1
|
Gerasimova E, Enikeev D, Yakovlev A, Zakharov A, Sitdikova G. Chronic Hyperhomocysteinemia Impairs CSD Propagation and Induces Cortical Damage in a Rat Model of Migraine with Aura. Biomolecules 2024; 14:1379. [PMID: 39595556 PMCID: PMC11591878 DOI: 10.3390/biom14111379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024] Open
Abstract
Hyperhomocysteinemia (hHCY) is a metabolic disorder characterized by elevated levels of homocysteine in plasma. hHCY correlates with a high risk of migraine headaches, especially migraine with aura. Cortical spreading depression (CSD) is a wave of depolarization passing through neurons and glial cells of the cortex and is considered an electrophysiological correlate of migraine aura. The aim of the present study was to analyze neuronal activity and CSD in the somatosensory cortex of rats in vivo with prenatal hHCY and to assess cortex viability after 2 h of CSD generation. Female rats were fed a diet high in methionine, and their offspring with high homocysteine levels in plasma were further used in experiments. Recurrent CSD was evoked by local KCl application on the dura surface. Neuronal viability was assessed by measuring the activity of lactate dehydrogenase (LDH) in the brain and 2,3,5-triphenyltetrazolium chloride staining of the somatosensory cortex after two hours of CSD generation. Animals with hHCY exhibited higher neuronal activity, and more CSDs were generated in response to KCl, indicating higher cortical excitability. Propagation of recurrent CSD was impaired in supragranular cortical layers, and the recovery of multiple unit activity and evoked sensory potentials after CSD was delayed in the hHCY group. Finally, in animals with prenatal hHCY, an ischemic focus was identified as a consequence of multiple CSDs, along with elevated levels of LDH activity in brain tissues, suggestive of diminished neuronal viability. These findings imply that prolonged elevated levels of homocysteine may not only predispose to migraine with aura but also potentially elevate the risk of migrainous infarction.
Collapse
Affiliation(s)
- Elena Gerasimova
- Department of Neuroscience, Sirius University of Science and Technology, 354340 Sirius, Russia;
| | - Daniel Enikeev
- Department of Neuroscience, Sirius University of Science and Technology, 354340 Sirius, Russia;
- Institute of Translational Biomedicine, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint-Petersburg, Russia
| | - Aleksey Yakovlev
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia; (A.Y.); (G.S.)
| | - Andrey Zakharov
- Department of Normal Physiology, Kazan State Medical University, 49 Butlerova Str., 420012 Kazan, Russia;
- Department of Medical Physics, Institute of Physics, Kazan Federal University, 16a Kremlyovskaya Str., 420008 Kazan, Russia
| | - Guzel Sitdikova
- Department of Human and Animal Physiology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya Str., 420008 Kazan, Russia; (A.Y.); (G.S.)
| |
Collapse
|
2
|
Wu Y, Jewell S, Xing X, Nan Y, Strong AJ, Yang G, Boutelle MG. Real-Time Non-Invasive Imaging and Detection of Spreading Depolarizations through EEG: An Ultra-Light Explainable Deep Learning Approach. IEEE J Biomed Health Inform 2024; 28:5780-5791. [PMID: 38412076 DOI: 10.1109/jbhi.2024.3370502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
A core aim of neurocritical care is to prevent secondary brain injury. Spreading depolarizations (SDs) have been identified as an important independent cause of secondary brain injury. SDs are usually detected using invasive electrocorticography recorded at high sampling frequency. Recent pilot studies suggest a possible utility of scalp electrodes generated electroencephalogram (EEG) for non-invasive SD detection. However, noise and attenuation of EEG signals makes this detection task extremely challenging. Previous methods focus on detecting temporal power change of EEG over a fixed high-density map of scalp electrodes, which is not always clinically feasible. Having a specialized spectrogram as an input to the automatic SD detection model, this study is the first to transform SD identification problem from a detection task on a 1-D time-series wave to a task on a sequential 2-D rendered imaging. This study presented a novel ultra-light-weight multi-modal deep-learning network to fuse EEG spectrogram imaging and temporal power vectors to enhance SD identification accuracy over each single electrode, allowing flexible EEG map and paving the way for SD detection on ultra-low-density EEG with variable electrode positioning. Our proposed model has an ultra-fast processing speed (<0.3 sec). Compared to the conventional methods (2 hours), this is a huge advancement towards early SD detection and to facilitate instant brain injury prognosis. Seeing SDs with a new dimension - frequency on spectrograms, we demonstrated that such additional dimension could improve SD detection accuracy, providing preliminary evidence to support the hypothesis that SDs may show implicit features over the frequency profile.
Collapse
|
3
|
Melo-Carrillo A, Strassman AM, Malcolm KKJ, Adams AM, Dabruzzo B, Briode RS, Brin MF, Burstein R. Exploring the effects of extracranial injections of botulinum toxin type A on activation and sensitization of central trigeminovascular neurons by cortical spreading depression in male and female rats. Cephalalgia 2024; 44:3331024241278919. [PMID: 39252510 DOI: 10.1177/03331024241278919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND OnabotulinumtoxinA (onabotA), is assumed to achieve its therapeutic effect in migraine through blocking activation of unmyelinated meningeal nociceptors and their downstream communications with central dura-sensitive trigeminovascular neurons in the spinal trigeminal nucleus (SPV). The present study investigated the mechanism of action of onabotA by assessing its effect on activation and sensitization of dura-sensitive neurons in the SPV by cortical spreading depression (CSD). It is a follow up to our recent study on onabotA effects on activation and sensitization of peripheral trigeminovascular neurons. METHODS In anesthetized male and female rats, single-unit recordings were used to assess effects of extracranial injections of onabotA (five injections, one unit each, diluted in 5 μl of saline were made along the lambdoid (two injection sites) and sagittal (two injection sites) suture) vs. vehicle on CSD-induced activation and sensitization of high-threshold (HT) and wide-dynamic range (WDR) dura-sensitive neurons in the SPV. RESULTS Single cell analysis of onabotA pretreatment effects on CSD-induced activation and sensitization of central trigeminovascular neurons in the SPV revealed the ability of this neurotoxin to prevent activation and sensitization of WDR neurons (13/20 (65%) vs. 4/16 (25%) activated neurons in the control vs. treated groups, p = 0.022, Fisher's exact). By contrast, onabotA pretreatment effects on CSD-induced activation and sensitization of HT neurons had no effect on their activation (12/18 (67%) vs. 4/7 (36%) activated neurons in the control vs. treated groups, p = 0.14, Fisher's exact). Regarding sensitization, we found that onabotA pretreatment prevented the enhanced responses to mechanical stimulation of the skin (i.e. responses reflecting central sensitization) in both WDR and HT neurons. In control but not treated WDR neurons, responses to brush (p = 0.004 vs. p = 0.007), pressure (p = 0.002 vs. p = 0.79) and pinch (p = 0.007 vs. 0.79) increased significantly two hours after CSD. Similarly, in control but not treated HT neurons, responses to brush (p = 0.002 vs. p = 0.79), pressure (p = 0.002 vs. p = 0.72) and pinch (p = 0.0006 vs. p = 0.28) increased significantly two hours after CSD. Unexpectedly, onabotA pretreatment prevented the enhanced responses of both WDR and HT neurons to mechanical stimulation of the dura (commonly reflecting peripheral sensitization). In control vs. treated WDR and HT neurons, responses to dural stimulation were enhanced in 70 vs. 25% (p = 0.017) and 78 vs. 27% (p = 0.017), respectively. CONCLUSIONS The ability of onabotA to prevent activation and sensitization of WDR neurons is attributed to its preferential inhibitory effects on unmyelinated C-fibers. The inability of onabotA to prevent activation of HT neurons is attributed to its less extensive inhibitory effects on the thinly myelinated Aδ-fibers. These findings provide further pre-clinical evidence about differences and potentially complementary mechanisms of action of onabotA and calcitonin gene-related peptide-signaling neutralizing drugs.
Collapse
Affiliation(s)
- Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Andrew M Strassman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| | - Khrystoffer-Kihan J Malcolm
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | | | | | | | - Mitchell F Brin
- Allergan, an Abbvie Company, Irvine, CA, USA
- Department of Neurology, University of California, Irvine, CA, USA
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Anesthesia, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Palopoli-Trojani K, Trumpis M, Chiang CH, Wang C, Williams AJ, Evans CL, Turner DA, Viventi J, Hoffmann U. High-density cortical µECoG arrays concurrently track spreading depolarizations and long-term evolution of stroke in awake rats. Commun Biol 2024; 7:263. [PMID: 38438529 PMCID: PMC10912118 DOI: 10.1038/s42003-024-05932-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 02/18/2024] [Indexed: 03/06/2024] Open
Abstract
Spreading depolarizations (SDs) are widely recognized as a major contributor to the progression of tissue damage from ischemic stroke even if blood flow can be restored. They are characterized by negative intracortical waveforms of up to -20 mV, propagation velocities of 3 - 6 mm/min, and massive disturbance of membrane ion homeostasis. High-density, micro-electrocorticographic (μECoG) epidural electrodes and custom, DC-coupled, multiplexed amplifiers, were used to continuously characterize and monitor SD and µECoG cortical signal evolution in awake, moving rats over days. This highly innovative approach can define these events over a large brain surface area (~ 3.4 × 3.4 mm), extending across the boundaries of the stroke, and offers sufficient electrode density (60 contacts total per array for a density of 5.7 electrodes / mm2) to measure and determine the origin of SDs in relation to the infarct boundaries. In addition, spontaneous ECoG activity can simultaneously be detected to further define cortical infarct regions. This technology allows us to understand dynamic stroke evolution and provides immediate cortical functional activity over days. Further translational development of this approach may facilitate improved treatment options for acute stroke patients.
Collapse
Affiliation(s)
| | | | | | - Charles Wang
- Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Cody L Evans
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, USA
| | - Dennis A Turner
- Biomedical Engineering, Duke University, Durham, NC, USA
- Neurosurgery, Neurobiology, Duke University, Durham, USA
- Research and Surgery Services, Durham VAMC, Durham, USA
| | | | - Ulrike Hoffmann
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, USA.
| |
Collapse
|
5
|
Araújo ADO, Figueira-de-Oliveira ML, Noya AGAFDC, Oliveira E Silva VP, de Carvalho JM, Vieira Filho LD, Guedes RCA. Effect of neonatal melatonin administration on behavioral and brain electrophysiological and redox imbalance in rats. Front Neurosci 2023; 17:1269609. [PMID: 37901423 PMCID: PMC10603194 DOI: 10.3389/fnins.2023.1269609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/18/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Melatonin (MLT) reportedly has beneficial effects in neurological disorders involving brain excitability (e.g., Epilepsy and Migraine) and behavioral patterns (e.g., Anxiety and Depression). This study was performed to investigate, in the developing rat brain, the effect of early-in-life administration of two different doses of exogenous MLT on behavioral (anxiety and memory) and electrophysiological (CSD analysis) aspects of brain function. Additionally, brain levels of malondialdehyde (MDA) and superoxide dismutase (SOD), both cellular indicators of redox balance status, were evaluated. We hypothesize that MLT differentially affects the behavioral and CSD parameters as a function of the MLT dose. Materials and methods Male Wistar rats received, from the 7th to the 27th postnatal day (PND), on alternate days, vehicle solution, or 10 mg/kg/or 40 mg/kg MLT (MLT-10 and MLT-40 groups), or no treatment (intact group). To perform behavioral and cognition analysis, from PND30 to PND32, they were tested in the open field apparatus, first for anxiety (PND30) and then for object recognition memory tasks: spatial position recognition (PND31) and shape recognition (PND32). On PND34, they were tested in the elevated plus maze. From PND36 to 42, the excitability-related phenomenon known as cortical spreading depression (CSD) was recorded, and its features were analyzed. Results Treatment with MLT did not change the animals' body weight or blood glucose levels. The MLT-10 treatment, but not the MLT-40 treatment, was associated with behaviors that suggest less anxiety and improved memory. MLT-10 and MLT-40 treatments, respectively, decelerated and accelerated CSD propagation (speed of 2.86 ± 0.14 mm/min and 3.96 ± 0.16 mm/min), compared with the control groups (3.3 ± 0.10 mm/min and 3.25 ± 0.11 mm/min, for the intact and vehicle groups, respectively; p < 0.01). Cerebral cortex levels of malondialdehyde and superoxide dismutase were, respectively, lower and higher in the MLT-10 group but not in the MLT40 group. Conclusion Our findings suggest that MLT intraperitoneal administration during brain development may differentially act as an antioxidant agent when administered at a low dose but not at a high dose, according to behavioral, electrophysiological, and biochemical parameters.
Collapse
Affiliation(s)
- Amanda de Oliveira Araújo
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | | | | - Leucio Duarte Vieira Filho
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | | |
Collapse
|
6
|
Mukherjee S, Mirzaee M, Tithof J. Quantifying the relationship between spreading depolarization and perivascular cerebrospinal fluid flow. Sci Rep 2023; 13:12405. [PMID: 37524734 PMCID: PMC10390554 DOI: 10.1038/s41598-023-38938-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Recent studies have linked spreading depolarization (SD, an electro-chemical wave in the brain following stroke, migraine, traumatic brain injury, and more) with increase in cerebrospinal fluid (CSF) flow through the perivascular spaces (PVSs, annular channels lining the brain vasculature). We develop a novel computational model that couples SD and CSF flow. We first use high order numerical simulations to solve a system of physiologically realistic reaction-diffusion equations which govern the spatiotemporal dynamics of ions in the extracellular and intracellular spaces of the brain cortex during SD. We then couple the SD wave with a 1D CSF flow model that captures the change in cross-sectional area, pressure, and volume flow rate through the PVSs. The coupling is modelled using an empirical relationship between the excess potassium ion concentration in the extracellular space following SD and the vessel radius. We find that the CSF volumetric flow rate depends intricately on the length and width of the PVS, as well as the vessel radius and the angle of incidence of the SD wave. We derive analytical expressions for pressure and volumetric flow rates of CSF through the PVS for a given SD wave and quantify CSF flow variations when two SD waves collide. Our numerical approach is very general and could be extended in the future to obtain novel, quantitative insights into how CSF flow in the brain couples with slow waves, functional hyperemia, seizures, or externally applied neural stimulations.
Collapse
Affiliation(s)
- Saikat Mukherjee
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA.
| | - Mahsa Mirzaee
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| |
Collapse
|
7
|
Bohr T, Hjorth PG, Holst SC, Hrabětová S, Kiviniemi V, Lilius T, Lundgaard I, Mardal KA, Martens EA, Mori Y, Nägerl UV, Nicholson C, Tannenbaum A, Thomas JH, Tithof J, Benveniste H, Iliff JJ, Kelley DH, Nedergaard M. The glymphatic system: Current understanding and modeling. iScience 2022; 25:104987. [PMID: 36093063 PMCID: PMC9460186 DOI: 10.1016/j.isci.2022.104987] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We review theoretical and numerical models of the glymphatic system, which circulates cerebrospinal fluid and interstitial fluid around the brain, facilitating solute transport. Models enable hypothesis development and predictions of transport, with clinical applications including drug delivery, stroke, cardiac arrest, and neurodegenerative disorders like Alzheimer's disease. We sort existing models into broad categories by anatomical function: Perivascular flow, transport in brain parenchyma, interfaces to perivascular spaces, efflux routes, and links to neuronal activity. Needs and opportunities for future work are highlighted wherever possible; new models, expanded models, and novel experiments to inform models could all have tremendous value for advancing the field.
Collapse
Affiliation(s)
- Tomas Bohr
- Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Poul G. Hjorth
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Richard Petersens Plads, 2800 Kgs. Lyngby, Denmark
| | - Sebastian C. Holst
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Sabina Hrabětová
- Department of Cell Biology and The Robert Furchgott Center for Neural and Behavioral Science, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Vesa Kiviniemi
- Oulu Functional NeuroImaging, Department of Diagnostic Radiology, MRC, Oulu University Hospital, Oulu, Finland
- Medical Imaging, Physics and Technology, the Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Tuomas Lilius
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Emergency Medicine and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Iben Lundgaard
- Department of Experimental Medical Science, Lund University, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - Kent-Andre Mardal
- Department of Mathematics, University of Oslo, Oslo, Norway
- Simula Research Laboratory, Department of Numerical Analysis and Scientific Computing, Oslo, Norway
| | | | - Yuki Mori
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - U. Valentin Nägerl
- Instítut Interdisciplinaire de Neurosciences, Université de Bordeaux / CNRS UMR 5297, Centre Broca Nouvelle-Aquitaine, 146 rue Léo Saignat, CS 61292 Case 130, 33076 Bordeaux Cedex France
| | - Charles Nicholson
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, USA
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Allen Tannenbaum
- Departments of Computer Science/ Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - John H. Thomas
- Department of Mechanical Engineering, University of Rochester, Rochester, 14627 NY, USA
| | - Jeffrey Tithof
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, USA
| | - Helene Benveniste
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA
| | - Jeffrey J. Iliff
- VISN 20 Mental Illness Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA
| | - Douglas H. Kelley
- Department of Mechanical Engineering, University of Rochester, Rochester, 14627 NY, USA
| | - Maiken Nedergaard
- Center for Translational Neuromedicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, 14642 NY, USA
| |
Collapse
|
8
|
Sato Y, Falcone-Juengert J, Tominaga T, Su H, Liu J. Remodeling of the Neurovascular Unit Following Cerebral Ischemia and Hemorrhage. Cells 2022; 11:2823. [PMID: 36139398 PMCID: PMC9496956 DOI: 10.3390/cells11182823] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Formulated as a group effort of the stroke community, the transforming concept of the neurovascular unit (NVU) depicts the structural and functional relationship between brain cells and the vascular structure. Composed of both neural and vascular elements, the NVU forms the blood-brain barrier that regulates cerebral blood flow to meet the oxygen demand of the brain in normal physiology and maintain brain homeostasis. Conversely, the dysregulation and dysfunction of the NVU is an essential pathological feature that underlies neurological disorders spanning from chronic neurodegeneration to acute cerebrovascular events such as ischemic stroke and cerebral hemorrhage, which were the focus of this review. We also discussed how common vascular risk factors of stroke predispose the NVU to pathological changes. We synthesized existing literature and first provided an overview of the basic structure and function of NVU, followed by knowledge of how these components remodel in response to ischemic stroke and brain hemorrhage. A greater understanding of the NVU dysfunction and remodeling will enable the design of targeted therapies and provide a valuable foundation for relevant research in this area.
Collapse
Affiliation(s)
- Yoshimichi Sato
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Jaime Falcone-Juengert
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| | - Teiji Tominaga
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Hua Su
- Department of Anesthesia, UCSF, San Francisco, CA 94143, USA
- Center for Cerebrovascular Research, UCSF, San Francisco, CA 94143, USA
| | - Jialing Liu
- Department of Neurological Surgery, UCSF, San Francisco, CA 94158, USA
- Department of Neurological Surgery, SFVAMC, San Francisco, CA 94158, USA
| |
Collapse
|
9
|
Chau L, Davis HT, Jones T, Greene-Chandos D, Torbey M, Shuttleworth CW, Carlson AP. Spreading Depolarization as a Therapeutic Target in Severe Ischemic Stroke: Physiological and Pharmacological Strategies. J Pers Med 2022; 12:1447. [PMID: 36143232 PMCID: PMC9502975 DOI: 10.3390/jpm12091447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Spreading depolarization (SD) occurs nearly ubiquitously in malignant hemispheric stroke (MHS) and is strongly implicated in edema progression and lesion expansion. Due to this high burden of SD after infarct, it is of great interest whether SD in MHS patients can be mitigated by physiologic or pharmacologic means and whether this intervention improves clinical outcomes. Here we describe the association between physiological variables and risk of SD in MHS patients who had undergone decompressive craniectomy and present an initial case of using ketamine to target SD in MHS. METHODS We recorded SD using subdural electrodes and time-linked with continuous physiological recordings in five subjects. We assessed physiologic variables in time bins preceding SD compared to those with no SD. RESULTS Using multivariable logistic regression, we found that increased ETCO2 (OR 0.772, 95% CI 0.655-0.910) and DBP (OR 0.958, 95% CI 0.941-0.991) were protective against SD, while elevated temperature (OR 2.048, 95% CI 1.442-2.909) and WBC (OR 1.113, 95% CI 1.081-1.922) were associated with increased risk of SD. In a subject with recurrent SD, ketamine at a dose of 2 mg/kg/h was found to completely inhibit SD. CONCLUSION Fluctuations in physiological variables can be associated with risk of SD after MHS. Ketamine was also found to completely inhibit SD in one subject. These data suggest that use of physiological optimization strategies and/or pharmacologic therapy could inhibit SD in MHS patients, and thereby limit edema and infarct progression. Clinical trials using individualized approaches to target this novel mechanism are warranted.
Collapse
Affiliation(s)
- Lily Chau
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Herbert T. Davis
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA
| | - Thomas Jones
- Department of Psychiatry, University of New Mexico, Albuquerque, NM 87131, USA
| | | | - Michel Torbey
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
| | | | - Andrew P. Carlson
- Department of Neurology, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Neuroscience, University of New Mexico, Albuquerque, NM 87131, USA
- Department of Neurosurgery, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
10
|
Yuan Y, Feng Z, Yang G, Ye X, Wang Z. Suppression of Neuronal Firing Following Antidromic High-Frequency Stimulations on the Neuronal Axons in Rat Hippocampal CA1 Region. Front Neurosci 2022; 16:881426. [PMID: 35757541 PMCID: PMC9226389 DOI: 10.3389/fnins.2022.881426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/24/2022] [Indexed: 12/03/2022] Open
Abstract
High-frequency stimulation (HFS) of electrical pulses has been used to treat certain neurological diseases in brain with commonly utilized effects within stimulation periods. Post-stimulation effects after the end of HFS may also have functions but are lack of attention. To investigate the post-stimulation effects of HFS, we performed experiments in the rat hippocampal CA1 region in vivo. Sequences of 1-min antidromic-HFS (A-HFS) were applied at the alveus fibers. To evaluate the excitability of the neurons, separated orthodromic-tests (O-test) of paired pulses were applied at the Schaffer collaterals in the period of baseline, during late period of A-HFS, and following A-HFS. The evoked potentials of A-HFS pulses and O-test pulses were recorded at the stratum pyramidale and the stratum radiatum of CA1 region by an electrode array. The results showed that the antidromic population spikes (APS) evoked by the A-HFS pulses persisted through the entire 1-min period of 100 Hz A-HFS, though the APS amplitudes decreased significantly from the initial value of 9.9 ± 3.3 mV to the end value of 1.6 ± 0.60 mV. However, following the cessation of A-HFS, a silent period without neuronal firing appeared before the firing gradually recovered to the baseline level. The mean lengths of both silent period and recovery period of pyramidal cells (21.9 ± 22.9 and 172.8 ± 91.6 s) were significantly longer than those of interneurons (11.2 ± 8.9 and 45.6 ± 35.9 s). Furthermore, the orthodromic population spikes (OPS) and the field excitatory postsynaptic potentials (fEPSP) evoked by O-tests at ∼15 s following A-HFS decreased significantly, indicating the excitability of pyramidal cells decreased. In addition, when the pulse frequency of A-HFS was increased to 200, 400, and 800 Hz, the suppression of neuronal activity following A-HFS decreased rather than increased. These results indicated that the neurons with axons directly under HFS can generate a post-stimulation suppression of their excitability that may be due to an antidromic invasion of axonal A-HFS to somata and dendrites. The finding provides new clues to utilize post-stimulation effects generated in the intervals to design intermittent stimulations, such as closed-loop or adaptive stimulations.
Collapse
Affiliation(s)
- Yue Yuan
- Key Lab of Biomedical Engineering for Education Ministry, College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou, China
| | - Zhouyan Feng
- Key Lab of Biomedical Engineering for Education Ministry, College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou, China
| | - Gangsheng Yang
- Key Lab of Biomedical Engineering for Education Ministry, College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou, China
| | - Xiangyu Ye
- Key Lab of Biomedical Engineering for Education Ministry, College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou, China
| | - Zhaoxiang Wang
- Key Lab of Biomedical Engineering for Education Ministry, College of Biomedical Engineering and Instrumentation Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Schumm L, Lemale CL, Major S, Hecht N, Nieminen-Kelhä M, Zdunczyk A, Kowoll CM, Martus P, Thiel CM, Dreier JP, Woitzik J. Physiological variables in association with spreading depolarizations in the late phase of ischemic stroke. J Cereb Blood Flow Metab 2022; 42:121-135. [PMID: 34427143 PMCID: PMC8721769 DOI: 10.1177/0271678x211039628] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Physiological effects of spreading depolarizations (SD) are only well studied in the first hours after experimental stroke. In patients with malignant hemispheric stroke (MHS), monitoring of SDs is restricted to the postoperative ICU stay, typically day 2-7 post-ictus. Therefore, we investigated the role of physiological variables (temperature, intracranial pressure, mean arterial pressure and cerebral perfusion pressure) in relationship to SD during the late phase after MHS in humans. Additionally, an experimental stroke model was used to investigate hemodynamic consequences of SD during this time window. In 60 patients with MHS, the occurrence of 1692 SDs was preceded by a decrease in mean arterial pressure (-1.04 mmHg; p = .02) and cerebral perfusion pressure (-1.04 mmHg; p = .03). Twenty-four hours after middle cerebral artery occlusion in 50 C57Bl6/J mice, hypothermia led to prolonged SD-induced hyperperfusion (+2.8 min; p < .05) whereas hypertension mitigated initial hypoperfusion (-1.4 min and +18.5%Δ rCBF; p < .01). MRI revealed that SDs elicited 24 hours after experimental stroke were associated with lesion progression (15.9 vs. 14.8 mm³; p < .01). These findings of small but significant effects of physiological variables on SDs in the late phase after ischemia support the hypothesis that the impact of SDs may be modified by adjusting physiological variables.
Collapse
Affiliation(s)
- Leonie Schumm
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurosurgery, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Zdunczyk
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Peter Martus
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute for Clinical Epidemiology and Applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Andrew RD, Hartings JA, Ayata C, Brennan KC, Dawson-Scully KD, Farkas E, Herreras O, Kirov SA, Müller M, Ollen-Bittle N, Reiffurth C, Revah O, Robertson RM, Shuttleworth CW, Ullah G, Dreier JP. The Critical Role of Spreading Depolarizations in Early Brain Injury: Consensus and Contention. Neurocrit Care 2022; 37:83-101. [PMID: 35257321 PMCID: PMC9259543 DOI: 10.1007/s12028-021-01431-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/29/2021] [Indexed: 02/02/2023]
Abstract
BACKGROUND When a patient arrives in the emergency department following a stroke, a traumatic brain injury, or sudden cardiac arrest, there is no therapeutic drug available to help protect their jeopardized neurons. One crucial reason is that we have not identified the molecular mechanisms leading to electrical failure, neuronal swelling, and blood vessel constriction in newly injured gray matter. All three result from a process termed spreading depolarization (SD). Because we only partially understand SD, we lack molecular targets and biomarkers to help neurons survive after losing their blood flow and then undergoing recurrent SD. METHODS In this review, we introduce SD as a single or recurring event, generated in gray matter following lost blood flow, which compromises the Na+/K+ pump. Electrical recovery from each SD event requires so much energy that neurons often die over minutes and hours following initial injury, independent of extracellular glutamate. RESULTS We discuss how SD has been investigated with various pitfalls in numerous experimental preparations, how overtaxing the Na+/K+ ATPase elicits SD. Elevated K+ or glutamate are unlikely natural activators of SD. We then turn to the properties of SD itself, focusing on its initiation and propagation as well as on computer modeling. CONCLUSIONS Finally, we summarize points of consensus and contention among the authors as well as where SD research may be heading. In an accompanying review, we critique the role of the glutamate excitotoxicity theory, how it has shaped SD research, and its questionable importance to the study of early brain injury as compared with SD theory.
Collapse
Affiliation(s)
- R. David Andrew
- grid.410356.50000 0004 1936 8331Queen’s University, Kingston, ON Canada
| | - Jed A. Hartings
- grid.24827.3b0000 0001 2179 9593University of Cincinnati, Cincinnati, OH USA
| | - Cenk Ayata
- grid.38142.3c000000041936754XHarvard Medical School, Harvard University, Boston, MA USA
| | - K. C. Brennan
- grid.223827.e0000 0001 2193 0096The University of Utah, Salt Lake City, UT USA
| | | | - Eszter Farkas
- grid.9008.10000 0001 1016 96251HCEMM-USZ Cerebral Blood Flow and Metabolism Research Group, and the Department of Cell Biology and Molecular Medicine, Faculty of Science and Informatics & Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Oscar Herreras
- grid.419043.b0000 0001 2177 5516Instituto de Neurobiologia Ramon Y Cajal (Consejo Superior de Investigaciones Científicas), Madrid, Spain
| | - Sergei. A. Kirov
- grid.410427.40000 0001 2284 9329Medical College of Georgia, Augusta, GA USA
| | - Michael Müller
- grid.411984.10000 0001 0482 5331University of Göttingen, University Medical Center Göttingen, Göttingen, Germany
| | - Nikita Ollen-Bittle
- grid.39381.300000 0004 1936 8884University of Western Ontario, London, ON Canada
| | - Clemens Reiffurth
- grid.7468.d0000 0001 2248 7639Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and the Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health., Berlin, Germany
| | - Omer Revah
- grid.168010.e0000000419368956School of Medicine, Stanford University, Stanford, CA USA
| | | | | | - Ghanim Ullah
- grid.170693.a0000 0001 2353 285XUniversity of South Florida, Tampa, FL USA
| | - Jens P. Dreier
- grid.7468.d0000 0001 2248 7639Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health; and the Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health., Berlin, Germany
| |
Collapse
|
13
|
Jewell S, Hobson S, Brewer G, Rogers M, Hartings JA, Foreman B, Lavrador JP, Sole M, Pahl C, Boutelle MG, Strong AJ. Development and Evaluation of a Method for Automated Detection of Spreading Depolarizations in the Injured Human Brain. Neurocrit Care 2021; 35:160-175. [PMID: 34309783 PMCID: PMC8536628 DOI: 10.1007/s12028-021-01228-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/04/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Spreading depolarizations (SDs) occur in some 60% of patients receiving intensive care following severe traumatic brain injury and often occur at a higher incidence following serious subarachnoid hemorrhage and malignant hemisphere stroke (MHS); they are independently associated with worse clinical outcome. Detection of SDs to guide clinical management, as is now being advocated, currently requires continuous and skilled monitoring of the electrocorticogram (ECoG), frequently extending over many days. METHODS We developed and evaluated in two clinical intensive care units (ICU) a software routine capable of detecting SDs both in real time at the bedside and retrospectively and also capable of displaying patterns of their occurrence with time. We tested this prototype software in 91 data files, each of approximately 24 h, from 18 patients, and the results were compared with those of manual assessment ("ground truth") by an experienced assessor blind to the software outputs. RESULTS The software successfully detected SDs in real time at the bedside, including in patients with clusters of SDs. Counts of SDs by software (dependent variable) were compared with ground truth by the investigator (independent) using linear regression. The slope of the regression was 0.7855 (95% confidence interval 0.7149-0.8561); a slope value of 1.0 lies outside the 95% confidence interval of the slope, representing significant undersensitivity of 79%. R2 was 0.8415. CONCLUSIONS Despite significant undersensitivity, there was no additional loss of sensitivity at high SD counts, thus ensuring that dense clusters of depolarizations of particular pathogenic potential can be detected by software and depicted to clinicians in real time and also be archived.
Collapse
Affiliation(s)
- Sharon Jewell
- Department of Bioengineering, Imperial College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Academic Neuroscience Centre, King's College London, Room A1.27, De Crespigny Park, Box 41, London, SE5 8AF, UK
| | | | | | - Michelle Rogers
- Department of Bioengineering, Imperial College London, London, UK
| | - Jed A Hartings
- Department of Neurosurgery, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Brandon Foreman
- Department of Neurology and Rehabilitation Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | | | | | - Clemens Pahl
- Department of Intensive Care Medicine, King's College Hospital, London, UK
| | | | - Anthony J Strong
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Academic Neuroscience Centre, King's College London, Room A1.27, De Crespigny Park, Box 41, London, SE5 8AF, UK.
| |
Collapse
|
14
|
Zhang T, Nemoto EM. Cerebral Spreading Depression Transient Disruption of Cross-Frequency Coupling in the Rat Brain: Preliminary Observations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1269:209-216. [PMID: 33966219 DOI: 10.1007/978-3-030-48238-1_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Normal brain function requires an integrated, simultaneous communication between brain regions in a coordinated manner. In our studies on cortical spreading depolarization (CSD) induced electrically in the rat brain while recording electrocorticography (ECoG) and delta wave activity, we found for the first time that CSD suppressed delta wave activity, which began even before the CSD was fully developed. We pursued this observation to determine whether repeated CSD suppressed delta wave activity in rats. CSD was produced by electrical stimulation of the neocortex while recording the development of CSD and changes in the coupling of low-frequency band cross coupling to four typical physiological neuronal activity frequency bands, i.e., 5-7 Hz, 8-12 Hz, 13-30 Hz, and 30-80 Hz. Band-pass filters were applied to achieve the corresponding physiological band signals. Besides the cross-frequency coupling (CFC) analysis, the distribution of delta wave density in time domain was analyzed. We calculated the delta wave density per 30 seconds but represent the density as frequency per minute. A Generalized Linear Models (GLM) was used to carry out the CFC analysis in Matlab. Because delta waves dominated the ECoG recorded, we modeled the higher-frequency amplitude envelope as a function of low-frequency phase using a spline basis. Besides the CFC analysis, we also characterized the distribution of the delta wave density in time domain. Four CFC, Theta, Alpha, Beta, and Gamma were at very small values after CSD, and after about 8 minutes, the CFC recovered to the pre-CSD level. CFC were seen to decrease before a CSD occurred at the higher-frequency bands and tended to decrease quickly. Whether the attenuated CFC by CSD has long-term consequences remains to be determined. Future studies will explore the impact of cortical CSD on CFC with deeper brain structures, including the thalamus and the caudate putamen.
Collapse
Affiliation(s)
- Tongsheng Zhang
- Department of Neurosurgery, University of New Mexico, Albuquerque, NM, USA
| | - Edwin M Nemoto
- Department of Neurosurgery, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
15
|
Remote and Persistent Alterations in Glutamate Receptor Subunit Composition Induced by Spreading Depolarizations in Rat Brain. Cell Mol Neurobiol 2020; 42:1253-1260. [PMID: 33184769 PMCID: PMC8113318 DOI: 10.1007/s10571-020-01000-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/06/2020] [Indexed: 02/01/2023]
Abstract
Spreading depolarizations (SDs) are massive breakdowns of ion homeostasis in the brain's gray matter and are a necessary pathologic mechanism for lesion development in various injury models. However, injury-induced SDs also propagate into remote, healthy tissue where they do not cause cell death, yet their functional long-term effects are unknown. Here we induced SDs in uninjured cortex and hippocampus of Sprague-Dawley rats to study their impact on glutamate receptor subunit expression after three days. We find that both cortical and hippocampal tissue exhibit changes in glutamate receptor subunit expression, including GluA1 and GluN2B, suggesting that SDs in healthy brain tissue may have a role in plasticity. This study is the first to show prolonged effects of SDs on glutamate signaling and has implications for neuroprotection strategies aimed at SD suppression.
Collapse
|
16
|
Benevides RDDL, de-Lima SMV, Chagas CL, de Lima CF, Abadie-Guedes R, Guedes RCA. Lactation in large litters influences anxiety, memory, and spreading depression in adult male rats that were chronically subjected to a non-convulsive pilocarpine dose. Nutr Neurosci 2020; 25:846-856. [PMID: 32912080 DOI: 10.1080/1028415x.2020.1819103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Objectives: Unfavorable lactation influences brain excitability and behavioral reactions in adults. Administration early in life of the cholinergic agonist, pilocarpine, even at non-convulsive doses, alters the brain excitability-related phenomenon known as cortical spreading depression (CSD), and produce anxiogenic-like behavior. However, the influence of unfavorable lactation on the CSD- and memory-effects of pilocarpine administration late in life has not been investigated. Herein, we analyzed the ponderal, electrophysiological (CSD), and behavioral effects of chronic treatment with a non-convulsive dose of pilocarpine, in adult rats suckled under favorable and unfavorable conditions.Methods: Wistar rats were suckled in litters with 9 or 15 pups (groups L9 and L15, respectively). A very low dose of pilocarpine (45/mg/kg/day) was chronically administered in mature rats from postnatal day (PND) 69-90. Behavioral tests occurred at PND91 [elevated plus maze (EPM)], PND93 [open field (OF)], and PND94-95 [object recognition memory (ORM)]. CSD was recorded between PND96-120.Results: Pilocarpine-treated rats performed worse in the anxiety and memory tests, and displayed lower CSD propagation velocity when compared with saline-treated controls. In addition, L15 rats showed an increase in the distance traveled and a decrease in the immobility time in the EPM, impaired ORM, and accelerated CSD propagation when compared with L9 rats (p ≤ 0.05).Discussion: These data suggest that sub-convulsive pilocarpine treatment in adult rats can affect behavioral and excitability-related reactions. In addition, unfavorable lactation increases the ambulatory effects of pilocarpine. Further studies should investigate the possible cholinergic molecular mechanisms involved in these effects.
Collapse
Affiliation(s)
| | | | - Camila Lima Chagas
- Department of Nutrition, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Clara Farah de Lima
- Department of Nutrition, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Ricardo Abadie-Guedes
- Department of Physiology and Pharmacology, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | |
Collapse
|
17
|
Mei YY, Lee MH, Cheng TC, Hsiao IH, Wu DC, Zhou N. NMDA receptors sustain but do not initiate neuronal depolarization in spreading depolarization. Neurobiol Dis 2020; 145:105071. [PMID: 32890774 DOI: 10.1016/j.nbd.2020.105071] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 12/18/2022] Open
Abstract
Spreading depolarization (SD) represents a neurological process characterized by a massive, self-sustaining wave of brain cell depolarization. Understanding its mechanism is important for treating ischemic or hemorrhagic stroke and migraine with aura. Many believed that ion fluxes through NMDA receptors (NMDARs) are responsible for neuronal transmembrane currents of SD. However, the explicit role of NMDARs remains ambiguous. This is in part due to the limitation of traditional pharmacological approaches in resolving the contribution of NMDARs in different intercellular and intracellular processes of SD. Here, we applied single-cell blockade and genetic deletion methods to remove functional NMDARs from individual hippocampal CA1 neurons in order to examine the role of NMDARs in the depolarization mechanism without affecting the propagation of SD. We analyzed neuronal membrane potential changes to demonstrate that NMDARs are not required for initiating the depolarization. Consistently, neuronal input resistance (RN) revealed a sharp decline at the start of SD, which was unaffected by blocking NMDARs. Instead, the recovery of both membrane potential and RN during the late phase of SD was facilitated by inhibition of NMDARs, indicating that NMDARs are responsible for sustaining the depolarization. Our results strongly indicate that NMDAR activation is not a determinant of the initiation of depolarization but is important for sustaining transmembrane ion fluxes during SD.
Collapse
Affiliation(s)
- Yu-Ying Mei
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - Ming-Hsueh Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ting-Chun Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan
| | - I-Han Hsiao
- Department of Neurosurgery, China Medical University Hospital, Taichung 40402, Taiwan
| | - Dong Chuan Wu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; Translational Medicine Research Center, China Medical University Hospital, Taichung 40402, Taiwan.
| | - Ning Zhou
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
18
|
Freitas-Andrade M, Raman-Nair J, Lacoste B. Structural and Functional Remodeling of the Brain Vasculature Following Stroke. Front Physiol 2020; 11:948. [PMID: 32848875 PMCID: PMC7433746 DOI: 10.3389/fphys.2020.00948] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Maintenance of cerebral blood vessel integrity and regulation of cerebral blood flow ensure proper brain function. The adult human brain represents only a small portion of the body mass, yet about a quarter of the cardiac output is dedicated to energy consumption by brain cells at rest. Due to a low capacity to store energy, brain health is heavily reliant on a steady supply of oxygen and nutrients from the bloodstream, and is thus particularly vulnerable to stroke. Stroke is a leading cause of disability and mortality worldwide. By transiently or permanently limiting tissue perfusion, stroke alters vascular integrity and function, compromising brain homeostasis and leading to widespread consequences from early-onset motor deficits to long-term cognitive decline. While numerous lines of investigation have been undertaken to develop new pharmacological therapies for stroke, only few advances have been made and most clinical trials have failed. Overall, our understanding of the acute and chronic vascular responses to stroke is insufficient, yet a better comprehension of cerebrovascular remodeling following stroke is an essential prerequisite for developing novel therapeutic options. In this review, we present a comprehensive update on post-stroke cerebrovascular remodeling, an important and growing field in neuroscience, by discussing cellular and molecular mechanisms involved, sex differences, limitations of preclinical research design and future directions.
Collapse
Affiliation(s)
| | - Joanna Raman-Nair
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
19
|
Abstract
Cortical spreading depolarization (CSD) is recognized as a cause of transient neurological symptoms (TNS) in various clinical entities. Although scientific literature has been flourishing in the field of CSD, it remains an underrecognized pathophysiology in clinical practice. The literature evoking CSD in relation to subdural hematoma (SDH) is particularly scarce. Patients with SDH frequently suffer from TNS, most being attributed to seizures despite an atypical semiology, evolution, and therapeutic response. Recent literature has suggested that a significant proportion of those patients' TNS represent the clinical manifestations of underlying CSD. Recently, the term Non-Epileptical Stereoytpical Intermittent Symptoms (NESIS) has been proposed to describe a subgroup of patients presenting with TNS in the context of SDH. Indirect evidence and recent research suggest that the pathophysiology of NESIS could represent the clinical manifestation of CSD. This review should provide a concise yet thorough review of the current state of literature behind the pathophysiology of CSD with a particular focus on recent research and knowledge regarding the presence of CSD in the context of subdural hematoma. Although many questions remain in the evolution of knowledge in this field would likely have significant diagnostic, therapeutic, and prognostic implications.
Collapse
|
20
|
Melo-Carrillo A, Strassman AM, Schain AJ, Noseda R, Ashina S, Adams A, Brin MF, Burstein R. Exploring the effects of extracranial injections of botulinum toxin type A on prolonged intracranial meningeal nociceptors responses to cortical spreading depression in female rats. Cephalalgia 2019; 39:1358-1365. [PMID: 31475573 PMCID: PMC6779016 DOI: 10.1177/0333102419873675] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background Botulinum neurotoxin type A, an FDA-approved prophylactic drug for chronic migraine, is thought to achieve its therapeutic effect through blocking activation of unmyelinated meningeal nociceptors and their downstream communications with myelinated nociceptors and potentially the vasculature and immune cells. Prior investigations to determine botulinum neurotoxin type A effects on meningeal nociceptors were carried out in male rats and tested with stimuli that act outside the blood brain barrier. Here, we sought to explore the effects of extracranial injections of botulinum neurotoxin type A on activation of meningeal nociceptors by cortical spreading depression, an event which occurs inside the blood brain barrier, in female rats. Material and methods Using single-unit recording, we studied myelinated C- and unmyelinated Aδ-meningeal nociceptors' responses to cortical spreading depression 7–14 days after injection of botulinum neurotoxin type A or saline along calvarial sutures. Results In female rats, responses to cortical spreading depression were typically more prolonged and, in some cases, began at relatively longer latencies post-cortical spreading depression, than had been observed in previous studies in male rats. Extracranial administration of botulinum neurotoxin type A reduced significantly the prolonged firing of the meningeal nociceptors, in the combined sample of Aδ- and C-fiber, but not their response probability. Discussion The findings suggest that the mechanism of action by which botulinum neurotoxin type A prevents migraine differ from the one by which calcitonin gene-related peptide monoclonal antibodies prevent migraine and that even when the origin of migraine is central (i.e. in the cortex), a peripherally acting drug can intercept/prevent the headache.
Collapse
Affiliation(s)
- Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Andrew M Strassman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Aaron J Schain
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Rodrigo Noseda
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Sait Ashina
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA, USA.,Harvard Medical School, Boston, MA, USA
| | | | | | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Stevens AR, Ng IHX, Helmy A, Hutchinson PJA, Menon DK, Ercole A. Glucose Dynamics of Cortical Spreading Depolarization in Acute Brain Injury: A Systematic Review. J Neurotrauma 2019; 36:2153-2166. [PMID: 30700219 DOI: 10.1089/neu.2018.6175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cortical spreading depolarization (CSD) is an emerging mode of secondary neuronal damage in acute brain injury (ABI). Subsequent repolarisation is a metabolic process requiring glucose. Instances of CSD and glucose derangement are both linked to poor neurological outcome, but their causal inter-relationship is not fully defined. This systematic review seeks to evaluate the available human evidence studying CSD and glucose to further understand their dynamic relationship. We conducted a systematic review of studies examining CSD through electrocorticography and cerebral/systemic glucose concentrations in ABI, excluding animal studies. The search yielded 478 articles, of which 13 were eligible. Across 10 manuscripts, 125 patients received simultaneous monitoring, with 1987 CSD episodes observed. Eight of 10 studies observed correlation between CSD and glucose change. Seven of eight studies observed possible cumulative effect of recurrent CSD on glucose derangement and two identified correlation between glycopenia and incidence of CSD. These findings confirm a relationship between CSD and glucose, and suggest it may be cyclical, where CSD causes local glycopenia, which may potentiate further CSD. Positive observations were not common to all studies, likely due to differing methodology or heterogeneity in CSD propensity. Further study is required to delineate the utility of the clinical modulation of serum and cerebral glucose to alter the propensity for CSD following brain injury.
Collapse
Affiliation(s)
- Andrew R Stevens
- 1 Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Isabel H X Ng
- 1 Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Adel Helmy
- 2 Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Peter J A Hutchinson
- 2 Division of Neurosurgery, Department of Clinical Neurosciences, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - David K Menon
- 1 Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Ari Ercole
- 1 Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
22
|
Guedes RCA, Abadie-Guedes R. Brain Aging and Electrophysiological Signaling: Revisiting the Spreading Depression Model. Front Aging Neurosci 2019; 11:136. [PMID: 31231207 PMCID: PMC6567796 DOI: 10.3389/fnagi.2019.00136] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 05/21/2019] [Indexed: 12/31/2022] Open
Abstract
As a consequence of worldwide improvement in health care, the aging portion of the human population has increased, now representing a higher proportion of the total population. This fact raises great concern regarding how to age while maintaining good brain function. Very often, alterations in brain electrophysiological signaling are associated with age-dependent functional disorders of the brain. Therefore, animal models suitable for the study of age-related changes in electrical activity of the brain can be very useful. Herein, we review changes in brain electrophysiological features as a function of age by analyzing studies in the rat brain on the phenomenon known as cortical spreading depression (CSD). Alterations in the brain’s capability to generate and propagate CSD may be related to differences in the propensity to develop certain neurological diseases, such as epilepsy, stroke, and migraine, which can biunivocally interact with the aging process. In this review, we revisit ours and others’ previous studies on electrophysiological features of the CSD phenomenon, such as its velocity of propagation and amplitude and duration of its slow negative DC shift, as a function of the animal age, as well as the interaction between age and other factors, such as ethanol consumption, physical exercise, and nutritional status. In addition, we discuss one relatively new feature through which CSD modulates brain signaling: the ability to potentiate the brain’s spontaneous electrical activity. We conclude that the CSD model might importantly contribute to a better understanding of the aging/brain signaling relationship.
Collapse
Affiliation(s)
| | - Ricardo Abadie-Guedes
- Departamento de Fisiologia e Farmacologia, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
23
|
Long lasting behavioral and electrophysiological action of early administration of guanosine: Analysis in the adult rat brain. Brain Res Bull 2019; 150:266-271. [PMID: 31181322 DOI: 10.1016/j.brainresbull.2019.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/23/2019] [Accepted: 06/04/2019] [Indexed: 01/01/2023]
Abstract
Guanosine (GUO) is a guanine-based purine that has been extensively described in the literature as an endogenous nucleoside with participation in brain cell signalling pathways. Here, we evaluated whether chronic treatment with exogenous guanosine during brain development altered behavioral and electrophysiological parameters in adulthood. Rat pups received a daily intraperitoneal injection of 10, 50 or 100 mg/ kg/day GUO, or saline solution or no treatment (naive group) from postnatal (P) day 7 to P27. At P 60-65 the animals were behaviorally tested in the Elevated Plus-Maze (EPM). On P90-100, the electrophysiological phenomenon known as cortical spreading depression (CSD) was recorded on the right cortical surface for 4 h. With the EPM task, GUO treatment was associated with a significant increase in rearing behavior and a non-significant trend towards anxiogenic behavior. In a dose-dependent manner, GUO significantly (p < 0.01) increased weight gain on P90, and reduced the CSD propagation velocity from 3.42 ± 0.10 and 3.43 ± 0.10 mm/min in the Naive and Vehicle controls, respectively, to 3.05 ± 0.12 mm/min, 2.87 ± 0.07 mm/min and 2.25 ± 0.25 mm/min in the groups treated with 10, 50 and 100 mg/kg/d GUO, respectively. The results confirmed the hypothesis that the chronic treatment with GUO early in life modulates CSD and body weight. Data on CSD propagation suggest that, besides its suppressing action on glutamatergic transmission (via enhancement of astrocytic glutamate uptake), GUO might act as an antioxidant in the brain, a hypothesis that deserves further exploration.
Collapse
|
24
|
Yemisci M, Eikermann-Haerter K. Aura and Stroke: relationship and what we have learnt from preclinical models. J Headache Pain 2019; 20:63. [PMID: 31142262 PMCID: PMC6734247 DOI: 10.1186/s10194-019-1016-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/19/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Population-based studies have highlighted a close relationship between migraine and stroke. Migraine, especially with aura, is a risk factor for both ischemic and hemorrhagic stroke. Interestingly, stroke risk is highest for migraineurs who are young and otherwise healthy. MAIN BODY Preclinical models have provided us with possible mechanisms to explain the increased vulnerability of migraineurs' brains towards ischemia and suggest a key role for enhanced cerebral excitability and increased incidence of microembolic events. Spreading depolarization (SD), a slowly propagating wave of neuronal depolarization, is the electrophysiologic event underlying migraine aura and a known headache trigger. Increased SD susceptibility has been demonstrated in migraine animal models, including transgenic mice carrying human mutations for the migraine-associated syndrome CADASIL and familial hemiplegic migraine (type 1 and 2). Upon experimentally induced SD, these mice develop aura-like neurological symptoms, akin to patients with the respective mutations. Migraine mutant mice also exhibit an increased frequency of ischemia-triggered SDs upon experimental stroke, associated with accelerated infarct growth and worse outcomes. The severe stroke phenotype can be explained by SD-related downstream events that exacerbate the metabolic mismatch, including pericyte contraction and neuroglial inflammation. Pharmacological suppression of the genetically enhanced SD susceptibility normalizes the stroke phenotype in familial hemiplegic migraine mutant mice. Recent epidemiologic and imaging studies suggest that these preclinical findings can be extrapolated to migraine patients. Migraine patients are at risk for particularly cardioembolic stroke. At the same time, studies suggest an increased incidence of coagulopathy, atrial fibrillation and patent foramen ovale among migraineurs, providing a possible path for microembolic induction of SD and, in rare instances, stroke in hyperexcitable brains. Indeed, recent imaging studies document an accelerated infarct progression with only little potentially salvageable brain tissue in acute stroke patients with a migraine history, suggesting an increased vulnerability towards cerebral ischemia. CONCLUSION Preclinical models suggest a key role for enhanced SD susceptibility and microembolization to explain both the occurrence of migraine attacks and the increased stroke risk in migraineurs. Therapeutic targeting of SD and microembolic events, or potential causes thereof, will be promising for treatment of aura and may also prevent ischemic infarction in vulnerable brains.
Collapse
Affiliation(s)
- Muge Yemisci
- Institute of Neurological Sciences and Psychiatry, and Faculty of Medicine, Department of Neurology, Hacettepe University, Ankara, Turkey
| | | |
Collapse
|
25
|
Lehmenkühler A, Richter F. Cortical Spreading Depolarization (CSD) Recorded from Intact Skin, from Surface of Dura Mater or Cortex: Comparison with Intracortical Recordings in the Neocortex of Adult Rats. Neurochem Res 2019; 45:34-41. [PMID: 30710236 DOI: 10.1007/s11064-019-02737-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 01/28/2023]
Abstract
In cerebral cortex of anesthetized rats single waves of spreading depolarization (CSD) were elicited by needle prick. CSD-related changes of DC (direct current) potentials were either recorded from the intact skin or together with concomitant changes of potassium concentration with K+-selective microelectrodes simultaneously at the surface of the dura mater or of the cortex ([K+]s) and in the extracellular space at a cortical depth of 1200 µm. At the intact skin CSD-related DC-shifts had amplitudes of less than 1 mV and had only in a minority of cases the typical CSD-like shape. In the majority these DC-shifts rose and recovered very slowly and were difficult to identify without further indicators. At dura surface CSD-related DC shifts were significantly smaller and rose and recovered slower than intracortically recorded CSD. Concomitant increases in [K+]s were delayed and reached maximal values of about 5 mM from a baseline of 3 mM. They rose and recovered slower than simultaneously recorded intracortical changes in extracellular potassium concentration ([K+]e) that were up to 65 mM. The results suggest that extracellular potassium during CSD is diffusing through the subarachnoid space and across the dura mater. In a few cases CSD was either absent at the dura or at a depth of 1200 µm. Even full blown CSDs in this cortical depth could remain without concomitant deflections at the dura. Our data confirmed in principle the possibility of non-invasive recordings of CSD-related DC-shifts. For a use in clinical routine sensitivity and specificity will have to be improved.
Collapse
Affiliation(s)
| | - F Richter
- Institute of Physiology I/Neurophysiology, University Hospital Jena - Friedrich Schiller University Jena, Teichgraben 8, 07740, Jena, Germany.
| |
Collapse
|
26
|
Richter F, Eitner A, Leuchtweis J, Bauer R, Ebersberger A, Lehmenkühler A, Schaible HG. The potential of substance P to initiate and perpetuate cortical spreading depression (CSD) in rat in vivo. Sci Rep 2018; 8:17656. [PMID: 30518958 PMCID: PMC6281573 DOI: 10.1038/s41598-018-36330-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
The tachykinin substance P (SP) increases neuronal excitability, participates in homeostatic control, but induces brain oedema after stroke or trauma. We asked whether SP is able to induce cortical spreading depression (CSD) which often aggravates stroke-induced pathology. In anesthetized rats we applied SP (10−5, 10−6, 10−7, or 10−8 mol/L) to a restricted cortical area and recorded CSDs there and in remote non-treated areas using microelectrodes. SP was either applied in artificial cerebrospinal fluid (ACSF), or in aqua to perform a preconditioning. Plasma extravasation in cortical grey matter was assessed with Evans Blue. Only SP dissolved in aqua induced self-regenerating CSDs. SP dissolved in ACSF did not ignite CSDs even when excitability was increased by acetate-preconditioning. Aqua alone elicited as few CSDs as the lowest concentration of SP. Local pretreatment with 250 nmol/L of a neurokinin 1 receptor antagonist prevented the SP-induced plasma extravasation, the initiation of CSDs by 10−5 mol/L SP diluted in aqua, and the initiation of CSDs by aqua alone, but did not suppress KCl-induced CSD. Thus neurokinin 1 receptor antagonists may be used to explore the involvement of SP in CSDs in clinical studies.
Collapse
Affiliation(s)
- Frank Richter
- Institute of Physiology I/Neurophysiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany.
| | - Annett Eitner
- Institute of Physiology I/Neurophysiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Johannes Leuchtweis
- Institute of Physiology I/Neurophysiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Reinhard Bauer
- Institute of Molecular Cell Biology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | - Andrea Ebersberger
- Institute of Physiology I/Neurophysiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| | | | - Hans-Georg Schaible
- Institute of Physiology I/Neurophysiology, Jena University Hospital - Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
27
|
Francisco EDS, Guedes RCA. Sub-Convulsing Dose Administration of Pilocarpine Reduces Glycemia, Increases Anxiety-Like Behavior and Decelerates Cortical Spreading Depression in Rats Suckled on Various Litter Sizes. Front Neurosci 2018; 12:897. [PMID: 30559645 PMCID: PMC6287009 DOI: 10.3389/fnins.2018.00897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/16/2018] [Indexed: 12/22/2022] Open
Abstract
Epilepsy and malnutrition constitute two worldwide health problems affecting behavior and brain function. The cholinergic agonist pilocarpine (300-380 mg/kg; single administration) reproduces the human type of temporal lobe epilepsy in rats. Pilocarpine-induced epilepsy in rodents has been associated with glycemia, learning and memory and anxiety disturbances. Cortical spreading depression (CSD) is a neural response that has been linked to brain excitability disorders and its diseases, and has been shown to be antagonized by acute pilocarpine. This study aimed to further investigate the effect of chronic pilocarpine at a sub-convulsing dose on weight gain, blood glucose levels, anxiety-like behavior and CSD. In addition, we tested whether unfavorable lactation-induced malnutrition could modulate the pilocarpine effects. Wistar rats were suckled under normal size and large size litters (litters with 9 and 15 pups; groups L9 and L15, respectively). From postnatal days (PND) 35-55, these young animals received a daily intraperitoneal injection of pilocarpine (45 mg/kg/day), or vehicle (saline), or no treatment (naïve). On PND58, the animals were behaviorally tested in an open field apparatus. This was immediately followed by 6 h fasting and blood glucose measurement. At PND60-65, CSD was recorded, and its parameters (velocity of propagation, amplitude, and duration) were calculated. Compared to the control groups, pilocarpine-treated animals presented with reduced weight gain and lower glycemia, increased anxiety-like behavior and decelerated CSD propagation. CSD velocity was higher (p < 0.001) in the L15 groups in comparison to the corresponding groups in the L9 condition. The results demonstrate an influence of chronic (21-day) administration of a sub-convulsing, very low dose (45 mg/kg) of pilocarpine on CSD propagation, anxiety-like behavior, glycemia and body weight. Furthermore, data reinforce the hypothesis of a relationship between CSD and brain excitability. The lactation condition seems to differentially modulate these effects.
Collapse
|
28
|
Lückl J, Lemale CL, Kola V, Horst V, Khojasteh U, Oliveira-Ferreira AI, Major S, Winkler MKL, Kang EJ, Schoknecht K, Martus P, Hartings JA, Woitzik J, Dreier JP. The negative ultraslow potential, electrophysiological correlate of infarction in the human cortex. Brain 2018; 141:1734-1752. [PMID: 29668855 PMCID: PMC5972557 DOI: 10.1093/brain/awy102] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/20/2018] [Accepted: 02/17/2018] [Indexed: 12/19/2022] Open
Abstract
Spreading depolarizations are characterized by abrupt, near-complete breakdown of the transmembrane ion gradients, neuronal oedema, mitochondrial depolarization, glutamate excitotoxicity and activity loss (depression). Spreading depolarization induces either transient hyperperfusion in normal tissue; or hypoperfusion (inverse coupling = spreading ischaemia) in tissue at risk for progressive injury. The concept of the spreading depolarization continuum is critical since many spreading depolarizations have intermediate characteristics, as opposed to the two extremes of spreading depolarization in either severely ischaemic or normal tissue. In animals, the spreading depolarization extreme in ischaemic tissue is characterized by prolonged depolarization durations, in addition to a slow baseline variation termed the negative ultraslow potential. The negative ultraslow potential is initiated by spreading depolarization and similar to the negative direct current (DC) shift of prolonged spreading depolarization, but specifically refers to a negative potential component during progressive recruitment of neurons into cell death in the wake of spreading depolarization. We here first quantified the spreading depolarization-initiated negative ultraslow potential in the electrocorticographic DC range and the activity depression in the alternate current range after middle cerebral artery occlusion in rats. Relevance of these variables to the injury was supported by significant correlations with the cortical infarct volume and neurological outcome after 72 h of survival. We then identified negative ultraslow potential-containing clusters of spreading depolarizations in 11 patients with aneurysmal subarachnoid haemorrhage. The human platinum/iridium-recorded negative ultraslow potential showed a tent-like shape. Its amplitude of 45.0 (39.0, 69.4) mV [median (first, third quartile)] was 6.6 times larger and its duration of 3.7 (3.3, 5.3) h was 34.9 times longer than the negative DC shift of spreading depolarizations in less compromised tissue. Using Generalized Estimating Equations applied to a logistic regression model, we found that negative ultraslow potential displaying electrodes were significantly more likely to overlie a developing ischaemic lesion (90.0%, 27/30) than those not displaying a negative ultraslow potential (0.0%, 0/20) (P = 0.004). Based on serial neuroimages, the lesions under the electrodes developed within a time window of 72 (56, 134) h. The negative ultraslow potential occurred in this time window in 9/10 patients. It was often preceded by a spreading depolarization cluster with increasingly persistent spreading depressions and progressively prolonged DC shifts and spreading ischaemias. During the negative ultraslow potential, spreading ischaemia lasted for 40.0 (28.0, 76.5) min, cerebral blood flow fell from 57 (53, 65) % to 26 (16, 42) % (n = 4) and tissue partial pressure of oxygen from 12.5 (9.2, 15.2) to 3.3 (2.4, 7.4) mmHg (n = 5). Our data suggest that the negative ultraslow potential is the electrophysiological correlate of infarction in human cerebral cortex and a neuromonitoring-detected medical emergency.awy102media15775596049001.
Collapse
Affiliation(s)
- Janos Lückl
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Viktor Horst
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Uldus Khojasteh
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ana I Oliveira-Ferreira
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Maren K L Winkler
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karl Schoknecht
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Peter Martus
- Institute for Clinical Epidemiology and Applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Jed A Hartings
- UC Gardner Neuroscience Institute, University of Cincinnati (UC) College of Medicine, Cincinnati, OH, USA
- Department of Neurosurgery, University of Cincinnati (UC) College of Medicine, Cincinnati, OH, USA
| | - Johannes Woitzik
- Department of Neurosurgery, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
29
|
Dreier JP, Major S, Foreman B, Winkler MKL, Kang EJ, Milakara D, Lemale CL, DiNapoli V, Hinzman JM, Woitzik J, Andaluz N, Carlson A, Hartings JA. Terminal spreading depolarization and electrical silence in death of human cerebral cortex. Ann Neurol 2018; 83:295-310. [PMID: 29331091 PMCID: PMC5901399 DOI: 10.1002/ana.25147] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Restoring the circulation is the primary goal in emergency treatment of cerebral ischemia. However, better understanding of how the brain responds to energy depletion could help predict the time available for resuscitation until irreversible damage and advance development of interventions that prolong this span. Experimentally, injury to central neurons begins only with anoxic depolarization. This potentially reversible, spreading wave typically starts 2 to 5 minutes after the onset of severe ischemia, marking the onset of a toxic intraneuronal change that eventually results in irreversible injury. METHODS To investigate this in the human brain, we performed recordings with either subdural electrode strips (n = 4) or intraparenchymal electrode arrays (n = 5) in patients with devastating brain injury that resulted in activation of a Do Not Resuscitate-Comfort Care order followed by terminal extubation. RESULTS Withdrawal of life-sustaining therapies produced a decline in brain tissue partial pressure of oxygen (pti O2 ) and circulatory arrest. Silencing of spontaneous electrical activity developed simultaneously across regional electrode arrays in 8 patients. This silencing, termed "nonspreading depression," developed during the steep falling phase of pti O2 (intraparenchymal sensor, n = 6) at 11 (interquartile range [IQR] = 7-14) mmHg. Terminal spreading depolarizations started to propagate between electrodes 3.9 (IQR = 2.6-6.3) minutes after onset of the final drop in perfusion and 13 to 266 seconds after nonspreading depression. In 1 patient, terminal spreading depolarization induced the initial electrocerebral silence in a spreading depression pattern; circulatory arrest developed thereafter. INTERPRETATION These results provide fundamental insight into the neurobiology of dying and have important implications for survivable cerebral ischemic insults. Ann Neurol 2018;83:295-310.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Departments of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Departments of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Brandon Foreman
- UC Gardner Neuroscience Institute.,Department of Neurology and Rehabilitation Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Maren K L Winkler
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Eun-Jeung Kang
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Denny Milakara
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Vince DiNapoli
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH.,Mayfield Clinic, Cincinnati, OH
| | - Jason M Hinzman
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Johannes Woitzik
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Norberto Andaluz
- UC Gardner Neuroscience Institute.,Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH.,Mayfield Clinic, Cincinnati, OH
| | - Andrew Carlson
- Department of Neurosurgery, University of New Mexico, Albuquerque, NM
| | - Jed A Hartings
- UC Gardner Neuroscience Institute.,Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
30
|
Abstract
Migraine and stroke are common, disabling neurologic disorders, with a high socioeconomic burden. A link between them has been proposed years ago, and various theories have been proposed to explain this bidirectional relation. However, the precise causes remain unclear. We briefly summarize existing hypotheses of this correlation seeking for recommendations for stroke prevention in migraineurs, if any exist. Among the strongest suggested theories of migraine-stroke association are cortical spreading depression, endovascular dysfunction, vasoconstriction, neurogenic inflammation, hypercoagulability, increased prevalence of vascular risk factors, shared genetic defects, cervical artery dissection, and patent foramen ovale. There is no evidence that any preventive therapy in migraineurs should be used to decrease stroke risk, even in most predisposed subset of patients. However, a woman with migraine with aura should be encouraged to cease smoking and avoid taking oral contraceptives with high estrogen doses. We need further investigation to better understand the complexity of migraine-stroke association and to make firm recommendations for the future.
Collapse
|
31
|
Vinogradova LV. Initiation of spreading depression by synaptic and network hyperactivity: Insights into trigger mechanisms of migraine aura. Cephalalgia 2017; 38:1177-1187. [DOI: 10.1177/0333102417724151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background Cortical spreading depression (SD) is thought to underlie migraine aura but mechanisms of triggering SD in the structurally normal, well-nourished cortex of migraine patients remain unknown. Synaptic and network dysfunctions appear to underlie episodic neurological disorders, including migraine. The narrative review summarizes old and recent experimental evidence for triggering SD by synaptic/network mechanisms and discusses the relevance of the data to migraine pathogenesis. Our hypothesis is that under some conditions synaptic/network hyperactivity may reliably ignite SD, and this mechanism may underlie triggering migraine aura in patients. Findings High-frequency tetanic stimulation of the cortex reliably triggers SD in synaptically connected regions; SD is a reliable cortical response to acute hyperexcitability (epileptic seizures), though chronic epilepsy prevents triggering SD; in the hyperexcitable cortex, SD may be triggered by sensory stimulation; compromised glutamatergic transmission plays the critical role in triggering SD. Conclusion SD may be triggered by dynamic network instability produced by dysfunction of calcium-dependent glutamate release. Synaptic drive from subcortical sensory processing structures (brainstem and/or thalamocortical networks) is able to evoke depolarization of hyperexcitable cortical neurons sufficient to initiate the regenerative SD process. Studying SD initiation by synaptic/network hyperexcitability may provide insights into basic mechanisms underlying SD generation in migraine brain.
Collapse
Affiliation(s)
- Lyudmila V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
32
|
Hartings JA, Dreier JP. Real-time detection of lesion development in acute brain injury. J Cereb Blood Flow Metab 2017; 37:1550-1552. [PMID: 28446106 PMCID: PMC5435298 DOI: 10.1177/0271678x16677764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Jed A Hartings
- 1 Department of Neurosurgery, University of Cincinnati (UC) College of Medicine, UC Gardner Neuroscience Institute, and Mayfield Clinic, Cincinnati, OH, USA
| | - Jens P Dreier
- 2 Department of Neurology, Department of Experimental Neurology, and Center for Stroke Research Berlin, Charité University Medicine Berlin, Berlin, Germany
| |
Collapse
|
33
|
Schain AJ, Melo-Carrillo A, Strassman AM, Burstein R. Cortical Spreading Depression Closes Paravascular Space and Impairs Glymphatic Flow: Implications for Migraine Headache. J Neurosci 2017; 37:2904-2915. [PMID: 28193695 PMCID: PMC5354333 DOI: 10.1523/jneurosci.3390-16.2017] [Citation(s) in RCA: 155] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 01/03/2023] Open
Abstract
Functioning of the glymphatic system, a network of paravascular tunnels through which cortical interstitial solutes are cleared from the brain, has recently been linked to sleep and traumatic brain injury, both of which can affect the progression of migraine. This led us to investigate the connection between migraine and the glymphatic system. Taking advantage of a novel in vivo method we developed using two-photon microscopy to visualize the paravascular space (PVS) in naive uninjected mice, we show that a single wave of cortical spreading depression (CSD), an animal model of migraine aura, induces a rapid and nearly complete closure of the PVS around surface as well as penetrating cortical arteries and veins lasting several minutes, and gradually recovering over 30 min. A temporal mismatch between the constriction or dilation of the blood vessel lumen and the closure of the PVS suggests that this closure is not likely to result from changes in vessel diameter. We also show that CSD impairs glymphatic flow, as indicated by the reduced rate at which intraparenchymally injected dye was cleared from the cortex to the PVS. This is the first observation of a PVS closure in connection with an abnormal cortical event that underlies a neurological disorder. More specifically, the findings demonstrate a link between the glymphatic system and migraine, and suggest a novel mechanism for regulation of glymphatic flow.SIGNIFICANCE STATEMENT Impairment of brain solute clearance through the recently described glymphatic system has been linked with traumatic brain injury, prolonged wakefulness, and aging. This paper shows that cortical spreading depression, the neural correlate of migraine aura, closes the paravascular space and impairs glymphatic flow. This closure holds the potential to define a novel mechanism for regulation of glymphatic flow. It also implicates the glymphatic system in the altered cortical and endothelial functioning of the migraine brain.
Collapse
Affiliation(s)
- Aaron J Schain
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, and
- Harvard Medical School, Boston, Massachusetts 02215
| | - Agustin Melo-Carrillo
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, and
- Harvard Medical School, Boston, Massachusetts 02215
| | - Andrew M Strassman
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, and
- Harvard Medical School, Boston, Massachusetts 02215
| | - Rami Burstein
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, and
- Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
34
|
Neonatal l-glutamine modulates anxiety-like behavior, cortical spreading depression, and microglial immunoreactivity: analysis in developing rats suckled on normal size- and large size litters. Amino Acids 2016; 49:337-346. [DOI: 10.1007/s00726-016-2365-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/11/2016] [Indexed: 12/19/2022]
|