1
|
Liu Y, Li Y, Li J, Rao H, Sun J, Xiu J, Wu N. Gypenosides alleviate oxidative stress in the hippocampus, promote mitophagy, and mitigate depressive-like behaviors induced by CUMS via SIRT1. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118823. [PMID: 39343109 DOI: 10.1016/j.jep.2024.118823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/01/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The use and efficacy of Gynostemma [Gynostemma pentaphyllum (Thunb.) Makino], a versatile traditional Chinese herb, was first documented in the renowned pharmacopoeia, "Compendium of Materia Medica". Gypenosides (Gps), saponin components are the primary constituents responsible for its biological activities and clinical effects, which include antioxidant, immunoregulatory, antitumor, and neuroprotective properties. Pharmacological studies have shown that Gps has the potential to combat depression. However, the exact molecular mechanisms underlying its antidepressant effects remain unclear. AIM OF THE STUDY This study aims to elucidate the mechanisms underlying the antidepressant effects of Gps through antioxidative stress, utilizing an integrated approach that includes network pharmacology, molecular simulations, and experimental validation. MATERIALS AND METHODS Sprague-Dawley rats were subjected to chronic unpredictable mild stress (CUMS) and were orally administered doses of Gps (50 and 100 mg/kg) and fluoxetine (10 mg/kg). The regulatory effects of Gps on depression-like behaviors in CUMS rats and their impact on oxidative stress levels in the hippocampus region were evaluated. Network pharmacology was used to investigate the mechanisms by which Gps affects oxidative stress in depression, and was accompanied by molecular docking and dynamics simulations. CUMS rats were treated orally with Gps (100 mg/kg) and injected with EX527 for rescue experiments to validate the role of SIRT1 in antioxidative stress and evaluate the impact of Gps on mitophagy. RESULTS Gps ameliorated depression-like behaviors induced by CUMS in rats. The improvements observed included an increased sucrose preference, reduced immobility time in the tail suspension and forced swim tests, and an increased movement distance in the open-field test. Additionally, Gps effectively reduced reactive oxygen species, malondialdehyde, and 8-hydroxy-2'-deoxyguanosine levels in the hippocampus, while increasing the contents of ATP, catalase, superoxide dismutase, and glutathione, indicating an increased capacity for antioxidative stress in the hippocampus. Furthermore, Gps increased the number of neuronal cells in the hippocampal CA1 region and the level of mitochondrial autophagy, with SIRT1 as a potential key target. Inhibition of SIRT1 expression by exposure to EX527 reversed the beneficial effects of Gps, further validating the critical role of SIRT1 in the regulation of oxidative stress and improving depression-like behavior. CONCLUSION Gps improved the antioxidative stress capacity of the hippocampus and promoted mitophagy in CUMS rats through SIRT1, thus protecting hippocampal neurons and improving depression-like behavior.
Collapse
Affiliation(s)
- Yuhang Liu
- Clinical Medical College of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Yingfeng Li
- Clinical Medical College of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jingqi Li
- Clinical Medical College of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Hui Rao
- Clinical Medical College of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jianfei Sun
- Laboratory of Chemistry and Biochemistry, Basic Medical College of Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Jiangfan Xiu
- Laboratory of Chemistry and Biochemistry, Basic Medical College of Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| | - Ning Wu
- Laboratory of Chemistry and Biochemistry, Basic Medical College of Guizhou Medical University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
2
|
Guo M, Pei WJ, Liu L, Chen K, Cheng Y, Piao XL. Neuroprotective effects of gypenosides on LPS-induced anxiety and depression-like behaviors. Int Immunopharmacol 2024; 143:113367. [PMID: 39413644 DOI: 10.1016/j.intimp.2024.113367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
AIM Depression, a prevalent mental disorder, significantly impairs the quality of life and social functioning. Targeting neuroinflammation is a promising therapeutic approach, highlighting the need for natural neuroprotective agents. Gypenosides (Gyp) from Gynostemma pentaphyllum exhibit anxiolytic and antidepressant effects, yet the underlying mechanisms remain unclear. We investigated whether Gyp, isolated and purified by our laboratory, can exert neuroprotective effects by modulating neuroinflammation in the hippocampus and prefrontal cortex (PFC) of mice with LPS-induced anxiety and depression, thereby ameliorating behavioral phenotypes. METHODS LPS (1 mg/kg, i.p.) was used to induce anxiety and depression-like behaviors. Gyp was administered at 50, 100, or 200 mg/kg in pretreatment, with fluoxetine hydrochloride (Flu) as a positive control, for 10 consecutive days. RESULTS Gyp, especially at 100 mg/kg, significantly ameliorated LPS-induced anxiety and depression in mice, normalizing cytokine expression in the hippocampus and PFC, with IL-1β showing the most pronounced regulation (Hippocampus: RatioGyp-100/LPS = 30.73 %, PFC: RatioGyp-100/LPS = 55.89 %). Gyp also reversed LPS-induced neuronal loss and necrosis, reduced glial cell activation, and prevented the transition of microglia to the M1 phenotype. Mechanistically, Gyp suppressed the activation of the NLRP3 inflammasome in the PFC, and modulated hippocampal synaptic protein loss, thereby mediating neuroinflammation. CONCLUSIONS Gyp improved anxiety and depression in LPS-induced mice, which may be achieved by balancing systemic inflammatory levels, regulating glial cell activation and phenotypic polarization, regulating hippocampal synaptic plasticity, and suppressing the NLRP3/Caspase-1/ASC signaling pathway in the PFC.
Collapse
Affiliation(s)
- Mei Guo
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China; School of Pharmacy, Minzu University of China, Beijing 100081, China; Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Wen-Jing Pei
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China; School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Liming Liu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Institute of National Security, Minzu University of China, Beijing 100081, China
| | - Kexuan Chen
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Xiang-Lan Piao
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China; School of Pharmacy, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
3
|
Liang G, Lee YZ, Kow ASF, Lee QL, Cheng Lim LW, Yusof R, Tham CL, Ho YC, Lee MT. Neuroprotective effects of Gypenosides: A review on preclinical studies in neuropsychiatric disorders. Eur J Pharmacol 2024; 978:176766. [PMID: 38908668 DOI: 10.1016/j.ejphar.2024.176766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/27/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Gynostemma pentaphyllum (Thunb.) Makino is a perennial creeping herb belonging to the Cucurbitaceae family that has a long history of usage in traditional oriental medicine. Gypenosides are the primary bioactive compounds in Gynostemma pentaphyllum. Because of the medicinal value of gypenosides, functional food and supplements containing gypenosides have been promoted and consumed with popularity, especially among Asian communities. This review presented the progress made in the research of pharmacological properties of gypenosides on diseases of the nervous system and their possible mechanism of action. To date, preclinical studies have demonstrated the therapeutic effects of gypenosides in alleviating neuropsychiatric disorders like depression, Parkinson's disease, Alzheimer's disease, secondary dementia, stroke, optic neuritis, etc. Pharmacological studies have discovered that gypenosides can modulate various major signaling pathways like NF-κB, Nrf2, AKT, ERK1/2, contributing to the neuroprotective properties. However, there is a dearth of clinical research on gypenosides, with current investigations on the compounds being mainly conducted in vitro and on animals. Future studies focusing on isolating and purifying novel gypenosides and investigations on exploring the potential molecular mechanism underlying their biological activities are warranted, which may serve as a foundation for further clinical trials for the betterment of human health.
Collapse
Affiliation(s)
- Gengfan Liang
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| | - Yu Zhao Lee
- Office of Postgraduate Studies, UCSI University, Kuala Lumpur, 56000, Malaysia; Faculty of Applied Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| | | | - Qi Long Lee
- School of Health Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | - Luis Wei Cheng Lim
- School of Health Sciences, International Medical University, Kuala Lumpur, 57000, Malaysia.
| | - Rohana Yusof
- Faculty of Applied Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia.
| | - Chau Ling Tham
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang , 43400, Selangor, Malaysia; Natural Medicine and Product Research Laboratory (NaturMeds), Institute of Bioscience, Universiti Putra Malaysia, Serdang , 43400, Selangor, Malaysia.
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City, 82445, Taiwan.
| | - Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia; Centre of Research for Mental Health and Well-being, UCSI University, Kuala Lumpur, 56000, Malaysia.
| |
Collapse
|
4
|
De Assis GG, Murawska-Ciałowicz E. BDNF Modulation by microRNAs: An Update on the Experimental Evidence. Cells 2024; 13:880. [PMID: 38786102 PMCID: PMC11119608 DOI: 10.3390/cells13100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/06/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024] Open
Abstract
MicroRNAs can interfere with protein function by suppressing their messenger RNA translation or the synthesis of its related factors. The function of brain-derived neurotrophic factor (BDNF) is essential to the proper formation and function of the nervous system and is seen to be regulated by many microRNAs. However, understanding how microRNAs influence BDNF actions within cells requires a wider comprehension of their integrative regulatory mechanisms. Aim: In this literature review, we have synthesized the evidence of microRNA regulation on BDNF in cells and tissues, and provided an analytical discussion about direct and indirect mechanisms that appeared to be involved in BDNF regulation by microRNAs. Methods: Searches were conducted on PubMed.gov using the terms "BDNF" AND "MicroRNA" and "brain-derived neurotrophic factor" AND "MicroRNA", updated on 1 September 2023. Papers without open access were requested from the authors. One hundred and seventy-one papers were included for review and discussion. Results and Discussion: The local regulation of BDNF by microRNAs involves a complex interaction between a series of microRNAs with target proteins that can either inhibit or enhance BDNF expression, at the core of cell metabolism. Therefore, understanding this homeostatic balance provides resources for the future development of vector-delivery-based therapies for the neuroprotective effects of BDNF.
Collapse
Affiliation(s)
- Gilmara Gomes De Assis
- Department of Restorative Dentistry, Araraquara School of Dentistry, São Paulo State University (UNESP), Araraquara 14801-385, SP, Brazil
| | - Eugenia Murawska-Ciałowicz
- Department of Physiology and Biochemistry, Wroclaw University of Health and Sport Sciences, 51-612 Wrocław, Poland;
| |
Collapse
|
5
|
Deng WY, Zhou CL, Zeng MY. Gypenoside XVII inhibits ox-LDL-induced macrophage inflammatory responses and promotes cholesterol efflux through activating the miR-182-5p/HDAC9 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117070. [PMID: 37625608 DOI: 10.1016/j.jep.2023.117070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 08/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The deposition of lipids in macrophages and the subsequent formation of foam cells significantly increase the risk of developing atherosclerosis (As). Targeting ATP-binding cassette transporter A1/G1 (ABCA1/ABCG1)-mediated reverse cholesterol transport is crucial for regulating foam cell formation. Therefore, the search for natural chemical components with the ability to regulate ABCA1/G1 is a potential drug target to combat the development of atherosclerosis. Gypenoside XVII (GP-17), a gypenoside monomer extracted from gynostemma pentaphyllum, presents an efficient anti-atherosclerosis function. However, the suppressed formation mechanism of foam cells by GP-17 remains elusive. AIM OF STUDY To explore the protective activities of GP-17 in ox-LDL-induced THP-1 macrophage-derived foam cells through modulating the promotion of cholesterol efflux and alleviation of inflammation. MATERIALS AND METHODS MTT was used to detect cell viability. Bodipy493/503 and oil red O staining were performed to measure cell lipid deposition. Enzymatic assay was used to measure intracellular cholesterol measurement. Cholesterol efflux/uptake were determined by cholesterol efflux assay and Dil-ox-LDL uptake assay. Inflammatory cytokines were measured by ELISA. Bioinformatics prediction and dual luciferase reporter assay were performed to validate miR-182-5p targeting HDAC9. Relative protein levels were evaluated by immunoblotting and relative gene levels were determined by quantitative real-time PCR. RESULTS Our results showed that GP-17 upregulated the expression of ABCA1, ABCG1 and miR-182-5p, but reduced HDAC9 expression levels in lipid-loaded macrophages, which promoted cholesterol efflux and inhibited lipid deposition. Additionally, GP-17 promoted the M2 phenotype of the macrophage and suppressed the inflammatory response in THP-1 macrophage-derived foam cells. Overexpression of HDAC9 or suppression of miR-182-5p eliminated the effects of ABCA1/G1 expression, lipid deposition and pro-inflammatory response. CONCLUSION These findings suggest that GP-17 exerts a beneficial effect on macrophage lipid deposition and inflammation responses through activating the miR-182-5p/HDAC9 signaling pathway.
Collapse
Affiliation(s)
- Wen-Yi Deng
- Institute of Clinical Medicine, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China
| | - Cheng-Long Zhou
- Shunde Women and Children's Hospital, Guangdong Medical University, Foshan, 528300, Guangdong, PR China
| | - Meng-Ya Zeng
- Cardiovascular Disease Clinical Center, The Second Affiliated Hospital of Hainan Medical University, Haikou, 570100, Hainan, PR China.
| |
Collapse
|
6
|
Musazzi L, Mingardi J, Ieraci A, Barbon A, Popoli M. Stress, microRNAs, and stress-related psychiatric disorders: an overview. Mol Psychiatry 2023; 28:4977-4994. [PMID: 37391530 DOI: 10.1038/s41380-023-02139-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/23/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023]
Abstract
Stress is a major risk factor for psychiatric disorders. During and after exposure to stressors, the stress response may have pro- or maladaptive consequences, depending on several factors related to the individual response and nature of the stressor. However, the mechanisms mediating the long-term effects of exposure to stress, which may ultimately lead to the development of stress-related disorders, are still largely unknown. Epigenetic mechanisms have been shown to mediate the effects of the environment on brain gene expression and behavior. MicroRNAs, small non-coding RNAs estimated to control the expression of about 60% of all genes by post-transcriptional regulation, are a fundamental epigenetic mechanism. Many microRNAs are expressed in the brain, where they work as fine-tuners of gene expression, with a key role in the regulation of homeostatic balance, and a likely influence on pro- or maladaptive brain changes. Here we have selected a number of microRNAs, which have been strongly implicated as mediators of the effects of stress in the brain and in the development of stress-related psychiatric disorders. For all of them recent evidence is reported, obtained from rodent stress models, manipulation of microRNAs levels with related behavioral changes, and clinical studies of stress-related psychiatric disorders. Moreover, we have performed a bioinformatic analysis of the predicted brain-expressed target genes of the microRNAs discussed, and found a central role for mechanisms involved in the regulation of synaptic function. The complex regulatory role of microRNAs has suggested their use as biomarkers for diagnosis and treatment response, as well as possible therapeutic drugs. While, microRNA-based diagnostics have registered advancements, particularly in oncology and other fields, and many biotech companies have launched miRNA therapeutics in their development pipeline, the development of microRNA-based tests and drugs for brain disorders is comparatively slower.
Collapse
Affiliation(s)
- Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Alessandro Ieraci
- Department of Theoretical and Applied Sciences, eCampus University, Novedrate, Italy
- Molecular Pharmacology, Cellular and Behavioral Physiology; Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy
| | - Alessandro Barbon
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmaceutiche, Università Degli Studi di Milano, Milano, Italy.
| |
Collapse
|
7
|
Yuan M, Yang B, Rothschild G, Mann JJ, Sanford LD, Tang X, Huang C, Wang C, Zhang W. Epigenetic regulation in major depression and other stress-related disorders: molecular mechanisms, clinical relevance and therapeutic potential. Signal Transduct Target Ther 2023; 8:309. [PMID: 37644009 PMCID: PMC10465587 DOI: 10.1038/s41392-023-01519-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/14/2023] [Accepted: 05/31/2023] [Indexed: 08/31/2023] Open
Abstract
Major depressive disorder (MDD) is a chronic, generally episodic and debilitating disease that affects an estimated 300 million people worldwide, but its pathogenesis is poorly understood. The heritability estimate of MDD is 30-40%, suggesting that genetics alone do not account for most of the risk of major depression. Another factor known to associate with MDD involves environmental stressors such as childhood adversity and recent life stress. Recent studies have emerged to show that the biological impact of environmental factors in MDD and other stress-related disorders is mediated by a variety of epigenetic modifications. These epigenetic modification alterations contribute to abnormal neuroendocrine responses, neuroplasticity impairment, neurotransmission and neuroglia dysfunction, which are involved in the pathophysiology of MDD. Furthermore, epigenetic marks have been associated with the diagnosis and treatment of MDD. The evaluation of epigenetic modifications holds promise for further understanding of the heterogeneous etiology and complex phenotypes of MDD, and may identify new therapeutic targets. Here, we review preclinical and clinical epigenetic findings, including DNA methylation, histone modification, noncoding RNA, RNA modification, and chromatin remodeling factor in MDD. In addition, we elaborate on the contribution of these epigenetic mechanisms to the pathological trait variability in depression and discuss how such mechanisms can be exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Biao Yang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gerson Rothschild
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, 10032, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, NY, 10032, USA
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, 10032, USA
- Department of Radiology, Columbia University, New York, NY, 10032, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Center for Integrative Neuroscience and Inflammatory Diseases, Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Xiangdong Tang
- Sleep Medicine Center, Department of Respiratory and Critical Care Medicine, Mental Health Center, Translational Neuroscience Center, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Canhua Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Chuang Wang
- Department of Pharmacology, and Provincial Key Laboratory of Pathophysiology in School of Medicine, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Zhang L, Wang X, He S, Zhang F, Li Y. Gypenosides suppress fibrosis of the renal NRK-49F cells by targeting miR-378a-5p through the PI3K/AKT signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116466. [PMID: 37031821 DOI: 10.1016/j.jep.2023.116466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence of renal fibrosis caused by chronic kidney disease is increasing year by year. Preventing the activation and conversion of kidney-intrinsic fibroblasts to a myofibroblast phenotype is an important target for blocking the development of renal interstitial fibrosis. Our team established a stable renal interstitial fibrosis cell model in the early stage, and the screening results showed that GPs has good anti-fibrosis potential. At this stage, only a few literatures have reported its anti-fibrosis effect, and the mechanism of action is still unclear. AIM OF THE STUDY The massive synthesis and secretion of extracellular-matrix (ECM) components by activated fibroblasts in the kidneys causes irreversible renal interstitial fibrosis. Gypenosides (GPs) have been shown to decelerate this process, in which micro RNAs (miRNAs) play an important regulatory role. This study aimed to evaluate the mechanism underlying the suppressive effect of GPs on renal fibrosis. MATERIALS AND METHODS This study used TGF-β1-stimulated NRK-49F renal cells as an in-vitro model of renal interstitial fibrosis. First, the concentration range of GPs that significantly affects the cytoactive was determined. Then, the anti-fibrotic effects of various concentrations of GPs in the in-vitro model were assessed via immunofluorescence, western blotting, and quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Non-coding-RNA sequencing combined with bioinformatics was used to predict the mechanistic basis of the anti-fibrotic effect of GPs, and qRT-PCR was used to verify the sequencing results and bioinformatic predictions. The identified relationships of the anti-fibrotic effect of GPs with miR-378a-5p and the PI3K/AKT signaling were evaluated using a miR-NC mimic and the PI3K inhibitor LY294002 as controls, respectively. RESULTS TGF-β1 stimulation up-regulated α-SMA, COL1, and COL3 in NRK-49F cells, and this effect was suppressed by GPs. Additionally, TGF-β1 stimulation significantly changed the expression levels of 151 miRNAs, and GPs significantly suppressed the effect of TGF-β1 on the levels of 18 of these miRNAs. Among them, miR-3588 and miR-378a-5p were down-regulated, and miR-135b-5p and miR-3068-5p were up-regulated upon TGF-β1 induction. Of these miRNAs, miR-378a-5p was predicted to target the mRNAs of numerous proteins mainly enriched in the PI3K/AKT signaling pathway. The miRNA transfection experiments with the miR-NC mimic and PI3K inhibitor as controls showed that miR-378a-5p overexpression could suppress the TGF-β1-induced up-regulation of α-SMA, COL1, PI3K, and AKT, including the phosphorylated form (p-AKT). CONCLUSION GPs inhibit the PI3K/AKT signaling by up-regulating miR-378a-5p in TGF-β1-stimulated NRK-49F cells and thereby reduce their massive secretion of ECM components. Given that this in-vitro model of renal interstitial fibrosis closely mimics the in-vivo pathogenesis, our results most likely apply to the in-vivo conditions.
Collapse
Affiliation(s)
- Lan Zhang
- Chinese Medicine School, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| | - Xiting Wang
- Academy of Mathematics and Systems Science, Chinese Academy of Sciences, No. 55 Zhongguancun East Road, Beijing, 100190, China.
| | - Shuangshuang He
- Chinese Medicine School, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| | - Fang Zhang
- Chinese Medicine School, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| | - Yu Li
- Chinese Medicine School, Beijing University of Chinese Medicine, No.11 East Road, North 3rd Ring Road, Beijing, 100029, China.
| |
Collapse
|
9
|
Huang J, Chen D, Lin X, Yang C, Lin X. miRNA-124 alleviated memory impairment induced by d-galactose rapidly in male rats via microglia polarization. Hippocampus 2023; 33:96-111. [PMID: 36541921 DOI: 10.1002/hipo.23491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/25/2022] [Accepted: 11/19/2022] [Indexed: 12/24/2022]
Abstract
MiRNA-124 has been considered to play a significant role in the formation of memory and a variety of neurodegenerative diseases. In this study, the aim is to verify whether miRNA-124 is involved in memory impairment induced by d-galactose, and explore the underlying neuroprotective mechanism. The results revealed that rapid administration of d-galactose (1000 mg/kg subcutaneously) in mice caused memory impairments, as determined by Novel Object Recognition test, Morris Water Maze test, and histological assessments. MiRNA-124 agomir is stereotactic injected into hippocampus, thus alleviated memory impairment induced by d-galactose and reversed the neural damage and neuroinflammation. Furthermore, the results of molecular biological analysis and immunohistochemistry revealed that miRNA-124 markedly reduced neuroinflammation induced by d-galactose through polarization of microglia as determined by detection of ionized calcium binding adapter molecule 1 (Iba-1), inducible nitric oxide synthase (iNOS) and arginase-1(Arg-1), which also downregulated inflammatory mediators, including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α), and upregulated IL-4 and IL-10. Hence, taken together, the results of the present study suggested that miRNA-124 showed a significant negative correlation with memory impairment and neuroinflammation induced by d-galactose rapidly, possibly via polarization of microglia from M1 to M2. It is possible that miRNA-124 can be used as a new target for the pathogenesis of memory impairment, including age-associated neurodegenerative diseases such as Alzheimer's disease.
Collapse
Affiliation(s)
- Jinghao Huang
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Dengchao Chen
- Department of Oral Implantology, School and Hospital of Stomatology, Fujian Stomatological Hospital, Fujian Medical University, Fuzhou, China
| | - Xinyi Lin
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chengxia Yang
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xianzhong Lin
- Department of Anesthesiology, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Department of Anesthesiology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, China.,Anesthesiology Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
10
|
Abdolahi S, Zare-Chahoki A, Noorbakhsh F, Gorji A. A Review of Molecular Interplay between Neurotrophins and miRNAs in Neuropsychological Disorders. Mol Neurobiol 2022; 59:6260-6280. [PMID: 35916975 PMCID: PMC9463196 DOI: 10.1007/s12035-022-02966-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/17/2022] [Indexed: 01/10/2023]
Abstract
Various neurotrophins (NTs), including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4, promote cellular differentiation, survival, and maintenance, as well as synaptic plasticity, in the peripheral and central nervous system. The function of microRNAs (miRNAs) and other small non-coding RNAs, as regulators of gene expression, is pivotal for the appropriate control of cell growth and differentiation. There are positive and negative loops between NTs and miRNAs, which exert modulatory effects on different signaling pathways. The interplay between NTs and miRNAs plays a crucial role in the regulation of several physiological and pathological brain procedures. Emerging evidence suggests the diagnostic and therapeutic roles of the interactions between NTs and miRNAs in several neuropsychological disorders, including epilepsy, multiple sclerosis, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, schizophrenia, anxiety disorders, depression, post-traumatic stress disorder, bipolar disorder, and drug abuse. Here, we review current data regarding the regulatory interactions between NTs and miRNAs in neuropsychological disorders, for which novel diagnostic and/or therapeutic strategies are emerging. Targeting NTs-miRNAs interactions for diagnostic or therapeutic approaches needs to be validated by future clinical studies.
Collapse
Affiliation(s)
- Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Ameneh Zare-Chahoki
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany.
- Department of Neurology and Institute for Translational Neurology, Westfälische Wilhelms-Universität, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149, Münster, Germany.
| |
Collapse
|
11
|
Zhang MM, Huo GM, Cheng J, Zhang QP, Li NZ, Guo MX, Liu Q, Xu GH, Zhu JX, Li CF, Zhou F, Yi LT. Gypenoside XVII, an Active Ingredient from Gynostemma Pentaphyllum, Inhibits C3aR-Associated Synaptic Pruning in Stressed Mice. Nutrients 2022; 14:nu14122418. [PMID: 35745148 PMCID: PMC9228113 DOI: 10.3390/nu14122418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 12/05/2022] Open
Abstract
Gynostemma pentaphyllum is a herbal medicine widely used in Asian countries, and its saponin extracts have been shown to possess potent anti-inflammatory effects. Gypenoside XVII, an active ingredient isolated from Gynostemma pentaphyllum, has been found to alleviate the inflammation induced by LPS in the BV2 microglia, according to our preliminary study. This study aims to evaluate whether Gypenoside XVII could attenuate depression-like symptoms in vivo and tries to demonstrate the involvement of the complement regulation in its antidepressant-like effect. The results showed that Gypenoside XVII significantly attenuated depression-like behaviors in the forced swimming test, tail suspension test and sucrose preference test. It also alleviated the acute stress-induced hyperactivity of serum corticosterone levels. Additionally, Gypenoside XVII significantly inhibited the activation of microglia and the expression of C3 in mice exposed to chronic unpredictable mild stress (CUMS). Meanwhile, the activation of C3aR/STAT3 signaling and the expression of proinflammatory cytokines was reversed by Gypenoside XVII. Moreover, CUMS induced excessive synaptic pruning by activating microglia, while Gypenoside XVII restored it in the prefrontal cortex. Our data demonstrated that Gypenoside XVII, the active ingredient of Gynostemma pentaphyllum, produced the antidepressant-like effects in mice, which was mediated by the inhibition of complement C3/C3aR/STAT3/cytokine signaling in the prefrontal cortex.
Collapse
Affiliation(s)
- Man-Man Zhang
- Department of Chemical and Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China; (M.-M.Z.); (J.C.); (Q.L.)
| | - Guo-Ming Huo
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China;
| | - Jie Cheng
- Department of Chemical and Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China; (M.-M.Z.); (J.C.); (Q.L.)
| | - Qiu-Ping Zhang
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, China; (Q.-P.Z.); (C.-F.L.)
| | - Na-Zhi Li
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; (N.-Z.L.); (M.-X.G.); (J.-X.Z.)
| | - Min-Xia Guo
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; (N.-Z.L.); (M.-X.G.); (J.-X.Z.)
| | - Qing Liu
- Department of Chemical and Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China; (M.-M.Z.); (J.C.); (Q.L.)
| | - Guang-Hui Xu
- Xiamen Medicine Research Institute, Xiamen 361008, China;
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China; (N.-Z.L.); (M.-X.G.); (J.-X.Z.)
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, China; (Q.-P.Z.); (C.-F.L.)
| | - Feng Zhou
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China;
- Correspondence: (F.Z.); (L.-T.Y.)
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, China; (M.-M.Z.); (J.C.); (Q.L.)
- Correspondence: (F.Z.); (L.-T.Y.)
| |
Collapse
|
12
|
Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Lahera G, Monserrat J, Muñoz-Merida L, Mora F, Rodríguez-Jiménez R, Fernandez-Rojo S, Quintero J, Álvarez-Mon M. MicroRNAs as Critical Biomarkers of Major Depressive Disorder: A Comprehensive Perspective. Biomedicines 2021; 9:biomedicines9111659. [PMID: 34829888 PMCID: PMC8615526 DOI: 10.3390/biomedicines9111659] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
Abstract
Major Depressive Disorder (MDD) represents a major global health concern, a body-mind malady of rising prevalence worldwide nowadays. The complex network of mechanisms involved in MDD pathophysiology is subjected to epigenetic changes modulated by microRNAs (miRNAs). Serum free or vesicles loaded miRNAs have starred numerous publications, denoting a key role in cell-cell communication, systematically and in brain structure and neuronal morphogenesis, activity and plasticity. Upregulated or downregulated expression of these signaling molecules may imply the impairment of genes implicated in pathways of MDD etiopathogenesis (neuroinflammation, brain-derived neurotrophic factor (BDNF), neurotransmitters, hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, circadian rhythms...). In addition, these miRNAs could serve as potential biomarkers with diagnostic, prognostic and predictive value, allowing to classify severity of the disease or to make decisions in clinical management. They have been considered as promising therapy targets as well and may interfere with available antidepressant treatments. As epigenetic malleable regulators, we also conclude emphasizing lifestyle interventions with physical activity, mindfulness and diet, opening the door to new clinical management considerations.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
- Correspondence:
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis Muñoz-Merida
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
| | - Fernando Mora
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research Hospital 12 de Octubre (imas 12), CIBERSAM, 28041 Madrid, Spain
| | - Sonia Fernandez-Rojo
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Javier Quintero
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
13
|
Sun T, Duan L, Li J, Guo H, Xiong M. Gypenoside XVII protects against spinal cord injury in mice by regulating the microRNA‑21‑mediated PTEN/AKT/mTOR pathway. Int J Mol Med 2021; 48:146. [PMID: 34132355 PMCID: PMC8208621 DOI: 10.3892/ijmm.2021.4979] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/01/2021] [Indexed: 12/14/2022] Open
Abstract
Gypenoside XVII (GP‑17), one of the dominant active components of Gynostemma pentaphyllum, has been studied extensively and found to have a variety of pharmacological effects, including neuroprotective properties. However, the neuroprotective effects of GP‑17 against spinal cord injury (SCI), as well as its underlying mechanisms of action remain unknown. The present study aimed to investigate the effects of GP‑17 on motor recovery and histopathological changes following SCI and to elucidate the mechanisms underlying its neuroprotective effects in a mouse model of SCI. Motor recovery was evaluated using the Basso, Beattie and Bresnahan (BBB) locomotor rating scale. Spinal cord edema was detected by the wet/dry weight method. H&E staining was performed to examine the effect of GP‑17 on spinal cord damage. Inflammatory response production was assessed by ELISA. Candidate miRNAs were identified following the integrated analysis of the Gene Expression Omnibus (GEO) dataset GSE67515. Western blot analysis was also performed to detect the expression levels of associated proteins. The results revealed that GP‑17 treatment improved functional recovery, and suppressed neuronal apoptosis and the inflammatory response in the mouse model of SCI. Moreover, it was observed that miR‑21 expression was downregulated following SCI, whereas it was upregulated following the administration of GP‑17. The inhibition of miR‑21 eliminated the protective effects of GP‑17 on SCI‑induced neuronal apoptosis and the inflammatory response. In addition, phosphatase and tensin homologue (PTEN), a key molecule in the activation of the protein kinase B (AKT)/mammalian target of rapamycin (mTOR) pathway, was identified as a target of miR‑21, and PTEN expression was downregulated by GP‑17 through miR‑21. Furthermore, the PTEN/AKT/mTOR pathway was inactivated by SCI, whereas it was re‑activated by GP‑17 through the regulation of miR‑21 in mice with SCI. On the whole, the findings of the present study suggest that GP‑17 plays a protective role in SCI via regulating the miR‑21/PTEN/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Tianyu Sun
- Department of Traumatology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Liying Duan
- Department of Basic Medicine, Puyang Medical College, Puyang, Henan 457000, P.R. China
| | - Jiaju Li
- Department of Traumatology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Hongyu Guo
- Department of Traumatology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Mingyue Xiong
- Department of Traumatology, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
14
|
Miao C, Chang J. The important roles of microRNAs in depression: new research progress and future prospects. J Mol Med (Berl) 2021; 99:619-636. [PMID: 33641067 DOI: 10.1007/s00109-021-02052-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/04/2021] [Accepted: 02/16/2021] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are non-encoding, single-stranded RNA molecules of about 22 nucleotides in length encoded by endogenous genes involved in posttranscriptional gene expression regulation. Studies have shown that miRNAs participate in a series of important pathophysiological processes, including the pathogenesis of depression. This article systematically summarized the research results published in the field of miRNAs and depression, which mainly involved three topics: circulating miRNAs as markers for diagnosis and prognosis of depression, the regulatory roles of miRNAs in the pathogenesis of depression, and the roles of miRNAs in the mechanisms of depression treatment. By summarizing and analyzing the research literature in recent years, we found that some circulating miRNAs can be potential biomarkers for the diagnosis and prognostic evaluation of depression. miRNAs that disorderly expressed during the disease play important roles in the depression pathogenesis, and miRNAs also play roles in the mechanisms of psychotherapy and drug therapy for depression. Elucidating the important roles of miRNAs in depression will bring people's understanding of the pathogenesis of depression to a new level. In addition, these miRNAs may be developed as new biomarkers for diagnosing depression, or as drug targets, or these molecules may be used as new drugs, which may provide new means for the treatment of depression. KEY MESSAGES: • The research results of miRNAs and depression are reviewed. • Circulating miRNAs can be potential biomarkers for depression. • MiRNAs play important roles in the depression pathogenesis. • MiRNAs play important roles in drug therapy for depression.
Collapse
Affiliation(s)
- Chenggui Miao
- Department of Pharmacology, College of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, 1 Qianjiang Road, Xinzhan District, Hefei, 230012, Anhui Province, China. .,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, China. .,Anhui Provincial Key Laboratory of Chinese Medicine Compound, Anhui University of Chinese Medicine, Hefei, 230012, China. .,Institute of Life and Health Sciences, Anhui University of Science and Technology, Fengyang, 233100, China.
| | - Jun Chang
- Fourth Affiliated Hospital, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
15
|
Tang C, Hu J. HDAC1-Mediated MicroRNA-124-5p Regulates NPY to Affect Learning and Memory Abilities in Rats with Depression. NANOSCALE RESEARCH LETTERS 2021; 16:28. [PMID: 33566202 PMCID: PMC7876219 DOI: 10.1186/s11671-021-03477-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/11/2021] [Indexed: 05/04/2023]
Abstract
Researches pivoting on histone deacetylases (HDACs) in depression have been excessively conducted, but not much on HDAC1. Therein, the present study is launched to disclose the mechanism of HDAC1/microRNA (miR)-124-5p/neuropeptide Y (NPY) axis in depression. Sprague Dawley rats were stimulated by chronic unpredictable mild stress to establish depression models. Depressed rats were injected with inhibited HDAC1 or suppressed miR-124-5p to explore their roles in body weight, learning and memory abilities, oxidative stress and inflammation in serum and neurotransmitter expression in hippocampal tissues. MiR-124-5p, HDAC1 and NPY expression in the hippocampus were tested. The interactions of miR-124-5p, HDAC1 and NPY expression were also confirmed. Higher miR-124-5p and HDAC1 and lower NPY expression levels were found in the hippocampus of depressed rats. Inhibited miR-124-5p or suppressed HDAC1 attenuated learning and memory abilities and increased body weight of depressed rats. Knockdown of miR-124-5p or inhibition of HDAC1 suppressed oxidative stress and inflammation and promoted neurotransmitter expression of depressed rats. HDAC1 mediated miR-124-5p to regulate NPY. Knockdown of NPY abolished the protective effects of inhibited miR-124-5p on depressed rats. Our study illustrates that suppression of either miR-124-5p or HDAC1 up-regulates NPY to improve memory and learning abilities in depressed mice, which may update the existed knowledge of depression and provide a novel reference for treatment of depression.
Collapse
Affiliation(s)
- Chunling Tang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China
| | - Jian Hu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, 150001, Heilongjiang, China.
| |
Collapse
|
16
|
Yi LT, Zhu JX, Dong SQ, Chen M, Li CF. Berberine exerts antidepressant-like effects via regulating miR-34a-synaptotagmin1/Bcl-2 axis. CHINESE HERBAL MEDICINES 2021; 13:116-123. [PMID: 36117760 PMCID: PMC9476493 DOI: 10.1016/j.chmed.2020.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 10/13/2020] [Accepted: 10/23/2020] [Indexed: 02/07/2023] Open
|
17
|
Dattilo V, Amato R, Perrotti N, Gennarelli M. The Emerging Role of SGK1 (Serum- and Glucocorticoid-Regulated Kinase 1) in Major Depressive Disorder: Hypothesis and Mechanisms. Front Genet 2020; 11:826. [PMID: 32849818 PMCID: PMC7419621 DOI: 10.3389/fgene.2020.00826] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is a heterogeneous psychiatric disease characterized by persistent low mood, diminished interests, and impaired cognitive and social functions. The multifactorial etiology of MDD is still largely unknown because of the complex genetic and environmental interactions involved. Therefore, no established mechanism can explain all the aspects of the disease. In this light, an extensive research about the pathophysiology of MDD has been carried out. Several pathogenic hypotheses, such as monoamines deficiency and neurobiological alterations in the stress-responsive system, including the hypothalamic-pituitary-adrenal (HPA) axis and the immune system, have been proposed for MDD. Over time, remarkable studies, mainly on preclinical rodent models, linked the serum- and glucocorticoid-regulated kinase 1 (SGK1) to the main features of MDD. SGK1 is a serine/threonine kinase belonging to the AGK Kinase family. SGK1 is ubiquitously expressed, which plays a pivotal role in the hormonal regulation of several ion channels, carriers, pumps, and transcription factors or regulators. SGK1 expression is modulated by cell stress and hormones, including gluco- and mineralocorticoids. Compelling evidence suggests that increased SGK1 expression or function is related to the pathogenic stress hypothesis of major depression. Therefore, the first part of the present review highlights the putative role of SGK1 as a critical mediator in the dysregulation of the HPA axis, observed under chronic stress conditions, and its controversial role in the neuroinflammation as well. The second part depicts the negative regulation exerted by SGK1 in the expression of both the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF), resulting in an anti-neurogenic activity. Finally, the review focuses on the antidepressant-like effects of anti-oxidative nutraceuticals in several preclinical model of depression, resulting from the restoration of the physiological expression and/or activity of SGK1, which leads to an increase in neurogenesis. In summary, the purpose of this review is a systematic analysis of literature depicting SGK1 as molecular junction of the complex mechanisms underlying the MDD in an effort to suggest the kinase as a potential biomarker and strategic target in modern molecular antidepressant therapy.
Collapse
Affiliation(s)
- Vincenzo Dattilo
- Genetic Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosario Amato
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Nicola Perrotti
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Massimo Gennarelli
- Genetic Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
18
|
miR-34a induces spine damages via inhibiting synaptotagmin-1 in depression. Neurobiol Stress 2020; 13:100243. [PMID: 33344699 PMCID: PMC7739037 DOI: 10.1016/j.ynstr.2020.100243] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 11/24/2022] Open
Abstract
MicroRNAs (miRNAs) are noncoding RNAs that participate in the pathophysiology of depression by targeting many functional genes. As shown in our previous study, chronic stress up-regulates miR-34a in the hippocampus. However, little is known about the mechanism by which miR-34a regulates the process of depression or its functions as an antidepressant by regulating its targets. In the present study, the dynamic alterations in miR-34a expression and the mechanism underlying miR-34a regulation were assessed after the administration of the antidepressant fluoxetine to mice exposed to chronic stress. In addition, the effects of miR-34a inhibition on mice were directly evaluated. Both lipopolysaccharide (LPS) and corticosterone treatment caused depression-like symptoms and increased miR-34a expression. Additionally, the expression of miR-34a, which was regulated by tropomyosin receptor kinase B (TrkB)/MEK1/ERK signaling, was consistent with the onset of action of fluoxetine. A luciferase reporter assay identified synaptotagmin-1 and Bcl-2 as the targets of miR-34a. Moreover, a miR-34a antagomir exerted antidepressant-like effects, activated TrkB/MEK1/ERK signaling and improved spine morphology in the hippocampus. In conclusion, hippocampal miR-34a overexpression was a typical feature in depression-like animals, and miR-34a downregulation exerts antidepressant-like effects by restoring the spine morphology through its target synaptotagmin-1. LPS and corticosterone cause depression and miR-34a overexpression. Fluoxetine affects miR-34a in a dynamic alteration in chronic stress. Inhibition of TrkB and ERK signaling upregulates the expression of miR-34a. Synaptotagmin-1 and Bcl-2 are the targets of miR-34a. Inhibition of miR-34a improves spinal morphology.
Collapse
|
19
|
How the enriched get richer? Experience-dependent modulation of microRNAs and the therapeutic effects of environmental enrichment. Pharmacol Biochem Behav 2020; 195:172940. [PMID: 32413435 DOI: 10.1016/j.pbb.2020.172940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/23/2020] [Accepted: 05/01/2020] [Indexed: 11/20/2022]
Abstract
Environmental enrichment and physical exercise have many well-established health benefits. Although these environmental manipulations are known to delay symptom onset and progression in a variety of neurological and psychiatric conditions, the mechanisms underlying these effects remain poorly understood. A notable candidate molecular mechanism is that of microRNA, a family of small noncoding RNAs that are important regulators of gene expression. Research investigating the many diverse roles of microRNAs has greatly expanded over the past decade, with several promising preclinical and clinical studies highlighting the role of dysregulated microRNA expression (in the brain, blood and other peripheral systems) in understanding the aetiology of disease. Altered microRNA levels have also been described following environmental interventions such as exercise and environmental enrichment in non-clinical populations and wild-type animals, as well as in some brain disorders and associated preclinical models. Recent studies exploring the effects of stimulating environments on microRNA levels in the brain have revealed an array of changes that are likely to have important downstream effects on gene expression, and thus may regulate a variety of cellular processes. Here we review literature that explores the differential expression of microRNAs in rodents following environmental enrichment and exercise, in both healthy control animals and preclinical models of relevance to neurological and psychiatric disorders.
Collapse
|
20
|
Alhaddad H, Gordon DM, Bell RL, Jarvis EE, Kipp ZA, Hinds TD, Sari Y. Chronic Ethanol Consumption Alters Glucocorticoid Receptor Isoform Expression in Stress Neurocircuits and Mesocorticolimbic Brain Regions of Alcohol-Preferring Rats. Neuroscience 2020; 437:107-116. [PMID: 32353460 DOI: 10.1016/j.neuroscience.2020.04.033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 01/17/2023]
Abstract
Evidence suggests the hypothalamic-pituitary-adrenal (HPA) axis is involved in Alcohol Use Disorders (AUDs), which might be mediated by an imbalance of glucocorticoid receptor (GR), GRα and GRβ, activity. GRβ antagonizes the GRα isoform to cause glucocorticoid (GC) resistance. In the present study, we aimed to investigate the effects of chronic continuous free-choice access to ethanol on GR isoform expression in subregions of the mesocorticolimbic reward circuit. Adult male alcohol-preferring (P) rats had concurrent access to 15% and 30% ethanol solutions, with ad lib access to lab chow and water, for six weeks. Quantitative Real-time PCR (RT-PCR) analysis showed that chronic ethanol consumption reduced GRα expression in the nucleus accumbens shell (NAcsh) and hippocampus, whereas ethanol drinking reduced GRβ in the nucleus accumbens core (NAcc), prefrontal cortex (PFC), and hippocampus. An inhibitor of GRα, microRNA-124-3p (miR124-3p) was significantly higher in the NAcsh, and GC-induced gene, GILZ, as a measure of GC-responsiveness, was significantly lower. These were not changed in the NAcc. Likewise, genes associated with HPA axis activity were not significantly changed by ethanol drinking [i.e., corticotrophin-releasing hormone (Crh), adrenocorticotrophic hormone (Acth), and proopiomelanocortin (Pomc)] in these brain regions. Serum corticosterone levels were not changed by ethanol drinking. These data indicate that the expression of GRα and GRβ isoforms are differentially affected by ethanol drinking despite HPA-associated peptides remaining unchanged, at least at the time of tissue harvesting. Moreover, the results suggest that GR changes may stem from ethanol-induced GC-resistance in the NAcsh. These findings confirm a role for stress in high ethanol drinking, with GRα and GRβ implicated as targets for the treatment of AUDs.
Collapse
Affiliation(s)
- Hasan Alhaddad
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA
| | - Darren M Gordon
- Department of Neurosciences, Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Richard L Bell
- Indiana University School of Medicine, Department of Psychiatry, Neurosciences Research Building, 320 West 15th Street, Indianapolis, IN 46202, USA
| | - Erin E Jarvis
- Indiana University School of Medicine, Department of Psychiatry, Neurosciences Research Building, 320 West 15th Street, Indianapolis, IN 46202, USA
| | - Zachary A Kipp
- Department of Neurosciences, Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Terry D Hinds
- Department of Neurosciences, Center for Diabetes and Endocrine Research (CeDER), University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| | - Youssef Sari
- Department of Pharmacology and Experimental Therapeutics, University of Toledo College of Pharmacy and Pharmaceutical Sciences, Toledo, OH 43614, USA.
| |
Collapse
|
21
|
Huang YL, Zeng NX, Chen J, Niu J, Luo WL, Liu P, Yan C, Wu LL. Dynamic changes of behaviors, dentate gyrus neurogenesis and hippocampal miR-124 expression in rats with depression induced by chronic unpredictable mild stress. Neural Regen Res 2020; 15:1150-1159. [PMID: 31823896 PMCID: PMC7034282 DOI: 10.4103/1673-5374.270414] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The depression-like behavior phenotype, neurogenesis in the dentate gyrus and miR-124 expression in the hippocampus are the focus of current research on the pathogenesis of depression and antidepressant therapy. The present study aimed to clarify the dynamic changes of depression-like behavior, dentate gyrus neurogenesis and hippocampal miR-124 expression during depression induced by chronic stress to reveal pathological features at different stages of depression and to further provide insight into depression treatment. Chronic unpredictable mild stress depression models were established by exposing Sprague-Dawley rats to various mild stressors, including white noise, thermal swimming, stroboscopic illumination, soiled cages, pairing with three other stressed animals, cold swimming, tail pinch, restraint and water and food deprivation. Chronic unpredictable mild stress model rats underwent dynamic observation from 1 to 8 weeks and were compared with a control group (normal feeding without any stressors). To observe changes in the depression-like behavior phenotype during chronic unpredictable mild stress-induced depression, a sucrose preference test was used to evaluate the degree of anhedonia. An open-field test was used to evaluate locomotor activity and anxiety status. Compared with the control group, chronic unpredictable mild stress rats lost weight but did not have a depression-like behavioral phenotype at 1–4 weeks. Chronic unpredictable mild stress rats presented decreased sucrose preference and locomotor activity at 5–8 weeks. In addition, chronic unpredictable mild stress rats did not have significant anxiety-like behavior during 1–8 weeks of modeling. To observe neurogenesis dysfunctions and changes in neuronal number in the dentate gyrus during chronic unpredictable mild stress-induced depression, markers (DCX and DCX/BrdU) of neural proliferation and differentiation and the neuronal marker NeuN were assessed by immunofluorescence. Compared with the control group, neurogenesis and the neuronal number in the dentate gyrus did not change from 2 to 6 weeks; however, neural proliferation and differentiation in the dentate gyrus decreased, and the number of neurons decreased until the eighth week in the chronic unpredictable mild stress group. Real-time quantitative reverse transcription polymerase chain reaction assays and fluorescence in situ hybridization were used to measure the expression of hippocampal miR-124 during chronic unpredictable mild stress-induced depression. The results showed that the expression of hippocampal miR-124 was unchanged during the first 4 weeks but increased from 5 to 6 weeks and decreased from 7 to 8 weeks compared with the control group. These findings indicate that during chronic unpredictable mild stress-induced depression, the behavioral phenotype, miR-124 expression in the hippocampus, neurogenesis in the dentate gyrus and neuronal numbers showed dynamic changes, which suggested that various pathological changes occur at different stages of depression. All experimental procedures and protocols were approved by the Experimental Animal Ethics Committee of Guangzhou University of Chinese Medicine of China in March 2015.
Collapse
Affiliation(s)
- Yun-Ling Huang
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ning-Xi Zeng
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jie Chen
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Jie Niu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Wu-Long Luo
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Ping Liu
- Department of Pharmacology, PLA General Hospital, Beijing, China
| | - Can Yan
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| | - Li-Li Wu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, China
| |
Collapse
|
22
|
Dong SQ, Zhang QP, Zhu JX, Chen M, Li CF, Liu Q, Geng D, Yi LT. Gypenosides reverses depressive behavior via inhibiting hippocampal neuroinflammation. Biomed Pharmacother 2018; 106:1153-1160. [PMID: 30119182 DOI: 10.1016/j.biopha.2018.07.040] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/05/2018] [Accepted: 07/07/2018] [Indexed: 12/11/2022] Open
Abstract
Gypenosides, a saponins extract isolated from the Gynostemma pentaphyllum plant, produces neuroprotective effects in the brain. Our previous studies have shown that hippocampal glucocorticoid receptor (GR)-brain-derived neurotrophic factor (BDNF)-TrkB signaling was involved in the antidepressant-like effects of gypenosides. It remains unknown whether gypenosides could alleviate neuroinflammation in depressive-like animals. The aim of the present study was to address this issue in chronic unpredictable mild stress (CUMS). Gypenosides was administrated for four weeks, followed by sucrose preference test and tail suspension test, which were performed to evaluate the effects of gypenosides. The results showed that gypenosides reversed both the decreased sucrose preference and increased immobility time in CUMS mice. In addition, gypenosides also attenuated the increase of pro-inflammatory cytokine levels in the hippocampus of CUMS animals. Furthermore, the activation of NF-κB, as well as its upstream mediators IKKα and IKKβ were inhibited by gypenosides. Last but not the least, CUMS promoted the activation of microglia, while gypenosides suppressed it according to the reduced number of iba1 positive cells. In conclusion, this study demonstrates that gypenosides exhibits the antidepressant-like effects in mice, which may be mediated by the inhibition of microglia and NF-κB signaling in the hippocampus.
Collapse
Affiliation(s)
- Shu-Qi Dong
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian province, PR China
| | - Qiu-Ping Zhang
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, Fujian province, PR China
| | - Ji-Xiao Zhu
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, Jiangxi province, PR China
| | - Min Chen
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian province, PR China
| | - Cheng-Fu Li
- Xiamen Hospital of Traditional Chinese Medicine, Xiamen 361009, Fujian province, PR China
| | - Qing Liu
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian province, PR China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian province, PR China
| | - Di Geng
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian province, PR China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian province, PR China
| | - Li-Tao Yi
- Department of Chemical and Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen 361021, Fujian province, PR China; Institute of Pharmaceutical Engineering, Huaqiao University, Xiamen 361021, Fujian province, PR China.
| |
Collapse
|