1
|
Ilyas-Feldmann M, Langer O, Bauer M, Asselin MC, Hendrikse NH, Sisodiya SM, Duncan JS, Löscher W, Koepp M. Tolerability of tariquidar - A third generation P-gp inhibitor as add-on medication to antiseizure medications in drug-resistant epilepsy. Seizure 2024; 119:44-51. [PMID: 38776617 DOI: 10.1016/j.seizure.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
PURPOSE P-glycoprotein (P-gp) has been hypothesized to be involved in drug-resistance of epilepsy by actively extruding antiseizure medications (ASMs) from the brain. The P-gp inhibitor tariquidar (TQD) has been shown to effectively inhibit P-gp at the human blood-brain barrier, improving brain entry of several ASMs. A potential strategy to overcome drug-resistance is the co-administration of P-gp inhibitors such as TQD to ASMs. Here we present data on the tolerability of single-dose TQD as a potential add-on medication to ASMs. METHODS We performed a multi-centre cohort study including drug-resistant epilepsy patients and healthy controls from the United Kingdom and Austria. TQD was administered intravenously at five different doses (2 mg/kg or 3 mg/kg of TQD were given to drug-resistant epilepsy patients and healthy controls, higher doses of TQD at 4 mg/kg, 6 mg/kg and 8 mg/kg as well as a prolonged infusion aiming at a dose of 6 mg/kg were only given to healthy controls). Adverse events were recorded and graded using the Common Terminology Criteria (CTCAE) scale. Additionally, TQD plasma concentration levels were measured and compared between drug-resistant patients and healthy controls. RESULTS In total, 108 participants received TQD once at variable doses and it was overall well tolerated. At doses of 2 or 3 mg/kg TQD, only two of the 19 drug-resistant epilepsy patients and a third of the healthy controls (n = 14/42) reported adverse events probably related to TQD. The majority of those adverse events (96 %) were reported as mild. One drug-resistant epilepsy patient reported adverse events 24-hours after TQD administration possibly related to TQD-induced increased ASMs levels in the brain. CONCLUSIONS TQD is an effective and well tolerated P-gp inhibitor as a single dose and could potentially be used intermittently in conjunction with ASMs to improve efficacy. This promising strategy to overcome drug-resistance in epilepsy should be investigated further in clinical randomised controlled trials.
Collapse
Affiliation(s)
- Maria Ilyas-Feldmann
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom and Chalfont Centre for Epilepsy, Bucks SL9 0RJ, United Kingdom; Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom; Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Neurology with Experimental Neurology, Berlin, Germany.
| | - Oliver Langer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Martin Bauer
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria; Psychosocial Services in Vienna, Vienna, Austria
| | - Marie-Claude Asselin
- Wolfson Molecular Imaging Centre, University of Manchester, Manchester, United Kingdom; Division of Informatics, Imaging & Data Science, Faculty of Biology, Medicine & Health, University of Manchester, Manchester, United Kingdom
| | - N Harry Hendrikse
- Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom and Chalfont Centre for Epilepsy, Bucks SL9 0RJ, United Kingdom
| | - John S Duncan
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom and Chalfont Centre for Epilepsy, Bucks SL9 0RJ, United Kingdom
| | - Wolfgang Löscher
- Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Matthias Koepp
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, United Kingdom and Chalfont Centre for Epilepsy, Bucks SL9 0RJ, United Kingdom
| |
Collapse
|
2
|
Auvity S, Vodovar D, Goutal S, Cisternino S, Chevillard L, Soyer A, Bottlaender M, Caillé F, Mégarbane B, Tournier N. Brain PET imaging using 11C-flumazenil and 11C-buprenorphine does not support the hypothesis of a mutual interaction between buprenorphine and benzodiazepines at the neuroreceptor level. J Cereb Blood Flow Metab 2024; 44:449-458. [PMID: 38097513 PMCID: PMC10870960 DOI: 10.1177/0271678x231221040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 02/16/2024]
Abstract
Among opioids, buprenorphine presents a favorable safety profile with a limited risk of respiratory depression. However, fatalities have been reported when buprenorphine is combined to a benzodiazepine. Potentiation of buprenorphine interaction with opioid receptors (ORs) with benzodiazepines, and/or vice versa, is hypothesized to explain this drug-drug interaction (DDI). The mutual DDI between buprenorphine and benzodiazepines was investigated at the neuroreceptor level in nonhuman primates (n = 4 individuals) using brain PET imaging and kinetic modelling. The binding potential (BPND) of benzodiazepine receptor (BzR) was assessed using 11C-flumazenil PET imaging before and after administration of buprenorphine (0.2 mg, i.v.). Moreover, the brain kinetics and receptor binding of buprenorphine were investigated in the same individuals using 11C-buprenorphine PET imaging before and after administration of diazepam (10 mg, i.v.). Outcome parameters were compared using a two-way ANOVA. Buprenorphine did not impact the plasma nor brain kinetics of 11C-flumazenil. 11C-flumazenil BPND was unchanged following buprenorphine exposure, in any brain region (p > 0.05). Similarly, diazepam did not impact the plasma or brain kinetics of 11C-buprenorphine. 11C-buprenorphine volume of distribution (VT) was unchanged following diazepam exposure, in any brain region (p > 0.05). To conclude, our PET imaging findings do not support a neuropharmacokinetic or neuroreceptor-related mechanism of the buprenorphine/benzodiazepine interaction.
Collapse
Affiliation(s)
- Sylvain Auvity
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| | - Dominique Vodovar
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
- Réanimation Médicale et Toxicologique, Hôpital Lariboisière, Fédération de Toxicologie (APHP), 75010, Paris
| | - Sébastien Goutal
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| | - Salvatore Cisternino
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| | - Lucie Chevillard
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
| | - Amélie Soyer
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| | - Michel Bottlaender
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| | - Fabien Caillé
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| | - Bruno Mégarbane
- Faculté de Pharmacie, Université Paris Cité, Inserm, UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, 75006 Paris, France
- Réanimation Médicale et Toxicologique, Hôpital Lariboisière, Fédération de Toxicologie (APHP), 75010, Paris
| | - Nicolas Tournier
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Orsay, France
| |
Collapse
|
3
|
Zarrouki F, Goutal S, Vacca O, Garcia L, Tournier N, Goyenvalle A, Vaillend C. Abnormal Expression of Synaptic and Extrasynaptic GABAA Receptor Subunits in the Dystrophin-Deficient mdx Mouse. Int J Mol Sci 2022; 23:ijms232012617. [PMID: 36293496 PMCID: PMC9604073 DOI: 10.3390/ijms232012617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/21/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is a neurodevelopmental disorder primarily caused by the loss of the full-length Dp427 dystrophin in both muscle and brain. The basis of the central comorbidities in DMD is unclear. Brain dystrophin plays a role in the clustering of central gamma-aminobutyric acid A receptors (GABAARs), and its loss in the mdx mouse alters the clustering of some synaptic subunits in central inhibitory synapses. However, the diversity of GABAergic alterations in this model is still fragmentary. In this study, the analysis of in vivo PET imaging of a benzodiazepine-binding site radioligand revealed that the global density of central GABAARs is unaffected in mdx compared with WT mice. In contrast, semi-quantitative immunoblots and immunofluorescence confocal imaging in tissue sections revealed complex and differential patterns of alterations of the expression levels and/or clustered distribution of a variety of synaptic and extrasynaptic GABAAR subunits in the hippocampus, cerebellum, cortex, and spinal cord. Hence, dystrophin loss not only affects the stabilization of synaptic GABAARs but also influences the subunit composition of GABAARs subtypes at both synaptic and extrasynaptic sites. This study provides new molecular outcome measures and new routes to evaluate the impact of treatments aimed at compensating alterations of the nervous system in DMD.
Collapse
Affiliation(s)
- Faouzi Zarrouki
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91400 Saclay, France
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Sébastien Goutal
- Université Paris-Saclay, INSERM, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Ophélie Vacca
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Luis Garcia
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Nicolas Tournier
- Université Paris-Saclay, INSERM, CNRS, CEA, Laboratoire d’Imagerie Biomédicale Multimodale (BioMaps), Service Hospitalier Frédéric Joliot, 91401 Orsay, France
| | - Aurélie Goyenvalle
- Université Paris-Saclay, UVSQ, Inserm, END-ICAP, 78000 Versailles, France
| | - Cyrille Vaillend
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris Saclay, 91400 Saclay, France
- Correspondence:
| |
Collapse
|
4
|
Rousseau-Blass F, Cribb AE, Beaudry F, Pang DS. A Pharmacokinetic-Pharmacodynamic Study of Intravenous Midazolam and Flumazenil in Adult New Zealand White-Californian Rabbits ( Oryctolagus cuniculus). JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2021; 60:319-328. [PMID: 33673881 PMCID: PMC8145127 DOI: 10.30802/aalas-jaalas-20-000084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/03/2020] [Accepted: 09/29/2020] [Indexed: 11/05/2022]
Abstract
Flumazenil, a competitive GABAA receptor antagonist, is commonly used in rabbits to shorten sedation or postanesthetic recovery after benzodiazepine administration. However, no combined pharmacokinetic (PK) and pharmacodynamic (PD) data are available to guide its administration in this species. In a prospective, randomized, blinded, crossover study design, the efficacy of IV flumazenil (FLU; 0.05 mg/kg) or saline control (SAL; equal volume) to reverse the loss of righting reflex (LORR) induced by IV midazolam (1.2 mg/kg) was investigated in 15 New Zealand white rabbits (2.73 to 4.65 kg, 1 y old). Rabbits were instrumented with arterial (central auricular artery) and venous (marginal auricular vein) catheters. After baseline blood sampling, IV midazolam was injected (T0). Flumazenil or saline (FLU/SAL) was injected 30 s after LORR. Arterial blood samples were collected at 1 and 3 min after midazolam injection, and at 1, 3, 6, 10, 15, 21, 28, 36, 45 and 60 min after injection with flumazenil. Plasma samples for midazolam, 1-OH-midazolam and flumazenil were analyzed using high performance liquid chromatography-high-resolution mass spectrometry and the time to return of righting reflex (ReRR) was compared between groups (Wilcoxon test). FLU terminal half-life, plasma clearance and volume of distribution were 26.3 min [95%CI: 23.3 to 29.3], 18.74 mL/min/kg [16.47 to 21.00] and 0.63 L/kg [0.55 to 0.71], respectively. ReRR was 25 times faster in rabbits treated with FLU (23 [8 to 44] s) compared with SAL (576 [130 to 1141] s; 95%CI [425 to 914 s]). Return of sedation (lateral recumbency) occurred in both groups (7/13 in FLU; 12/13 in SAL) with return of LORR in a few animals (4/13 in FLU; 7/13 in SAL) at 1540 [858 to 2328] s. In the population and anesthesia protocol studied, flumazenil quickly and reliably reversed sedation induced by midazolam injection. However, the potential return of sedation after flumazenil administration warrants careful monitoring in the recovery period.
Collapse
Affiliation(s)
- Frédérik Rousseau-Blass
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Alastair E Cribb
- Cummings School of Veterinary Medicine, Tufts University, N Grafton, Massachusetts
| | - Francis Beaudry
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Saint-Hyacinthe, Québec, Canada
| | - Daniel Sj Pang
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Groupe de recherche en pharmacologie animale du Québec (GREPAQ), Université de Montréal, Saint-Hyacinthe, Québec, Canada; Department of Veterinary Clinical and Diagnostic Sciences, Faculty of Veterinary Medicine (UCVM), University of Calgary, Calgary, Alberta, Canada;,
| |
Collapse
|
5
|
Stefanits H, Milenkovic I, Mahr N, Pataraia E, Baumgartner C, Hainfellner JA, Kovacs GG, Kasprian G, Sieghart W, Yilmazer-Hanke D, Czech T. Alterations in GABAA Receptor Subunit Expression in the Amygdala and Entorhinal Cortex in Human Temporal Lobe Epilepsy. J Neuropathol Exp Neurol 2020; 78:1022-1048. [PMID: 31631219 DOI: 10.1093/jnen/nlz085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 07/06/2019] [Indexed: 12/14/2022] Open
Abstract
The amygdala has long been implicated in the pathophysiology of human temporal lobe epilepsy (TLE). The different nuclei of this complex structure are interconnected and share reciprocal connections with the hippocampus and other brain structures, partly via the entorhinal cortex. Expression of GABAA receptor subunits α1, α2, α3, α5, β2, β2/3, and γ2 was evaluated by immunohistochemistry in amygdala specimens and the entorhinal cortex of 12 TLE patients and 12 autopsy controls. A substantial decrease in the expression of α1, α2, α3, and β2/3 subunits was found in TLE cases, accompanied by an increase of γ2 subunit expression in many nuclei. In the entorhinal cortex, the expression of all GABAA receptor subunits was decreased except for the α1 subunit, which was increased on cellular somata. The overall reduction in α subunit expression may lead to decreased sensitivity to GABA and its ligands and compromise phasic inhibition, whereas upregulation of the γ2 subunit might influence clustering and kinetics of receptors and impair tonic inhibition. The description of these alterations in the human amygdala is important for the understanding of network changes in TLE as well as the development of subunit-specific therapeutic agents for the treatment of this disease.
Collapse
Affiliation(s)
- Harald Stefanits
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Ivan Milenkovic
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Nina Mahr
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Ekaterina Pataraia
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Christoph Baumgartner
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Johannes A Hainfellner
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Gabor G Kovacs
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Gregor Kasprian
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Werner Sieghart
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Deniz Yilmazer-Hanke
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| | - Thomas Czech
- Department of Neurosurgery, Institute of Neurology, Department of Neurology, Department of Biomedical Imaging and Image Guided Therapy, Center for Brain Research, Department of Molecular Neurosciences, Medical University of Vienna, Vienna, Austria; Second Neurological Department, General Hospital Hietzing, Vienna, Austria; and Clinical Neuroanatomy, Neurology Department, Medical Faculty, Ulm University, Ulm, Germany
| |
Collapse
|
6
|
Establishment of an in Vitro Human Blood-Brain Barrier Model Derived from Induced Pluripotent Stem Cells and Comparison to a Porcine Cell-Based System. Cells 2020; 9:cells9040994. [PMID: 32316221 PMCID: PMC7226989 DOI: 10.3390/cells9040994] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/10/2020] [Accepted: 04/14/2020] [Indexed: 12/19/2022] Open
Abstract
The blood-brain barrier (BBB) is responsible for the homeostasis between the cerebral vasculature and the brain and it has a key role in regulating the influx and efflux of substances, in healthy and diseased states. Stem cell technology offers the opportunity to use human brain-specific cells to establish in vitro BBB models. Here, we describe the establishment of a human BBB model in a two-dimensional monolayer culture, derived from human induced pluripotent stem cells (hiPSCs). This model was characterized by a transendothelial electrical resistance (TEER) higher than 2000 Ω∙cm2 and associated with negligible paracellular transport. The hiPSC-derived BBB model maintained the functionality of major endothelial transporter proteins and receptors. Some proprietary molecules from our central nervous system (CNS) programs were evaluated revealing comparable permeability in the human model and in the model from primary porcine brain endothelial cells (PBECs).
Collapse
|
7
|
Jafarian M, Modarres Mousavi SM, Alipour F, Aligholi H, Noorbakhsh F, Ghadipasha M, Gharehdaghi J, Kellinghaus C, Kovac S, Khaleghi Ghadiri M, Meuth SG, Speckmann EJ, Stummer W, Gorji A. Cell injury and receptor expression in the epileptic human amygdala. Neurobiol Dis 2019; 124:416-427. [DOI: 10.1016/j.nbd.2018.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/04/2018] [Accepted: 12/22/2018] [Indexed: 02/06/2023] Open
|