana San Nicolás de Hidalgo, Morelia, México.
| | - Patricia Duarte-Rosas
- Doctorado de Psicología Clínica y de la Salud. Facultat de Psicologia. Universitat de Barcelona, Barcelona Spain
| | - Maribel Peró-Cebollero
- Facultat de Psicologia, Institut de Neurociències, UB Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain
| | - Joan Guàrdia-Olmos
- Facultat de Psicologia, Institut de Neurociències, UB Institute of Complex Systems, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Bourin M. Neurogenesis and Neuroplasticity in Major Depression: Its Therapeutic Implication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:157-173. [PMID: 33834400 DOI: 10.1007/978-981-33-6044-0_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The neurochemical model of depression, based on monoaminergic theories, does not allow on its own to understand the mechanism of action of antidepressants. This approach does not explain the gap between the immediate biochemical modulations induced by antidepressants and the time required for their clinical action. Several hypotheses have been developed to try to explain more precisely the action of these molecules, each of them involving mechanisms of receptor regulation. At the same time, data on the neuroanatomy of depression converge toward the existence of specific lesions of this pathology. This chapter aims to provide an overview of recent advances in understanding the mechanisms of neural plasticity involved in pathophysiology depression and in its treatment.
Collapse
Affiliation(s)
- Michel Bourin
- Neurobiology of Mood Disorders, University of Nantes, Nantes, France.
| |
Collapse
|
6
|
Regulation of cannabinoid CB 1 and CB 2 receptors, neuroprotective mTOR and pro-apoptotic JNK1/2 kinases in postmortem prefrontal cortex of subjects with major depressive disorder. J Affect Disord 2020; 276:626-635. [PMID: 32871695 DOI: 10.1016/j.jad.2020.07.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/26/2020] [Accepted: 07/05/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dysregulations of endocannabinoids and/or cannabinoid (CB) receptors have been implicated in the pathophysiology and treatment of major depressive disorder (MDD). METHODS CB1 and CB2 receptors, neuroprotective mTOR (mechanistic target of rapamycin) and pro-apoptotic JNK1/2 (c-Jun-N-terminal kinases) were quantified by immunoblotting in postmortem prefrontal cortex of MDD and controls, and further compared in antidepressant (AD)-free and AD-treated subjects. Neuroplastic proteins (PSD-95, Arc, spinophilin) were quantified in MDD brains. RESULTS Total cortical CB1 glycosylated (≈54/64 kDa) receptor was increased in MDD (+20%, n=23, p=0.02) when compared with controls (100%, n=19). This CB1 receptor upregulation was quantified in AD-treated (+23%, n=14, p=0.02) but not in AD-free (+14%, n=9, p=0.34) MDD subjects. In the same MDD cortical samples, CB2 glycosylated (≈45 kDa) receptor was unaltered (all MDD: +11%, n=23, p=0.10; AD-free: +12%, n=9, p=0.31; AD-treated: +10%, n=14, p=0.23). In MDD, mTOR activity (p-Ser2448 TOR/t-TOR) was increased (all MDD: +29%, n=18, p=0.002; AD-free: +33%, n=8, p=0.03; AD-treated: +25%, n=10, p=0.04). In contrast, JNK1/2 activity (p-Thr183/Tyr185/t-JNK) was unaltered in MDD subjects. Cortical PSD-95, Arc, and spinophilin contents were unchanged in MDD. LIMITATIONS A relative limited sample size. Some MDD subjects had been treated with a variety of ADs. The results must be understood in the context of suicide victims with MDD. CONCLUSIONS The upregulation of CB1 receptor density, but not that of CB2 receptor, as well as the increased mTOR activity in PFC/BA9 of subjects with MDD (AD-free/treated) support their contributions in the complex pathophysiology of MDD and in the molecular mechanisms of antidepressant drugs.
Collapse
|
7
|
Liu X, Zhong S, Li Z, Chen J, Wang Y, Lai S, Miao H, Jia Y. Serum copper and zinc levels correlate with biochemical metabolite ratios in the prefrontal cortex and lentiform nucleus of patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2020; 99:109828. [PMID: 31778759 DOI: 10.1016/j.pnpbp.2019.109828] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 11/18/2019] [Accepted: 11/23/2019] [Indexed: 01/09/2023]
Abstract
BACKGROUND Previous studies have demonstrated that copper and zinc metabolism are associated with the development of major depressive disorder (MDD). Abnormal copper and zinc levels may be related to neurotransmission and biochemical metabolism in the brains of MDD patients, especially in the prefrontal cortex (PFC) and lentiform nucleus (LN). However, the mechanism of how copper and zinc levels contribute to neural metabolism in MDD patients remains to be deciphered. This study aimed to correlate copper and zinc levels with biochemical metabolite ratios in the PFC and LN of MDD patients. METHOD Twenty-nine MDD patients and thirty-two healthy control (HC) volunteers were enrolled in this study. Proton magnetic resonance spectroscopy (1H-MRS) was used to determine the levels of the N-acetylaspartate (NAA), choline (Cho) and creatine (Cr) in the brain, and specifically in the PFC and LN regions. Serum copper and zinc levels were measured using atomic emission spectrometry (AES). Afterwards, copper and zinc levels were correlated with biochemical metabolite ratios in the PFC and LN regions of the brain. RESULTS Higher serum copper and lower serum zinc levels with higher copper/zinc ratios were observed in MDD patients. NAA/Cr ratios in the PFC of MDD patients were lower compared to HC volunteers. In MDD patients, serum copper levels were negatively correlated with NAA/Cr ratios in the right PFC and right LN, while copper/zinc ratios were negatively correlated with NAA/Cr ratios in the right LN. No significant differences in serum copper and zinc levels with NAA/Cr ratios in the left PFC and left LN were observed in MDD patients. CONCLUSION Our findings suggest that higher serum copper and lower serum zinc levels may contribute to neuronal impairment by affecting neuronal biochemical metabolite ratios in the right PFC and right LN of MDD patients. Abnormal copper and zinc levels may play an important role in the pathophysiology of MDD.
Collapse
Affiliation(s)
- Xuanjun Liu
- Department of Neurology, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shuming Zhong
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Zhinan Li
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China; Department of Psychiatry, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510631, China
| | | | - Ying Wang
- Medical Imaging Center of The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Shunkai Lai
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | | | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, Guangzhou 510630, China.
| |
Collapse
|
8
|
Antidepressant effects of ginsenoside Rf on behavioral change in the glial degeneration model of depression by reversing glial loss. J Ginseng Res 2019; 44:603-610. [PMID: 32617040 PMCID: PMC7322760 DOI: 10.1016/j.jgr.2019.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Revised: 07/08/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Depression is a common neuropsychiatric disease that shows astrocyte pathology. Ginsenoside Rf (G-Rf) is a saponin found in Panax ginseng which has been used to treat neuropsychiatric diseases. We aimed to investigate antidepressant properties of G-Rf when introduced into the L-alpha-aminoadipic acid (L-AAA)–infused mice model which is representative of a major depressive disorder that features diminished astrocytes in the brain. Methods L-AAA was infused into the prefrontal cortex (PFC) of mice to induce decrease of astrocytes. Mice were orally administered G-Rf (20 mg/kg) as well as vehicle only or imipramine (20 mg/kg) as controls. Depression-like behavior of mice was evaluated using forced swimming test (FST) and tail suspension test (TST). We observed recovery of astroglial impairment and increased proliferative cells in the PFC and its accompanied change in the hippocampus by Western blot and immunohistochemistry to assess the effect of G-Rf. Results After injection of L-AAA into the PFC, mice showed increased immobility time in FST and TST and loss of astrocytes without significant neuronal change in the PFC. G-Rf–treated mice displayed significantly more decreased immobility time in FST and TST than did vehicle-treated mice, and their immobility time almost recovered to those of the sham mice and imipramine-treated mice. G-Rf upregulated glial fibrillary acidic protein (GFAP) expression and Ki-67 expression in the PFC reduced by L-AAA and also alleviated astroglial change in the hippocampus. Conclusion G-Rf markedly reversed depression-like behavioral changes and exhibited protective effect against the astrocyte ablation in the PFC induced by L-AAA. These protective properties suggest that G-Rf might be a therapeutic agent for major depressive disorders.
Collapse
|
9
|
Li J, Yang Y, Zhu Y, Zhou L, Han Y, Yin T, Cheng Z, Zhang G, Shen Y, Chen J. Towards characterizing the regional cerebral perfusion in evaluating the severity of major depression disorder with SPECT/CT. BMC Psychiatry 2018; 18:70. [PMID: 29562903 PMCID: PMC5863480 DOI: 10.1186/s12888-018-1654-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/08/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a common mental disorder worldwide, but now there is a lack of clinically effective assessment and management of MDD. In this study, we used technetium-99 m ethylcysteinate dimer ([99mTc]ECD) SPECT/CT to characterize the regional cerebral blood flow (rCBF) status of MDD patients, and to explore an objective image assessment model of MDD which is non- or minimally-invasive, convenient and accurate in a clinical setting. METHODS The severity of MDD was assessed by three trained psychiatrists, based on scores obtained from HAMD and HAMA. [99mTc]ECD rCBF SPECT/CT was performed in 20 healthy controls and 74 unipolar MDD patients before receiving the treatment. The CT attenuation-corrected SPECT images data were automatically registered, analyzed simultaneously by 3D-SSP and eZIS. RESULTS The mean score of HAMD and HAMA in the MDD patients was 25.49 ± 6.00, and 23.12 ± 5.83, respectively. There was a positive correlation between two scores. The MDD women had higher HAMD scores than MDD men. The decreased rCBF of MDD patients in frontal lobes (bilateral B11, B47 and right B4, B6, B10, B46), temporal lobe (right B21, B41, B42) and cingulated cortex (bilateral B24, B33), while their increased rCBF in occipital lobe (bilateral B17, B19 and left B18). Additionally, the depression severity was negatively correlated with decreased rCBF in left ventral anterior cingulate cortex B24, and was positively correlated with decreased rCBF in left inferior prefrontal gyrus B47 and increased rCBF in right associative visual cortex B19. The anxiety severity was negatively correlated with decreased rCBF in left subgenual cortex B25. CONCLUSIONS Although the mechanism underlying the correlation is not yet fully understood, our findings indicated that the rCBF SPECT/CT may provide an objective assessment for MDD severity. It might be used monitoring therapeutic efficacy in the management of MDD.
Collapse
Affiliation(s)
- Jinming Li
- 0000 0004 0368 7223grid.33199.31Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 China ,0000 0004 1758 2270grid.412632.0Department of Nuclear Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei Province 430060 China
| | - Yuan Yang
- 0000 0004 0368 7223grid.33199.31Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 China
| | - Yuankai Zhu
- 0000 0004 0368 7223grid.33199.31Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 China
| | - Liqiang Zhou
- 0000 0004 0368 7223grid.33199.31Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 China
| | - Yunfeng Han
- 0000 0004 0368 7223grid.33199.31Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 China
| | - Tao Yin
- 0000 0004 0368 7223grid.33199.31Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 China
| | - Zhaoting Cheng
- 0000 0004 0368 7223grid.33199.31Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 China
| | - Guopeng Zhang
- 0000 0004 0368 7223grid.33199.31Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 China
| | - Yanxia Shen
- 0000 0004 0368 7223grid.33199.31Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030 China
| | - Jing Chen
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, 430030, China.
| |
Collapse
|
10
|
Abstract
The evolutionary success of Homo sapiens is attributed to the following two factors: the upright body posture (which freed our hands and allowed unconstrained operation of various objects) and intensive development of the frontal lobes, mainly the Broca area of the brain. Underlining the uniqueness of the human brain, we often forget about the fact that the frontal lobes – the most developed part of the brain – are at the same time our greatest weakness, exposed to the action of damaging factors in our evolving environment. Is depression the cost of evolution?
Collapse
Affiliation(s)
- Piotr Gałecki
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| | - Monika Talarowska
- Department of Adult Psychiatry, Medical University of Łódź, Łódź, Poland
| |
Collapse
|