1
|
Almeida AS, de Pinho PG, Remião F, Fernandes C. Uncovering the Metabolic Footprint of New Psychoactive Substances by Metabolomics: A Systematic Review. Molecules 2025; 30:290. [PMID: 39860158 PMCID: PMC11767662 DOI: 10.3390/molecules30020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
New psychoactive substances (NPSs) emerged in the 2000s as legal alternatives to illicit drugs and quickly became a huge public health threat due to their easy accessibility online, limited information, and misleading labels. Synthetic cannabinoids and synthetic cathinones are the most reported groups of NPSs. Despite NPSs being widely studied, due to their structural diversity and the constant emergence of novel compounds with unknown properties, the development of new techniques is required to clarify their mode of action and evaluate their toxicological effects. Metabolomics has been a useful tool to evaluate the metabolic effects of several xenobiotics. Herein, a systematic review was performed, following PRISMA guidelines, regarding metabolomic studies on synthetic cathinones and synthetic cannabinoids to evaluate their effects in cellular metabolism. In the studies, in vivo models were the most employed (86%) and the analysis mostly followed untargeted approaches (75%) using LC-MS techniques (67%). Both groups of NPSs seem to primarily interfere with energy metabolism-related pathways. Even though this type of study is still limited, metabolomics holds great promise as a tool to clarify mechanisms of actions, identify biomarkers of exposure, and explain the toxicological effects of NPSs.
Collapse
Affiliation(s)
- Ana Sofia Almeida
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (P.G.d.P.); (F.R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Paula Guedes de Pinho
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (P.G.d.P.); (F.R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Fernando Remião
- UCIBIO-Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (P.G.d.P.); (F.R.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Carla Fernandes
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal;
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208 Matosinhos, Portugal
| |
Collapse
|
2
|
Fux E, Lenski M, Bendt AK, Otvos JD, Ivanisevic J, De Bruyne S, Cavalier E, Friedecký D. A global perspective on the status of clinical metabolomics in laboratory medicine - a survey by the IFCC metabolomics working group. Clin Chem Lab Med 2024; 62:1950-1961. [PMID: 38915248 DOI: 10.1515/cclm-2024-0550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/15/2024] [Indexed: 06/26/2024]
Abstract
OBJECTIVES Metabolomics aims for comprehensive characterization and measurement of small molecule metabolites (<1700 Da) in complex biological matrices. This study sought to assess the current understanding and usage of metabolomics in laboratory medicine globally and evaluate the perception of its promise and future implementation. METHODS A survey was conducted by the IFCC metabolomics working group that queried 400 professionals from 79 countries. Participants provided insights into their experience levels, knowledge, and usage of metabolomics approaches, along with detailing the applications and methodologies employed. RESULTS Findings revealed a varying level of experience among respondents, with varying degrees of familiarity and utilization of metabolomics techniques. Targeted approaches dominated the field, particularly liquid chromatography coupled to a triple quadrupole mass spectrometer, with untargeted methods also receiving significant usage. Applications spanned clinical research, epidemiological studies, clinical diagnostics, patient monitoring, and prognostics across various medical domains, including metabolic diseases, endocrinology, oncology, cardiometabolic risk, neurodegeneration and clinical toxicology. CONCLUSIONS Despite optimism for the future of clinical metabolomics, challenges such as technical complexity, standardization issues, and financial constraints remain significant hurdles. The study underscores the promising yet intricate landscape of metabolomics in clinical practice, emphasizing the need for continued efforts to overcome barriers and realize its full potential in patient care and precision medicine.
Collapse
Affiliation(s)
- Elie Fux
- Roche Diagnostics GmbH, Penzberg, Germany
| | - Marie Lenski
- ULR 4483, IMPECS - IMPact de l'Environnement Chimique sur la Santé humaine, Univ. Lille, Institut Pasteur de Lille et Unité Fonctionnelle de Toxicologie, CHU Lille, Lille, France
| | - Anne K Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - James D Otvos
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Julijana Ivanisevic
- Metabolomics Unit, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Sander De Bruyne
- Department of Laboratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Etienne Cavalier
- Department of Clinical Chemistry, CIRM, University of Liège, CHU de Liège, Liège, Belgium
| | - David Friedecký
- Department of Clinical Biochemistry, University Hospital Olomouc, Olomouc, Czechia
- Faculty of Medicine and Dentistry, Palacký University Olomouc, Olomouc, Czech Republic
| |
Collapse
|
3
|
Algharagholy LA, García-Suárez VM, Albeydani OA, Alqahtani J. Towards nanotube-based sensors for discrimination of drug molecules. Phys Chem Chem Phys 2023; 25:26613-26622. [PMID: 37755431 DOI: 10.1039/d3cp03726f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The proper detection of drug molecules is key for applications that have an impact in several fields, ranging from medical treatments to industrial applications. In case of illegal drugs, their correct and fast detection has important implications that affect different parts of society such as security or public health. Here we present a method based on nanoscale sensors made of carbon nanotubes modified with dopants that can detect three types of drug molecules: mephedrone, methamphetamine and heroin. We show that each molecule produces a distinctive feature in the density of states that can be used to detect it and distinguish it from other types of molecules. In particular, we show that for semiconducting nanotubes the inclusion of molecules reduces the gap around the Fermi energy and produces peaks in the density of states below the Fermi energy at positions that are different for each molecule. These results prove that it is possible to design nanoscale sensors based on carbon nanotubes tailored with dopants, in such a way that they might be able to discriminate between different types of compounds and, especially, drug molecules whose proper recognition has important consequences in different fields.
Collapse
Affiliation(s)
- Laith A Algharagholy
- Department of Physics, College of Science, University of Sumer, Al-Rifaee, 64005, Thi-Qar, Iraq
| | | | | | - Jehan Alqahtani
- Department of Physics, Faculty Science, King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
4
|
Lenski M, Bruno C, Darrouzain F, Allorge D. Métabolomique : principes et applications en toxicologie biologique et médicolégale. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2023. [DOI: 10.1016/j.toxac.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
5
|
Hemmer S, Wagmann L, Pulver B, Westphal F, Meyer MR. In Vitro and In Vivo Toxicometabolomics of the Synthetic Cathinone PCYP Studied by Means of LC-HRMS/MS. Metabolites 2022; 12:metabo12121209. [PMID: 36557246 PMCID: PMC9783153 DOI: 10.3390/metabo12121209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Synthetic cathinones are one important group amongst new psychoactive substances (NPS) and limited information is available regarding their toxicokinetics and -dynamics. Over the past few years, nontargeted toxicometabolomics has been increasingly used to study compound-related effects of NPS to identify important exogenous and endogenous biomarkers. In this study, the effects of the synthetic cathinone PCYP (2-cyclohexyl-1-phenyl-2-(1-pyrrolidinyl)-ethanone) on in vitro and in vivo metabolomes were investigated. Pooled human-liver microsomes and blood and urine of male Wistar rats were used to generate in vitro and in vivo data, respectively. Samples were analyzed by liquid chromatography and high-resolution mass spectrometry using an untargeted metabolomics workflow. Statistical evaluation was performed using univariate and multivariate statistics. In total, sixteen phase I and one phase II metabolite of PCYP could be identified as exogenous biomarkers. Five endogenous biomarkers (e.g., adenosine and metabolites of tryptophan metabolism) related to PCYP intake could be identified in rat samples. The present data on the exogenous biomarker of PCYP are crucial for setting up analytical screening procedures. The data on the endogenous biomarker are important for further studies to better understand the physiological changes associated with cathinone abuse but may also serve in the future as additional markers for an intake.
Collapse
Affiliation(s)
- Selina Hemmer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Lea Wagmann
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
| | - Benedikt Pulver
- State Bureau of Criminal Investigation Schleswig-Holstein, 24116 Kiel, Germany
| | - Folker Westphal
- State Bureau of Criminal Investigation Schleswig-Holstein, 24116 Kiel, Germany
| | - Markus R. Meyer
- Department of Experimental and Clinical Toxicology, Institute of Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, 66421 Homburg, Germany
- Correspondence:
| |
Collapse
|
6
|
Metabolomics and integrated network analysis reveal roles of endocannabinoids and large neutral amino acid balance in the ayahuasca experience. Biomed Pharmacother 2022; 149:112845. [PMID: 35339828 DOI: 10.1016/j.biopha.2022.112845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 11/22/2022] Open
Abstract
There has been a renewed interest in the potential use of psychedelics for the treatment of psychiatric conditions. Nevertheless, little is known about the mechanism of action and molecular pathways influenced by ayahuasca use in humans. Therefore, for the first time, our study aims to investigate the human metabolomics signature after consumption of a psychedelic, ayahuasca, and its connection with both the psychedelic-induced subjective effects and the plasma concentrations of ayahuasca alkaloids. Plasma samples of 23 individuals were collected both before and after ayahuasca consumption. Samples were analysed through targeted metabolomics and further integrated with subjective ratings of the ayahuasca experience (i.e., using the 5-Dimension Altered States of Consciousness Rating Scale [ASC]), and plasma ayahuasca-alkaloids using integrated network analysis. Metabolic pathways enrichment analysis using diffusion algorithms for specific KEGG modules was performed on the metabolic output. Compared to baseline, the consumption of ayahuasca increased N-acyl-ethanolamine endocannabinoids, decreased 2-acyl-glycerol endocannabinoids, and altered several large-neutral amino acids (LNAAs). Integrated network results indicated that most of the LNAAs were inversely associated with 9 out of the 11 subscales of the ASC, except for tryptophan which was positively associated. Several endocannabinoids and hexosylceramides were directly associated with the ayahuasca alkaloids. Enrichment analysis confirmed dysregulation in several pathways involved in neurotransmission such as serotonin and dopamine synthesis. In conclusion, a crosstalk between the circulating LNAAs and the subjective effects is suggested, which is independent of the alkaloid concentrations and provides insights into the specific metabolic fingerprint and mechanism of action underlying ayahuasca experiences.
Collapse
|
7
|
Gomez-Gomez A, Olesti E, Montero-San-Martin B, Soldevila A, Deschamps T, Pizarro N, de la Torre R, Pozo OJ. Determination of up to twenty carboxylic acid containing compounds in clinically relevant matrices by o-benzylhydroxylamine derivatization and liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 2022; 208:114450. [PMID: 34798391 DOI: 10.1016/j.jpba.2021.114450] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/14/2021] [Accepted: 10/27/2021] [Indexed: 11/15/2022]
Abstract
Carboxylic acid containing compounds (R-COOH) are involved in a large number of biological processes and they are relevant for several pathological processes such as neurodegeneration or cancer. Comprehensive methodologies for the quantitative determination of R-COOH in biological samples are required. In this study we have developed a LC-MS/MS method for the quantification of 20 endogenous R-COOH belonging to different pathways such as kynurenine metabolism, serotoninergic pathway, glycolysis, tricarboxylic acid cycle, dopaminergic pathway, short chain fatty acids and glycine metabolism. The approach included derivatization with o-benzylhydroxylamine (reaction time 1 h), liquid-liquid extraction with ethyl acetate and LC-MS/MS detection (run time 10 min). The method was optimized and validated in 5 different matrices (urine, plasma, saliva, brain and liver) following two different approaches: (i) using surrogate matrices and (ii) using actual human samples by standard additions. A suitable linearity was obtained in the endogenous range of the analytes. Adequate intra and inter-assay accuracies (80-120%) and intra- and inter-assay precisions (<20%) were achieved for almost all analytes in all studied matrices. The method was applied in several scenarios to confirm (i) human urinary changes produced in glycolysis after exercise, (ii) metabolic changes produced in rat brain and plasma by methamphetamine administration and (iii) metabolic alterations in human plasma caused by vitamin B6 deficiency. Additionally, the application of the method allowed for establishing previously unreported alterations in R-COOH metabolites under these conditions. Due to the comprehensive analyte and matrix coverage and the wide applicability of the developed methodology, it can be considered as a suitable tool for the study of R-COOH status in health and disease by targeted metabolomics.
Collapse
Affiliation(s)
- Alex Gomez-Gomez
- Applied Metabolomics Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain; Integrative Pharmacology & Systems Neuroscience Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain; Universitat Pompeu Fabra (CEXS-UPF), Doctor Aiguader 88, Barcelona, Spain
| | - Eulàlia Olesti
- Applied Metabolomics Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain; Integrative Pharmacology & Systems Neuroscience Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain
| | | | - Angie Soldevila
- Applied Metabolomics Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain
| | - Tessa Deschamps
- Applied Metabolomics Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain
| | - Nieves Pizarro
- Integrative Pharmacology & Systems Neuroscience Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain
| | - Rafael de la Torre
- Applied Metabolomics Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain; Integrative Pharmacology & Systems Neuroscience Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain; Universitat Pompeu Fabra (CEXS-UPF), Doctor Aiguader 88, Barcelona, Spain; CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN, CB06/03/028), 15706 Santiago de Compostela, Spain
| | - Oscar J Pozo
- Applied Metabolomics Research Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain; Integrative Pharmacology & Systems Neuroscience Group, IMIM (Hospital del Mar Medical Research Institute), Doctor Aiguader 88, Barcelona, Spain.
| |
Collapse
|
8
|
Zarrouk E, Lenski M, Bruno C, Thibert V, Contreras P, Privat K, Ameline A, Fabresse N. High-resolution mass spectrometry: Theoretical and technological aspects. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2022. [DOI: 10.1016/j.toxac.2021.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
OUP accepted manuscript. Clin Chem 2022; 68:848-855. [DOI: 10.1093/clinchem/hvac045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/22/2022] [Indexed: 11/12/2022]
|
10
|
Pizarro N, Kossatz E, González P, Gamero A, Veza E, Fernández C, Gabaldón T, de la Torre R, Robledo P. Sex-Specific Effects of Synbiotic Exposure in Mice on Addictive-Like Behavioral Alterations Induced by Chronic Alcohol Intake Are Associated With Changes in Specific Gut Bacterial Taxa and Brain Tryptophan Metabolism. Front Nutr 2021; 8:750333. [PMID: 34901109 PMCID: PMC8662823 DOI: 10.3389/fnut.2021.750333] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic alcohol intake has been shown to disrupt gut microbiota homeostasis, but whether microbiota modulation could prevent behavioral alterations associated with chronic alcohol intake remains unknown. We investigated the effects of synbiotic dietary supplementation on the development of alcohol-related addictive behavior in female and male mice and evaluated whether these effects were associated with changes in bacterial species abundance, short-chain fatty acids, tryptophan metabolism, and neurotransmitter levels in the prefrontal cortex and hippocampus. Chronic intermittent exposure to alcohol during 20 days induced escalation of intake in both female and male mice. Following alcohol deprivation, relapse-like behavior was observed in both sexes, but anxiogenic and cognitive deficits were present only in females. Synbiotic treatment reduced escalation and relapse to alcohol intake in females and males. In addition, the anxiogenic-like state and cognitive deficits observed in females following alcohol deprivation were abolished in mice exposed to synbiotic. Alcohol-induced differential alterations in microbial diversity and abundance in both sexes. In females, synbiotic exposure abrogated the alterations provoked by alcohol in Prevotellaceae UCG-001 and Ruminococcaceae UCG-014 abundance. In males, synbiotic exposure restored the changes induced by alcohol in Akkermansia and Muribaculum uncultured bacterium abundance. Following alcohol withdrawal, tryptophan metabolites, noradrenaline, dopamine, and γ-aminobutyric acid concentrations in the prefrontal cortex and the hippocampus were correlated with bacterial abundance and behavioral alterations in a sex-dependent manner. These results suggested that a dietary intervention with a synbiotic to reduce gut dysbiosis during chronic alcohol intake may impact differently the gut-brain-axis in females and males.
Collapse
Affiliation(s)
- Nieves Pizarro
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Elk Kossatz
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | - Alba Gamero
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Emma Veza
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Cristina Fernández
- Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Toni Gabaldón
- Barcelona Supercomputing Centre (BSC-CNS), Barcelona, Spain.,Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain.,CIBER Fisiopatología Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience Research Group, Neurosciences Research Program, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain.,Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| |
Collapse
|
11
|
Current Situation of the Metabolomics Techniques Used for the Metabolism Studies of New Psychoactive Substances. Ther Drug Monit 2021; 42:93-97. [PMID: 31425443 DOI: 10.1097/ftd.0000000000000694] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE The purpose of this short overview is to summarize and discuss the English-written and PubMed-listed review articles and original studies published between January 2015 and April 2019 on the use of metabolomics techniques for investigating the metabolism of new psychoactive substances (NPS). First, a brief introduction is given on the metabolism of NPS and metabolomics techniques in general. Afterward, the selected original studies are summarized and discussed. Finally, a section dedicated to the studies on NPS beyond metabolism using metabolomics techniques is provided. Thereafter, both sections are concluded and perspectives are given. METHODS PubMed was searched for English-written literature published between January 1, 2015 and April 1, 2019. RESULTS The present short overview found that the current use of metabolomics techniques in investigating the metabolism of NPS is rather limited, but these techniques can support and facilitate traditional metabolism studies. CONCLUSIONS Thus, there may be a certain potential for using metabolomics techniques in the field of NPS research, but a great challenge remains to thoroughly adopt the existing metabolomics methods.
Collapse
|
12
|
Overview of the major classes of new psychoactive substances, psychoactive effects, analytical determination and conformational analysis of selected illegal drugs. OPEN CHEM 2021. [DOI: 10.1515/chem-2021-0196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Abstract
The misuse of psychoactive substances is attracting a great deal of attention from the general public. An increase use of psychoactive substances is observed among young people who do not have enough awareness of the harmful effects of these substances. Easy access to illicit drugs at low cost and lack of effective means of routine screening for new psychoactive substances (NPS) have contributed to the rapid increase in their use. New research and evidence suggest that drug use can cause a variety of adverse psychological and physiological effects on human health (anxiety, panic, paranoia, psychosis, and seizures). We describe different classes of these NPS drugs with emphasis on the methods used to identify them and the identification of their metabolites in biological specimens. This is the first review that thoroughly gives the literature on both natural and synthetic illegal drugs with old known data and very hot new topics and investigations, which enables the researcher to use it as a starting point in the literature exploration and planning of the own research. For the first time, the conformational analysis was done for selected illegal drugs, giving rise to the search of the biologically active conformations both theoretically and using lab experiments.
Collapse
|
13
|
Fabregat-Safont D, Barneo-Muñoz M, Carbón X, Hernández F, Martinez-Garcia F, Ventura M, Stove CP, Sancho JV, Ibáñez M. Understanding the pharmacokinetics of synthetic cathinones: Evaluation of the blood-brain barrier permeability of 13 related compounds in rats. Addict Biol 2020; 26:e12979. [PMID: 33289258 DOI: 10.1111/adb.12979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 09/30/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
Abstract
Synthetic cathinones are the second most commonly seized new psychoactive substance family in Europe. These compounds have been related to several intoxication cases, including fatalities. Although the pharmacological effects, metabolism, and pharmacokinetics of cathinones have been studied, there is little information about the permeability of these compounds through the blood-brain barrier (BBB). This is an important parameter to understand the behavior and potency of cathinones. In this work, 13 selected cathinones have been analyzed in telencephalon tissue from Sprague-Dawley rats intraperitoneally dosed at 3 mg/kg. Our results revealed a direct relationship between compound polarity and BBB permeability, with higher permeability for the more polar cathinones. The chemical moieties present in the cathinone had an important impact on the BBB permeability, with lengthening of the α-alkyl chain or functionalization of the aromatic ring with alkyl moieties resulting in lower concentration in telencephalon tissue. Our data suggest that transport of cathinones is a carrier-mediated process, similar to cocaine transport across the BBB.
Collapse
Affiliation(s)
- David Fabregat-Safont
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, Jaume I University, Castellón, Spain
| | - Manuela Barneo-Muñoz
- Predepartmental Unit of Medicine, Unitat Mixta de Neuroanatomia Funcional NeuroFun-UVEG-UJI, Jaume I University, Castellón, Spain
| | - Xoán Carbón
- Energy Control, Asociación Bienestar y Desarrollo, Barcelona, Spain
| | - Félix Hernández
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, Jaume I University, Castellón, Spain
| | - Ferran Martinez-Garcia
- Predepartmental Unit of Medicine, Unitat Mixta de Neuroanatomia Funcional NeuroFun-UVEG-UJI, Jaume I University, Castellón, Spain
| | - Mireia Ventura
- Energy Control, Asociación Bienestar y Desarrollo, Barcelona, Spain
| | - Christophe P Stove
- Laboratory of Toxicology, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ghent, Belgium
| | - Juan V Sancho
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, Jaume I University, Castellón, Spain
| | - María Ibáñez
- Environmental and Public Health Analytical Chemistry, Research Institute for Pesticides and Water, Jaume I University, Castellón, Spain
| |
Collapse
|
14
|
El Balkhi S, Monchaud C, Herault F, Géniaux H, Saint-Marcoux F. Designer benzodiazepines' pharmacological effects and potencies: How to find the information. J Psychopharmacol 2020; 34:1021-1029. [PMID: 31971477 DOI: 10.1177/0269881119901096] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
BACKGROUND Scientific data on the psychopharmacological effects of new psychoactive substances (NPSs) are scarce. Web fora contain a wealth of information posted by users as trip reports (TRs), but the reliability of the reports remains questionable because of the nature of the used molecule and the potential for dose inaccuracies. We focused on the TRs of designer benzodiazepine (DBZD) users since their psychopharmacological effects are similar to prescription benzodiazepines (BZDs). Moreover, the impact of functional groups on the BZD rings with regards to the potency has been fairly/quite studied, allowing structural analysis. METHODS DBZDs offering more than 15 TRs with at least two accounts on experienced effects were included. Data were analyzed with the empirical phenomenological psychological method. Reported effects were analyzed and the pharmacological potencies of DBZDs were compared by calculating a 'potency score'. RESULTS In total, 197 TRs for clonazolam, deschloroetizolam, diclazepam, etizolam, flubromazepam, flubromazolam, meclonazepam, metizolam, nifoxipam and pyrazolam were analyzed. Effects similar to prescription BZDs were reported for all the selected DBZDs. Pyrazolam was reported to be the most anxiolytic DBZD, flubromazolam the most hypnotic, etizolam the most euphoric and flubromazolam and clonazolam as the most amnesic DBZDs. Diclazepam and pyrazolam were not reported to induce euphoria. Flubromazepam, flubromazolam, clonazolam and meclonazepam were the most potent and deschloroetizolam, nifoxipam, metizolam and pyrazolam the least potent. The chemical structure of the different DBZDs and the functional groups on the BZD rings confirmed this ranking, except for nifoxipam. CONCLUSIONS When information on NPSs obtained from Internet fora are abundant, it could be considered as an appreciable data source.
Collapse
Affiliation(s)
- Souleiman El Balkhi
- Department of Pharmacology, Toxicology and Pharmacovigilance, Limoges University Hospital, Limoges, France.,INSERM, 1248 UMR, Limoges, France
| | - Caroline Monchaud
- Department of Pharmacology, Toxicology and Pharmacovigilance, Limoges University Hospital, Limoges, France.,INSERM, 1248 UMR, Limoges, France
| | | | - Hélène Géniaux
- Department of Pharmacology, Toxicology and Pharmacovigilance, Limoges University Hospital, Limoges, France
| | - Franck Saint-Marcoux
- Department of Pharmacology, Toxicology and Pharmacovigilance, Limoges University Hospital, Limoges, France.,INSERM, 1248 UMR, Limoges, France.,University of Limoges, Faculty of Pharmacy, Limoges, France
| |
Collapse
|
15
|
Comparative Untargeted Metabolomics Analysis of the Psychostimulants 3,4-Methylenedioxy-Methamphetamine (MDMA), Amphetamine, and the Novel Psychoactive Substance Mephedrone after Controlled Drug Administration to Humans. Metabolites 2020; 10:metabo10080306. [PMID: 32726975 PMCID: PMC7465486 DOI: 10.3390/metabo10080306] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/06/2020] [Accepted: 07/18/2020] [Indexed: 12/29/2022] Open
Abstract
Psychoactive stimulants are a popular drug class which are used recreationally. Over the last decade, large numbers of new psychoactive substances (NPS) have entered the drug market and these pose a worldwide problem to human health. Metabolomics approaches are useful tools for simultaneous detection of endogenous metabolites affected by drug use. They allow identification of pathways or characteristic metabolites, which might support the understanding of pharmacological actions or act as indirect biomarkers of consumption behavior or analytical detectability. Herein, we performed a comparative metabolic profiling of three psychoactive stimulant drugs 3,4-methylenedioxymethamphetamine (MDMA), amphetamine and the NPS mephedrone by liquid chromatography-high resolution mass spectrometry (LC-HRMS) in order to identify common pathways or compounds. Plasma samples were obtained from controlled administration studies to humans. Various metabolites were identified as increased or decreased based on drug intake, mainly belonging to energy metabolism, steroid biosynthesis and amino acids. Linoleic acid and pregnenolone-sulfate changed similarly in response to intake of all drugs. Overall, mephedrone produced a profile more similar to that of amphetamine than MDMA in terms of affected energy metabolism. These data can provide the basis for further in-depth targeted metabolome studies on pharmacological actions and search for biomarkers of drug use.
Collapse
|
16
|
Ramon-Duaso C, Rodríguez-Morató J, Selma-Soriano E, Fernández-Avilés C, Artero R, de la Torre R, Pozo ÓJ, Robledo P. Protective effects of mirtazapine in mice lacking the Mbnl2 gene in forebrain glutamatergic neurons: Relevance for myotonic dystrophy 1. Neuropharmacology 2020; 170:108030. [PMID: 32171677 DOI: 10.1016/j.neuropharm.2020.108030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 01/17/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disorder characterized by muscle weakness and wasting and by important central nervous system-related symptoms including impairments in executive functions, spatial abilities and increased anxiety and depression. The Mbnl2 gene has been implicated in several phenotypes consistent with DM1 neuropathology. In this study, we developed a tissue-specific knockout mouse model lacking the Mbnl2 gene in forebrain glutamatergic neurons to examine its specific contribution to the neurobiological perturbations related to DM1. We found that these mice exhibit long-term cognitive deficits and a depressive-like state associated with neuronal loss, increased microglia and decreased neurogenesis, specifically in the dentate gyrus (DG). Chronic treatment with the atypical antidepressant mirtazapine (3 and 10 mg/kg) for 21 days rescued these behavioral alterations, reduced inflammatory microglial overexpression, and reversed neuronal loss in the DG. We also show that mirtazapine re-established 5-HT1A and histaminergic H1 receptor gene expression in the hippocampus. Finally, metabolomics studies indicated that mirtazapine increased serotonin, noradrenaline, gamma-aminobutyric acid and adenosine production. These data suggest that loss of Mbnl2 gene in the glutamatergic neurons of hippocampus and cortex may underlie the most relevant DM1 neurobiological and behavioral features, and provide evidence that mirtazapine could be a novel potential candidate to alleviate these debilitating symptoms in DM1 patients.
Collapse
Affiliation(s)
- Carla Ramon-Duaso
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain
| | - Jose Rodríguez-Morató
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain; CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERON), Instituto de Salud Carlos III, Madrid, Spain
| | - Estela Selma-Soriano
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain; Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain; CIPF-INCLIVA Joint Unit, Spain
| | - Cristina Fernández-Avilés
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Rubén Artero
- Translational Genomics Group, Incliva Health Research Institute, Valencia, Spain; Interdisciplinary Research Structure for Biotechnology and Biomedicine (ERI BIOTECMED), University of Valencia, Valencia, Spain; CIPF-INCLIVA Joint Unit, Spain
| | - Rafael de la Torre
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain; CIBER de la Fisiopatología de la Obesidad y la Nutrición (CIBERON), Instituto de Salud Carlos III, Madrid, Spain
| | - Óscar J Pozo
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain
| | - Patricia Robledo
- Integrative Pharmacology and Systems Neuroscience, IMIM-Hospital del Mar Medical Research Institute, Barcelona, Spain; Department of Experimental and Health Sciences, Pompeu Fabra University (CEXS-UPF), Barcelona, Spain.
| |
Collapse
|
17
|
Huang MZ, Lu XR, Yang YJ, Liu XW, Qin Z, Li JY. Cellular Metabolomics Reveal the Mechanism Underlying the Anti-Atherosclerotic Effects of Aspirin Eugenol Ester on Vascular Endothelial Dysfunction. Int J Mol Sci 2019; 20:E3165. [PMID: 31261711 PMCID: PMC6651823 DOI: 10.3390/ijms20133165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 01/29/2023] Open
Abstract
Aspirin eugenol ester (AEE) possesses anti-thrombotic, anti-atherosclerotic and anti-oxidative effects. The study aims to clarify the mechanism underlying the anti-atherosclerotic effects of AEE on vascular endothelial dysfunction. Both the high-fat diet (HFD)-induced atherosclerotic rat model and the H2O2-induced human umbilical vein endothelial cells (HUVECs) model were used to investigate the effects of AEE on vascular endothelial dysfunction. UPLC/QTOF-MS coupled with a multivariate data analysis method were used to profile the variations in the metabolites of HUVECs in response to different treatments. Pretreatment of HUVECs with AEE significantly ameliorated H2O2-induced apoptosis, the overexpression of E-selectin and VCAM-1, and the adhesion of THP-1 cells. Putative endogenous biomarkers associated with the inhibition of endothelial dysfunction were identified in HUVECs pretreated with AEE in the absence or presence of H2O2, and these biomarkers were involved in important metabolic pathways, including amino acid metabolism, carbohydrate metabolism, and glutathione metabolism. Moreover, in vivo, AEE also significantly reduced vascular endothelial dysfunction and decreased the overexpression of VCAM-1 and E-selectin. Based on our findings, the mechanism underlying the anti-atherosclerotic effects of AEE might be related to a reduction in vascular endothelial dysfunction mediated by ameliorating alterations in metabolism, inhibiting oxidative stress, and decreasing the expression of adhesion molecules.
Collapse
Affiliation(s)
- Mei-Zhou Huang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xiao-Rong Lu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Ya-Jun Yang
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Xi-Wang Liu
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Zhe Qin
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China
| | - Jian-Yong Li
- Key Lab of New Animal Drug Project of Gansu Province, Key Lab of Veterinary Pharmaceutical Development of Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou 730050, China.
| |
Collapse
|
18
|
Steuer AE, Brockbals L, Kraemer T. Metabolomic Strategies in Biomarker Research-New Approach for Indirect Identification of Drug Consumption and Sample Manipulation in Clinical and Forensic Toxicology? Front Chem 2019; 7:319. [PMID: 31134189 PMCID: PMC6523029 DOI: 10.3389/fchem.2019.00319] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/23/2019] [Indexed: 11/13/2022] Open
Abstract
Drug of abuse (DOA) consumption is a growing problem worldwide, particularly with increasing numbers of new psychoactive substances (NPS) entering the drug market. Generally, little information on their adverse effects and toxicity are available. The direct detection and identification of NPS is an analytical challenge due to their ephemerality on the drug scene. An approach that does not directly focus on the structural detection of an analyte or its metabolites, would be beneficial for this complex analytical scenario and the development of alternative screening methods could help to provide fast response on suspected NPS consumption. A metabolomics approach might represent such an alternative strategy for the identification of biomarkers for different questions in DOA testing. Metabolomics is the monitoring of changes in small (endogenous) molecules (<1,000 Da) in response to a certain stimulus, e.g., DOA consumption. For this review, a literature search targeting "metabolomics" and different DOAs or NPS was conducted. Thereby, different applications of metabolomic strategies in biomarker research for DOA identification were identified: (a) as an additional tool for metabolism studies bearing the major advantage that particularly a priori unknown or unexpected metabolites can be identified; and (b) for identification of endogenous biomarker or metabolite patterns, e.g., for synthetic cannabinoids or also to indirectly detect urine manipulation attempts by chemical adulteration or replacement with artificial urine samples. The majority of the currently available literature in that field, however, deals with metabolomic studies for DOAs to better assess their acute or chronic effects or to find biomarkers for drug addiction and tolerance. Certain changes in endogenous compounds are detected for all studied DOAs, but often similar compounds/pathways are influenced. When evaluating these studies with regard to possible biomarkers for drug consumption, the observed changes appear, albeit statistically significant, too small to reliably work as biomarker for drug consumption. Further, different drugs were shown to affect the same pathways. In conclusion, metabolomic approaches possess potential for detection of biomarkers indicating drug consumption. More studies, including more sensitive targeted analyses, multi-variant statistical models or deep-learning approaches are needed to fully explore the potential of omics science in DOA testing.
Collapse
Affiliation(s)
- Andrea E Steuer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Lana Brockbals
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Thomas Kraemer
- Department of Forensic Pharmacology and Toxicology, Zurich Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|