1
|
Bajaj A, Han D, Elman I, Thanos PK, Dennen CA, Badgaiyan RD, Bowirrat A, Barh D, Blum K. Positive Clinical Outcomes for Severe Reported Pain Using Robust Non-Addictive Home Electrotherapy-A Case-Series. J Pers Med 2023; 13:336. [PMID: 36836570 PMCID: PMC9965228 DOI: 10.3390/jpm13020336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
The North American opioid epidemic has resulted in over 800,000 related premature overdose fatalities since 2000, with the United States leading the world in highest opioid deaths per capita. Despite increased federal funding in recent years, intended to address this crisis, opioid overdose mortality has continued to increase. Legally prescribed opioids also chronically induce a problematic reduction in affect. While an ideal analgesic has yet to be developed, some effective multimodal non-opioid pharmacological regimens for acute pain management are being more widely utilized. Some investigators have suggested that a safer and more scientifically sound approach might be to induce "dopamine homeostasis" through non-pharmacological approaches, since opioid use even for acute pain of short duration is now being strongly questioned. There is also increasing evidence suggesting that some more robust forms of electrotherapy could be applied as an effective adjunct to avoid the problems associated with opioids. This 4-patient case-series presents such an approach to treatment of severe pain. All 4 of these chiropractic treatment cases involved a component of knee osteoarthritis, in addition to other reported areas of pain. Each patient engaged in a home recovery strategy using H-Wave® device stimulation (HWDS) to address residual extremity issues following treatment of spinal subluxation and other standard treatments. A simple statistical analysis was conducted to determine the change in pain scores (Visual Analogue Scale) of pre and post electrotherapy treatments, resulting in significant reductions in self-reported pain (p-value = 0.0002). Three of the four patients continued using the home therapy device long-term as determined by a post-analysis questionnaire. This small case-series demonstrated notably positive outcomes, suggesting consideration of home use of HWDS for safe, non-pharmacological and non-addictive treatment of severe pain.
Collapse
Affiliation(s)
- Anish Bajaj
- School of Chiropractic, Cleveland University Health Sciences, Overland Park, KS 66210, USA
- Bajaj Chiropractic, New York, NY 10010, USA
| | - David Han
- Department of Management Science and Statistics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14203, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 19114, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur 721172, India
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
- Center for Behavioral Health & Sports, Exercise, Psychiatry, Western University Health Sciences, Pomona, CA 91766, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Kazinczy u. 23-27, 1075 Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Graduate College, Western University Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
2
|
Ceccanti M, Blum K, Bowirrat A, Dennen CA, Braverman ER, Baron D, Mclaughlin T, Giordano J, Gupta A, Downs BW, Bagchi D, Barh D, Elman I, Thanos PK, Badgaiyan RD, Edwards D, Gold MS. Future Newborns with Opioid-Induced Neonatal Abstinence Syndrome (NAS) Could Be Assessed with the Genetic Addiction Risk Severity (GARS) Test and Potentially Treated Using Precision Amino-Acid Enkephalinase Inhibition Therapy (KB220) as a Frontline Modality Instead of Potent Opioids. J Pers Med 2022; 12:2015. [PMID: 36556236 PMCID: PMC9782293 DOI: 10.3390/jpm12122015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
In this nonsystematic review and opinion, including articles primarily selected from PubMed, we examine the pharmacological and nonpharmacological treatments of neonatal abstinence syndrome (NAS) in order to craft a reasonable opinion to help forge a paradigm shift in the treatment and prevention of primarily opioid-induced NAS. Newborns of individuals who use illicit and licit substances during pregnancy are at risk for withdrawal, also known as NAS. In the US, the reported prevalence of NAS has increased from 4.0 per 1000 hospital births in 2010 to 7.3 per 1000 hospital births in 2017, which is an 82% increase. The management of NAS is varied and involves a combination of nonpharmacologic and pharmacologic therapy. The preferred first-line pharmacological treatment for NAS is opioid therapy, specifically morphine, and the goal is the short-term improvement in NAS symptomatology. Nonpharmacological therapies are individualized and typically focus on general care measures, the newborn-parent/caregiver relationship, the environment, and feeding. When used appropriately, nonpharmacologic therapies can help newborns with NAS avoid or reduce the amount of pharmacologic therapy required and the length of hospitalization. In addition, genetic polymorphisms of the catechol-o-methyltransferase (COMT) and mu-opioid receptor (OPRM1) genes appear to affect the length of stay and the need for pharmacotherapy in newborns with prenatal opioid exposure. Therefore, based on this extensive literature and additional research, this team of coauthors suggests that, in the future, in addition to the current nonpharmacological therapies, patients with opioid-induced NAS should undergo genetic assessment (i.e., the genetic addiction risk severity (GARS) test), which can subsequently be used to guide DNA-directed precision amino-acid enkephalinase inhibition (KB220) therapy as a frontline modality instead of potent opioids.
Collapse
Affiliation(s)
- Mauro Ceccanti
- Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze (SITAC), ASL Roma1, Sapienza University of Rome, 00185 Rome, Italy
| | - Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
- Division of Addiction Research & Education, Center for Mental Health & Sports, Exercise and Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Egyetem tér 1-3, H-1053 Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH 45324, USA
- Reward Deficiency Clinics of America, Austin, TX 78701, USA
- Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal 721172, India
- Department of Precision Behavioral Management, Transplicegen Therapeutics, Inc., LLC., Austin, TX 78701, USA
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 19107, USA
| | - Eric R. Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Mental Health & Sports, Exercise and Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
| | | | - John Giordano
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
- Ketamine Infusion Clinic of South Florida, Pompano Beach, FL 33062, USA
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA
| | - Bernard W. Downs
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
| | - Debasis Bagchi
- The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
- Department of Pharmaceutical Sciences, Southern University College of Pharmacy, Houston, TX 77004, USA
| | - Debmalya Barh
- Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur, West Bengal 721172, India
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Igor Elman
- Center for Pain and the Brain (PAIN Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Harvard School of Medicine, Boston, MA 02115, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA
| | - Drew Edwards
- Neurogenesis Project, Jacksonville, FL 32223, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
3
|
Abstract
The current addiction crisis has destroyed a multitude of lives, leaving millions of fatalities worldwide in its wake. At the same time, various governmental agencies dedicated to solving this seemingly never-ending dilemma have not yet succeeded or delivered on their promises. We understand that addictive behavioral seeking is a multi-faceted neurobiological and spiritually complicated phenomenon. However, although the substitution replacement approach, especially to treat Opioid Use Disorder (OUD), has importance for harm reduction in the short term, it does not bring about a harm-free recovery or prevention. Instead, we propose a promising novel approach that uses genetic risk testing with induction of dopamine homeostasis and an objective Brain Health Check during youth. Our model involves a six-hit approach known as the "Reward Dysregulation Syndrome Solution System," which can identify addiction risk and target the root cause of addiction, dopamine dysregulation. While we applaud all past sophisticated neurogenetic and neuropharmacological research, our opinion is that in the long term, addiction scientists and clinicians might characterize preaddiction using tests; for example, administering the validated RDSQuestionarre29, genetic risk assessment, a modified brain health check, or diagnostic framing of mild to moderate Substance Use Disorder (SUD). The preaddiction concept could incentivize the development of interventions to prevent addiction from developing in the first place and target and treat neurotransmitter imbalances and other early indications of addiction. WC 222.
Collapse
|
4
|
Dennen CA, Blum K, Bowirrat A, Thanos PK, Elman I, Ceccanti M, Badgaiyan RD, McLaughlin T, Gupta A, Bajaj A, Baron D, Downs BW, Bagchi D, Gold MS. Genetic Addiction Risk Severity Assessment Identifies Polymorphic Reward Genes as Antecedents to Reward Deficiency Syndrome (RDS) Hypodopaminergia's Effect on Addictive and Non-Addictive Behaviors in a Nuclear Family. J Pers Med 2022; 12:1864. [PMID: 36579592 PMCID: PMC9694640 DOI: 10.3390/jpm12111864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022] Open
Abstract
This case series presents the novel genetic addiction risk score (GARS), which shows a high prevalence of polymorphic risk alleles of reward genes in a nuclear family with multiple reward deficiency syndrome (RDS) behavioral issues expressing a hypodopaminergic antecedent. The family consists of a mother, father, son, and daughter. The mother experienced issues with focus, memory, anger, and amotivational syndrome. The father experienced weight issues and depression. The son experienced heavy drinking, along with some drug abuse and anxiety. The daughter experienced depression, lethargy, brain fog, focus issues, and anxiety, among others. A major clinical outcome of the results presented to the family members helped reduce personal guilt and augment potential hope for future healing. Our laboratory's prior research established that carriers of four or more alleles measured by GARS (DRD1-DRD4, DAT1, MOR, GABABR3, COMT, MAOAA, and 5HTLPR) are predictive of the addiction severity index (ASI) for drug abuse, and carriers of seven or more alleles are predictive of severe alcoholism. This generational case series shows the impact that genetic information has on reducing stigma and guilt in a nuclear family struggling with RDS behaviors. The futuristic plan is to introduce an appropriate DNA-guided "pro-dopamine regulator" into the recovery and enhancement of life.
Collapse
Affiliation(s)
- Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 08033, USA
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Sports and Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA
- Division of Nutrigenomics, The Kenneth Blum Behavioral & Neurogenetic Institute, Austin, TX 78701, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Egyetem tér 1–3, 1053 Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine and Dayton VA Medical Centre, Dayton, OH 45324, USA
- Center for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mauro Ceccanti
- Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze (SITAC), ASL Roma, Sapienza University of Rome, 00185 Rome, Italy
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA
| | | | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA
| | - Anish Bajaj
- Bajaj Chiropractic Clinic, New York, NY 10010, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Sports and Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA
| | - B. William Downs
- Division of Addiction Research & Education, Center for Sports and Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Southern University College of Pharmacy, Houston, TX 77004, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
5
|
Blum K, Han D, Bowirrat A, Downs BW, Bagchi D, Thanos PK, Baron D, Braverman ER, Dennen CA, Gupta A, Elman I, Badgaiyan RD, Llanos-Gomez L, Khalsa J, Barh D, McLaughlin T, Gold MS. Genetic Addiction Risk and Psychological Profiling Analyses for "Preaddiction" Severity Index. J Pers Med 2022; 12:1772. [PMID: 36579510 PMCID: PMC9696872 DOI: 10.3390/jpm12111772] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 01/01/2023] Open
Abstract
Since 1990, when our laboratory published the association of the DRD2 Taq A1 allele and severe alcoholism in JAMA, there has been an explosion of genetic candidate association studies, including genome-wide association studies (GWAS). To develop an accurate test to help identify those at risk for at least alcohol use disorder (AUD), a subset of reward deficiency syndrome (RDS), Blum's group developed the genetic addiction risk severity (GARS) test, consisting of ten genes and eleven associated risk alleles. In order to statistically validate the selection of these risk alleles measured by GARS, we applied strict analysis to studies that investigated the association of each polymorphism with AUD or AUD-related conditions, including pain and even bariatric surgery, as a predictor of severe vulnerability to unwanted addictive behaviors, published since 1990 until now. This analysis calculated the Hardy-Weinberg Equilibrium of each polymorphism in cases and controls. Pearson's χ2 test or Fisher's exact test was applied to compare the gender, genotype, and allele distribution if available. The statistical analyses found the OR, 95% CI for OR, and the post risk for 8% estimation of the population's alcoholism prevalence revealed a significant detection. Prior to these results, the United States and European patents on a ten gene panel and eleven risk alleles have been issued. In the face of the new construct of the "preaddiction" model, similar to "prediabetes", the genetic addiction risk analysis might provide one solution missing in the treatment and prevention of the neurological disorder known as RDS.
Collapse
Affiliation(s)
- Kenneth Blum
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, LLC, Austin, TX 78701, USA
- Institute of Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary
- Department of Psychiatry, University of Vermont, Burlington, VT 05405, USA
- Department of Psychiatry, Wright University Boonshoft School of Medicine, Dayton, OH 45324, USA
- Division of Nutrigenomics, Victory Nutrition International, Inc., Harleysville, PA 19329, USA
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur 721172, West Bengal, India
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - David Han
- Department of Management Science and Statistics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Bernard William Downs
- Division of Nutrigenomics, Victory Nutrition International, Inc., Harleysville, PA 19329, USA
| | - Debasis Bagchi
- Division of Nutrigenomics, Victory Nutrition International, Inc., Harleysville, PA 19329, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Southern University, Houston, TX 77004, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biosciences, State University of New York at Buffalo, Buffalo, NY 14260, USA
- Department of Psychology, State University of New York at Buffalo, Buffalo, NY 14260, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Sports, Exercise, and Mental Health, Western University of Health Sciences, Pomona, CA 91766, USA
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, LLC, Austin, TX 78701, USA
| | - Eric R. Braverman
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, LLC, Austin, TX 78701, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 19107, USA
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA
| | - Igor Elman
- Department of Psychiatry, Harvard School of Medicine, Cambridge, MA 02115, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA
- Department of Psychiatry, MT. Sinai School of Medicine, New York, NY 10003, USA
| | - Luis Llanos-Gomez
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, LLC, Austin, TX 78701, USA
| | - Jag Khalsa
- Department of Microbiology, Immunology and Tropical Medicine, School of Medicine, George Washington University, Washington, DC 20052, USA
- Medical Consequences of Drug Abuse and Infections Branch, National Institute on Drug Abuse, NIH, Bethesda, MD 20892, USA
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur 721172, West Bengal, India
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Thomas McLaughlin
- Division of Nutrigenomics, The Kenneth Blum Behavioral Neurogenetic Institute, LLC, Austin, TX 78701, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
6
|
Blum K, Dennen CA, Elman I, Bowirrat A, Thanos PK, Badgaiyan RD, Downs BW, Bagchi D, Baron D, Braverman ER, Gupta A, Green R, McLaughlin T, Barh D, Gold MS. Should Reward Deficiency Syndrome (RDS) Be Considered an Umbrella Disorder for Mental Illness and Associated Genetic and Epigenetic Induced Dysregulation of Brain Reward Circuitry? J Pers Med 2022; 12:1719. [PMID: 36294858 PMCID: PMC9604605 DOI: 10.3390/jpm12101719] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/30/2022] Open
Abstract
Reward Deficiency Syndrome (RDS) is defined as a breakdown of reward neurotransmission that results in a wide range of addictive, compulsive, and impulsive behaviors. RDS is caused by a combination of environmental (epigenetic) influences and DNA-based (genetic) neurotransmission deficits that interfere with the normal satisfaction of human physiological drives (i.e., food, water, and sex). An essential feature of RDS is the lack of integration between perception, cognition, and emotions that occurs because of (1) significant dopaminergic surges in motivation, reward, and learning centers causing neuroplasticity in the striato-thalamic-frontal cortical loop; (2) hypo-functionality of the excitatory glutamatergic afferents from the amygdala-hippocampus complex. A large volume of literature regarding the known neurogenetic and psychological underpinnings of RDS has revealed a significant risk of dopaminergic gene polymorphic allele overlap between cohorts of depression and subsets of schizophrenia. The suggestion is that instead of alcohol, opioids, gambling disorders, etc. being endophenotypes, the true phenotype is RDS. Additionally, reward deficiency can result from depleted or hereditary hypodopaminergia, which can manifest as a variety of personality traits and mental/medical disorders that have been linked to genetic studies with dopamine-depleting alleles. The carrying of known DNA antecedents, including epigenetic insults, results in a life-long vulnerability to RDS conditions and addictive behaviors. Epigenetic repair of hypodopaminergia, the causative basis of addictive behaviors, may involve precision DNA-guided therapy achieved by combining the Genetic Addiction Risk Severity (GARS) test with a researched neutraceutical having a number of variant names, including KB220Z. This nutraceutical formulation with pro-dopamine regulatory capabilities has been studied and published in peer-reviewed journals, mostly from our laboratory. Finally, it is our opinion that RDS should be given an ICD code and deserves to be included in the DSM-VI because while the DSM features symptomology, it is equally important to feature etiological roots as portrayed in the RDS model.
Collapse
Affiliation(s)
- Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA
- Center for Behavioral Health & Sports, Exercise, Psychiatry, Western University Health Sciences, Pomona, CA 91766, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Kazinczy u. 23–27, 1075 Budapest, Hungary
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Catherine A. Dennen
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 19140, USA
| | - Igor Elman
- Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Clinical Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA
- Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA
| | - B. William Downs
- Division of Precision Nutrition, Victory Nutrition International, LLC., Lederoch, PA 19438, USA
| | - Debasis Bagchi
- Division of Precision Nutrition, Victory Nutrition International, LLC., Lederoch, PA 19438, USA
- Department of Pharmaceutical Science, College of Pharmacy & Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - David Baron
- Center for Behavioral Health & Sports, Exercise, Psychiatry, Western University Health Sciences, Pomona, CA 91766, USA
| | - Eric R. Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA
| | - Richard Green
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA
| | - Thomas McLaughlin
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA
| | - Debmalya Barh
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology, Nonakuri, Purba Medinipur 721172, India
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
7
|
Bajaj A, Blum K, Bowirrat A, Gupta A, Baron D, Fugel D, Nicholson A, Fitch T, Downs BW, Bagchi D, Dennen CA, Badgaiyan RD. DNA Directed Pro-Dopamine Regulation Coupling Subluxation Repair, H-Wave® and Other Neurobiologically Based Modalities to Address Complexities of Chronic Pain in a Female Diagnosed with Reward Deficiency Syndrome (RDS): Emergence of Induction of “Dopamine Homeostasis” in the Face of the Opioid Crisis. J Pers Med 2022; 12:jpm12091416. [PMID: 36143203 PMCID: PMC9503998 DOI: 10.3390/jpm12091416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Addiction is a complex multifactorial condition. Established genetic factors can provide clear guidance in assessing the risk of addiction to substances and behaviors. Chronic stress can accumulate, forming difficult to recognize addiction patterns from both genetic and epigenetic (environmental) factors. Furthermore, psychological/physical/chemical stressors are typically categorized linearly, delaying identification and treatment. The patient in this case report is a Caucasian female, aged 36, who presented with chronic pain and partial disability following a surgically repaired trimalleolar fracture. The patient had a history of unresolved attention deficit disorder and an MRI scan of her brain revealed atrophy and functional asymmetry. In 2018, the patient entered the Bajaj Chiropractic Clinic, where initial treatment focused on re-establishing integrity of the spine and lower extremity biomechanics and graduated into cognitive behavior stabilization assisted by DNA pro-dopamine regulation guided by Genetic Addiction Risk Severity testing. During treatment (2018–2021), progress achieved included: improved cognitive clarity, focus, sleep, anxiety, and emotional stability in addition to pain reduction (75%); elimination of powerful analgesics; and reduced intake of previously unaddressed alcoholism. To help reduce hedonic addictive behaviors and pain, coupling of H-Wave with corrective chiropractic care seems prudent. We emphasize the importance of genetic assessment along with attempts at inducing required dopaminergic homeostasis via precision KB220PAM. It is hypothesized that from preventive care models, a new standard is emerging including self-awareness and accountability for reward deficiency as a function of hypodopaminergia. This case study documents the progression of a patient dealing with the complexities of an injury, pain management, cognitive impairment, anxiety, depression, and the application of universal health principles towards correction versus palliative care.
Collapse
Affiliation(s)
- Anish Bajaj
- Bajaj Chiropractic Clinic, New York, NY 10010, USA
| | - Kenneth Blum
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, and Primary Care, (Office of the Provost), Western University Health Sciences, Pomona, CA 91766, USA
- The Kenneth Blum Institute on Behavior & Neurogenetics, Austin, TX 78701, USA
- Correspondence:
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA
| | - David Baron
- Division of Addiction Research & Education, Center for Psychiatry, Medicine, and Primary Care, (Office of the Provost), Western University Health Sciences, Pomona, CA 91766, USA
| | - David Fugel
- Bajaj Chiropractic Clinic, New York, NY 10010, USA
| | | | - Taylor Fitch
- Bajaj Chiropractic Clinic, New York, NY 10010, USA
| | - B. William Downs
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA
| | - Debasis Bagchi
- Department of Pharmaceutical Sciences, Southern University College of Pharmacy, Houston, TX 77004, USA
| | - Catherine A. Dennen
- The Kenneth Blum Institute on Behavior & Neurogenetics, Austin, TX 78701, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA
| |
Collapse
|
8
|
Blum K, Han D, Gupta A, Baron D, Braverman ER, Dennen CA, Kazmi S, Llanos-Gomez L, Badgaiyan RD, Elman I, Thanos PK, Downs BW, Bagchi D, Gondre-Lewis MC, Gold MS, Bowirrat A. Statistical Validation of Risk Alleles in Genetic Addiction Risk Severity (GARS) Test: Early Identification of Risk for Alcohol Use Disorder (AUD) in 74,566 Case–Control Subjects. J Pers Med 2022; 12:jpm12091385. [PMID: 36143170 PMCID: PMC9505592 DOI: 10.3390/jpm12091385] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Since 1990, when our laboratory published the association of the DRD2 Taq A1 allele and severe alcoholism in JAMA, there has been an explosion of genetic candidate association studies, including GWAS. To develop an accurate test to help identify those at risk for at least Alcohol Use Disorder (AUD), Blum’s group developed the Genetic Addiction Risk Severity (GARS) test, consisting of ten genes and eleven associated risk alleles. In order to statistically validate the selection of these risk alleles measured by GARS, we applied strict analysis to studies that investigated the association of each polymorphism with AUD or AUD-related conditions published from 1990 until 2021. This analysis calculated the Hardy–Weinberg Equilibrium of each polymorphism in cases and controls. If available, the Pearson’s χ2 test or Fisher’s exact test was applied to comparisons of the gender, genotype, and allele distribution. The statistical analyses found the OR, 95% CI for OR, and a post-risk for 8% estimation of the population’s alcoholism prevalence revealed a significant detection. The OR results showed significance for DRD2, DRD3, DRD4, DAT1, COMT, OPRM1, and 5HTT at 5%. While most of the research related to GARS is derived from our laboratory, we are encouraging more independent research to confirm our findings.
Collapse
Affiliation(s)
- Kenneth Blum
- Graduate College, Western University Health Sciences, Pomona, CA 91766, USA
- Institute of Psychology, ELTE Eötvös Loránd University, Egyetem tér 1-3, 1053 Budapest, Hungary
- The Kenneth Blum Institute on Behavior & Neurogenetics, LLC., Austin, TX 78701, USA
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Dayton VA Medical Centre, Department of Psychiatry, Boonshoft School of Medicine, Wright State University, Dayton, OH 45324, USA
- Division of Precision Nutrition, Victory Nutrition International, LLC., Lederoch, PA 19438, USA
- Correspondence:
| | - David Han
- Department of Management Science and Statistics, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA
| | - David Baron
- Graduate College, Western University Health Sciences, Pomona, CA 91766, USA
| | - Eric R. Braverman
- The Kenneth Blum Institute on Behavior & Neurogenetics, LLC., Austin, TX 78701, USA
| | - Catherine A. Dennen
- Department of Family Medicine, Jefferson Health Northeast, Philadelphia, PA 19114, USA
| | - Shan Kazmi
- Graduate College, Western University Health Sciences, Pomona, CA 91766, USA
| | - Luis Llanos-Gomez
- The Kenneth Blum Institute on Behavior & Neurogenetics, LLC., Austin, TX 78701, USA
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA
- Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02139, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, Clinical Research Institute on Addictions, University at Buffalo, Buffalo, NY 14203, USA
- Department of Psychology, University at Buffalo, Buffalo, NY 14260, USA
| | - Bill W. Downs
- Division of Precision Nutrition, Victory Nutrition International, LLC., Lederoch, PA 19438, USA
| | - Debasis Bagchi
- Division of Precision Nutrition, Victory Nutrition International, LLC., Lederoch, PA 19438, USA
- Department of Pharmaceutical Science, College of Pharmacy & Health Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Marjorie C. Gondre-Lewis
- Department of Psychiatry and Behavioral Sciences, Howard University College of Medicine, Washington, DC 20059, USA
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| |
Collapse
|
9
|
Madigan MA, Gupta A, Bowirrat A, Baron D, Badgaiyan RD, Elman I, Dennen CA, Braverman ER, Gold MS, Blum K. Precision Behavioral Management (PBM) and Cognitive Control as a Potential Therapeutic and Prophylactic Modality for Reward Deficiency Syndrome (RDS): Is There Enough Evidence? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116395. [PMID: 35681980 PMCID: PMC9180535 DOI: 10.3390/ijerph19116395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/20/2022]
Abstract
This brief commentary aims to provide an overview of the available and relatively new precision management of reward deficiencies manifested as substance and behavioral disorders. Current and future advances, concepts, and the substantial evidential basis of this potential therapeutic and prophylactic treatment modality are presented. Precision Behavioral Management (PBM), conceptualized initially as Precision Addiction Management (PAM), certainly deserves consideration as an important modality for the treatment of impaired cognitive control in reward processing as manifested in people with neurobiologically expressed Reward Deficiency Syndrome (RDS).
Collapse
Affiliation(s)
- Margaret A. Madigan
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA; (M.A.M.); (C.A.D.); (E.R.B.)
| | - Ashim Gupta
- Future Biologics, Lawrenceville, GA 30043, USA;
| | - Abdalla Bowirrat
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - David Baron
- Center for Psychiatry, Medicine, & Primary Care (Office of Provost), Division of Addiction Research & Education, Western University Health Sciences, Pomona, CA 91766, USA;
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Medical Center, San Antonio, TX 78229, USA;
| | - Igor Elman
- Center for Pain and the Brain (P.A.I.N Group), Department of Anesthesiology, Critical Care & Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | - Catherine A. Dennen
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA; (M.A.M.); (C.A.D.); (E.R.B.)
| | - Eric R. Braverman
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA; (M.A.M.); (C.A.D.); (E.R.B.)
| | - Mark S. Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Kenneth Blum
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA; (M.A.M.); (C.A.D.); (E.R.B.)
- Center for Psychiatry, Medicine, & Primary Care (Office of Provost), Division of Addiction Research & Education, Western University Health Sciences, Pomona, CA 91766, USA;
- Institute of Psychology, ELTE Eötvös Loránd University, Egyetem tér 1-3, 1053 Budapest, Hungary
- Department of Psychiatry, School of Medicine, University of Vermont, Burlington, VT 05405, USA
- Department of Psychiatry, Wright State University Boonshoft School of Medicine, Dayton VA Medical Centre, Dayton, OH 45324, USA
- Correspondence:
| |
Collapse
|
10
|
File D, Bőthe B, File B, Demetrovics Z. The Role of Impulsivity and Reward Deficiency in "Liking" and "Wanting" of Potentially Problematic Behaviors and Substance Uses. Front Psychiatry 2022; 13:820836. [PMID: 35546934 PMCID: PMC9083266 DOI: 10.3389/fpsyt.2022.820836] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
A few studies have examined the changes in substance- and behavior-related "wanting" and "liking" of human subjects, the key properties of Incentive Sensitization Theory (IST). The aim of this study was to examine the dissociation between "wanting" and "liking" as a function of usage frequency, intensity, and subjective severity in individuals across four substances (alcohol, nicotine, cannabis, and other drugs) and ten behaviors (gambling, overeating, gaming, pornography use, sex, social media use, Internet use, TV-series watching, shopping, and work). Also, the potential roles of impulsivity and reward deficiency were investigated in "wanting," "liking," and wellbeing. The sex differences between "wanting" and "liking" were also examined. Based on our findings using structural equation modeling with 749 participants (503 women, M age = 35.7 years, SD = 11.84), who completed self-report questionnaires, "wanting" increased with the severity, frequency, and intensity of potentially problematic use, while "liking" did not change. Impulsivity positively predicted "wanting," and "wanting" positively predicted problem uses/behaviors. Reward deficiency positively predicted problem uses/behaviors, and both impulsivity and problem uses/behaviors negatively predicted wellbeing. Finally, women showed higher levels of "wanting," compared to men. These findings demonstrate the potential roles of incentive sensitization in both potentially problematic substance uses and behaviors.
Collapse
Affiliation(s)
- Domonkos File
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Beáta Bőthe
- Department of Psychology, Université de Montréal, Montreal, QC, Canada
| | - Bálint File
- Wigner Research Centre for Physics, Budapest, Hungary
| | - Zsolt Demetrovics
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Centre of Excellence in Responsible Gaming, University of Gibraltar, Gibraltar, Gibraltar
| |
Collapse
|