1
|
Törteli A, Tóth R, Bari F, Farkas E, Menyhárt Á. Collateral is brain: Low perfusion triggers spreading depolarization and futile reperfusion after acute ischemic stroke. J Cereb Blood Flow Metab 2024; 44:1881-1887. [PMID: 39225037 PMCID: PMC11529658 DOI: 10.1177/0271678x241270480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/04/2024] [Accepted: 06/30/2024] [Indexed: 09/04/2024]
Abstract
Futile reperfusion is a phenomenon of inadequate perfusion despite successful recanalization after acute ischemic stroke (AIS). It is associated with poor patient outcomes and has received increasing interest due to its clinical diagnosis becoming more common. However, the underlying mechanisms remain elusive, and experimental studies are focused on the pathological background of futile reperfusion. Our recent study has confirmed that poor primary collateralization plays a crucial role in the insufficiency of reperfusion after AIS in mice. Specifically, the absence of primary collaterals in the circle of Willis (CoW) promoted the development of spreading depolarizations (SDs) during AIS. In our experimental stroke model, the occurrence of SDs during ischemia always predicted futile reperfusion. Conversely, in mice with a complete CoW, no SDs were observed, and reperfusion was complete. Importantly, the human CoW displays variation in the primary collaterals in approximately 50% of the population. Therefore, futile reperfusion may result from SD evolution in AIS patients. Our purpose here is to emphasize the crucial role of SD in the development of futile reperfusion. We propose that adequate collateral recruitment can prevent SD occurrence, leading to improved reperfusion and AIS outcomes.
Collapse
Affiliation(s)
- Anna Törteli
- Hungarian Centre of Excellence for Molecular Medicine – University of Szeged Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Réka Tóth
- Hungarian Centre of Excellence for Molecular Medicine – University of Szeged Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ferenc Bari
- Department of Medical Physics and Informatics, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Eszter Farkas
- Hungarian Centre of Excellence for Molecular Medicine – University of Szeged Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Ákos Menyhárt
- Hungarian Centre of Excellence for Molecular Medicine – University of Szeged Cerebral Blood Flow and Metabolism Research Group, Szeged, Hungary
- Department of Cell Biology and Molecular Medicine, Albert Szent-Györgyi Medical School and Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Harriott AM, Kaya M, Ayata C. Oxytocin shortens spreading depolarization-induced periorbital allodynia. J Headache Pain 2024; 25:152. [PMID: 39289629 PMCID: PMC11406737 DOI: 10.1186/s10194-024-01855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Migraine is among the most prevalent and burdensome neurological disorders in the United States based on disability-adjusted life years. Cortical spreading depolarization (SD) is the most likely electrophysiological cause of migraine aura and may be linked to trigeminal nociception. We previously demonstrated, using a minimally invasive optogenetic approach of SD induction (opto-SD), that opto-SD triggers acute periorbital mechanical allodynia that is reversed by 5HT1B/1D receptor agonists, supporting SD-induced activation of migraine-relevant trigeminal pain pathways in mice. Recent data highlight hypothalamic neural circuits in migraine, and SD may activate hypothalamic neurons. Furthermore, neuroanatomical, electrophysiological, and behavioral data suggest a homeostatic analgesic function of hypothalamic neuropeptide hormone, oxytocin. We, therefore, examined the role of hypothalamic paraventricular nucleus (PVN) and oxytocinergic (OXT) signaling in opto-SD-induced trigeminal pain behavior. METHODS We induced a single opto-SD in adult male and female Thy1-ChR2-YFP transgenic mice and quantified fos immunolabeling in the PVN and supraoptic nucleus (SON) compared with sham controls. Oxytocin expression was also measured in fos-positive neurons in the PVN. Periorbital mechanical allodynia was tested after treatment with selective OXT receptor antagonist L-368,899 (5 to 25 mg/kg i.p.) or vehicle at 1, 2, and 4 h after opto-SD or sham stimulation using von Frey monofilaments. RESULTS Opto-SD significantly increased the number of fos immunoreactive cells in the PVN and SON as compared to sham stimulation (p < 0.001, p = 0.018, respectively). A subpopulation of fos-positive neurons also stained positive for oxytocin. Opto-SD evoked periorbital mechanical allodynia 1 h after SD (p = 0.001 vs. sham), which recovered quickly within 2 h (p = 0.638). OXT receptor antagonist L-368,899 dose-dependently prolonged SD-induced periorbital allodynia (p < 0.001). L-368,899 did not affect mechanical thresholds in the absence of opto-SD. CONCLUSIONS These data support an SD-induced activation of PVN neurons and a role for endogenous OXT in alleviating acute SD-induced trigeminal allodynia by shortening its duration.
Collapse
Affiliation(s)
- Andrea M Harriott
- Neurovascular Research Unit, Department of Neurology, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston MA, 02129, USA.
| | - Melih Kaya
- Neurovascular Research Unit, Department of Neurology, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston MA, 02129, USA
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Neurology, Massachusetts General Hospital, 149 13th Street, Charlestown, Boston MA, 02129, USA
| |
Collapse
|
3
|
Chamanzar A, Elmer J, Shutter L, Hartings J, Grover P. Noninvasive and reliable automated detection of spreading depolarization in severe traumatic brain injury using scalp EEG. COMMUNICATIONS MEDICINE 2023; 3:113. [PMID: 37598253 PMCID: PMC10439895 DOI: 10.1038/s43856-023-00344-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 08/04/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Spreading depolarizations (SDs) are a biomarker and a potentially treatable mechanism of worsening brain injury after traumatic brain injury (TBI). Noninvasive detection of SDs could transform critical care for brain injury patients but has remained elusive. Current methods to detect SDs are based on invasive intracranial recordings with limited spatial coverage. In this study, we establish the feasibility of automated SD detection through noninvasive scalp electroencephalography (EEG) for patients with severe TBI. METHODS Building on our recent WAVEFRONT algorithm, we designed an automated SD detection method. This algorithm, with learnable parameters and improved velocity estimation, extracts and tracks propagating power depressions using low-density EEG. The dataset for testing our algorithm contains 700 total SDs in 12 severe TBI patients who underwent decompressive hemicraniectomy (DHC), labeled using ground-truth intracranial EEG recordings. We utilize simultaneously recorded, continuous, low-density (19 electrodes) scalp EEG signals, to quantify the detection accuracy of WAVEFRONT in terms of true positive rate (TPR), false positive rate (FPR), as well as the accuracy of estimating SD frequency. RESULTS WAVEFRONT achieves the best average validation accuracy using Delta band EEG: 74% TPR with less than 1.5% FPR. Further, preliminary evidence suggests WAVEFRONT can estimate how frequently SDs may occur. CONCLUSIONS We establish the feasibility, and quantify the performance, of noninvasive SD detection after severe TBI using an automated algorithm. The algorithm, WAVEFRONT, can also potentially be used for diagnosis, monitoring, and tailoring treatments for worsening brain injury. Extension of these results to patients with intact skulls requires further study.
Collapse
Grants
- K23 NS097629 NINDS NIH HHS
- National Science Foundation (NSF)
- This work was supported, in part, by grants from the National Science Foundation (NSF), Chuck Noll Foundation for Brain Injury Research, the Office of the Assistant Secretary of Defense for Health Affairs through the Defense Medical Research and Development Program under Award No. W81XWH-16-2-0020, and the Center for Machine Learning and Health at CMU, under Pittsburgh Health Data Alliance. A Chamanzar was also supported by Neil and Jo Bushnell Fellowship in Engineering, Hsu Chang Memorial Fellowship, CMU Swartz Center for Entrepreneurship Innovation Commercialization Fellows program. Dr. Elmer’s research time was supported by the National Institutes of Health (NIH) through grant 5K23NS097629. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the Department of Defense.
Collapse
Affiliation(s)
- Alireza Chamanzar
- Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Jonathan Elmer
- Departments of Emergency Medicine, Critical Care Medicine and Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lori Shutter
- Department of Critical Care Medicine, Neurology and Neurosurgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jed Hartings
- Department of Neurosurgery, University of Cincinnati, Cincinnati, OH, USA
| | - Pulkit Grover
- Electrical and Computer Engineering Department, Carnegie Mellon University, Pittsburgh, PA, USA.
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA.
| |
Collapse
|
4
|
Sanchez-Porras R, Ramírez-Cuapio FL, Hecht N, Seule M, Díaz-Peregrino R, Unterberg A, Woitzik J, Dreier JP, Sakowitz OW, Santos E. Cerebrovascular Pressure Reactivity According to Long-Pressure Reactivity Index During Spreading Depolarizations in Aneurysmal Subarachnoid Hemorrhage. Neurocrit Care 2023; 39:135-144. [PMID: 36697998 PMCID: PMC10499750 DOI: 10.1007/s12028-022-01669-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/19/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Spreading depolarization (SD) has been linked to the impairment of neurovascular coupling. However, the association between SD occurrence and cerebrovascular pressure reactivity as a surrogate of cerebral autoregulation (CA) remains unclear. Therefore, we analyzed CA using the long-pressure reactivity index (L-PRx) during SDs in patients with aneurysmal subarachnoid hemorrhage (aSAH). METHODS A retrospective study of patients with aSAH who were recruited at two centers, Heidelberg (HD) and Berlin (BE), was performed. Continuous monitoring of mean arterial pressure (MAP) and intracranial pressure (ICP) was recorded. ICP was measured using an intraparenchymal probe in HD patients and was measure in BE patients through external ventricular drainage. Electrocorticographic (ECoG) activity was continuously recorded between 3 and 13 days after hemorrhage. Autoregulation according to L-PRx was calculated as a moving linear Pearson's correlation of 20-min averages of MAP and ICP. For every identified SD, 60-min intervals of L-PRx were averaged, plotted, and analyzed depending on SD occurrence. Random L-PRx recording periods without SDs served as the control. RESULTS A total of 19 patients (HD n = 14, BE n = 5, mean age 50.4 years, 9 female patients) were monitored for a mean duration of 230.4 h (range 96-360, STD ± 69.6 h), during which ECoG recordings revealed a total number of 277 SDs. Of these, 184 represented a single SD, and 93 SDs presented in clusters. In HD patients, mean L-PRx values were 0.12 (95% confidence interval [CI] 0.11-0.13) during SDs and 0.07 (95% CI 0.06-0.08) during control periods (p < 0.001). Similarly, in BE patients, a higher L-PRx value of 0.11 (95% CI 0.11-0.12) was detected during SDs than that during control periods (0.08, 95% CI 0.07-0.09; p < 0.001). In a more detailed analysis, CA changes registered through an intraparenchymal probe (HD patients) revealed that clustered SD periods were characterized by signs of more severely impaired CA (L-PRx during SD in clusters: 0.23 [95% CI 0.20-0.25]; single SD: 0.09 [95% CI 0.08-0.10]; control periods: 0.07 [95% CI 0.06-0.08]; p < 0.001). This group also showed significant increases in ICP during SDs in clusters compared with single SD and control periods. CONCLUSIONS Neuromonitoring for simultaneous assessment of cerebrovascular pressure reactivity using 20-min averages of MAP and ICP measured by L-PRx during SD events is feasible. SD occurrence was associated with significant increases in L-PRx values indicative of CA disturbances. An impaired CA was found during SD in clusters when using an intraparenchymal probe. This preliminary study validates the use of cerebrovascular reactivity indices to evaluate CA disturbances during SDs. Our results warrant further investigation in larger prospective patient cohorts.
Collapse
Affiliation(s)
- Renan Sanchez-Porras
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Francisco L Ramírez-Cuapio
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Nils Hecht
- Department of Neurosurgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Martin Seule
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
- Department of Neurosurgery, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Roberto Díaz-Peregrino
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Experimental Neurology, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | - Oliver W Sakowitz
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht Karls University of Heidelberg, Heidelberg, Germany
- Neurosurgery Center Ludwigsburg-Heilbronn, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Edgar Santos
- Department of Neurosurgery, Heidelberg University Hospital, Ruprecht Karls University of Heidelberg, Heidelberg, Germany.
- Department of Neurosurgery, Evangelisches Krankenhaus Oldenburg, Carl von Ossietzky University of Oldenburg, Oldenburg, Germany.
| |
Collapse
|
5
|
Kentar M, Díaz-Peregrino R, Trenado C, Sánchez-Porras R, San-Juan D, Ramírez-Cuapio FL, Holzwarth N, Maier-Hein L, Woitzik J, Santos E. Spatial and temporal frequency band changes during infarct induction, infarct progression, and spreading depolarizations in the gyrencephalic brain. Front Neurosci 2022; 16:1025967. [PMID: 36570832 PMCID: PMC9769704 DOI: 10.3389/fnins.2022.1025967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/18/2022] [Indexed: 12/07/2022] Open
Abstract
Aim To describe the spatial and temporal electrocorticographic (ECoG) changes after middle cerebral artery occlusion (MCAo), including those caused by spreading depolarization (SD) in the pig brain. Methods The left middle cerebral arteries (MCAs) were clipped in six pigs. The clipping procedure lasted between 8 and 12 min, achieving a permanent occlusion (MCAo). Five-contact ECoG stripes were placed bilaterally over the frontoparietal cortices corresponding to the irrigation territory of the MCA and anterior cerebral artery (ACA). ECoG recordings were performed around 24 h: 1 h before and 23 h after the MCAo, and SDs were quantified. Five-minute ECoG signal segments were sampled before, 5 min, and 4, 8, and 12 h after cerebral artery occlusion and before, during, and after the negative direct current shift of the SDs. The power spectrum of the signals was decomposed into delta, theta, alpha, beta, and gamma bands. Descriptive statistics, Wilcoxon matched-pairs signed-rank tests, and Friedman tests were performed. Results Electrodes close to the MCAo showed instant decay in all frequency bands and SD onset during the first 5 h. Electrodes far from the MCAo exhibited immediate loss of fast frequencies and progressive decline of slow frequencies with an increased SD incidence between 6 and 14 h. After 8 h, the ACA electrode reported a secondary reduction of all frequency bands except gamma and high SD incidence within 12-17 h. During the SD, all electrodes showed a decline in all frequency bands. After SD passage, frequency band recovery was impaired only in MCA electrodes. Conclusion ECoG can identify infarct progression and secondary brain injury. Severe disturbances in all the frequency bands are generated in the cortices where the SDs are passing by.
Collapse
Affiliation(s)
- Modar Kentar
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Roberto Díaz-Peregrino
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Carlos Trenado
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Renán Sánchez-Porras
- Department of Neurosurgery, Evangelisches Krankenhaus, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Daniel San-Juan
- Epilepsy Clinic, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City, Mexico
| | - F. Leonardo Ramírez-Cuapio
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Niklas Holzwarth
- Division of Intelligent Medical Systems, German Cancer Research Center, Heidelberg, Germany
| | - Lena Maier-Hein
- Division of Intelligent Medical Systems, German Cancer Research Center, Heidelberg, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Evangelisches Krankenhaus, Carl-von-Ossietzky University, Oldenburg, Germany
| | - Edgar Santos
- Department of Neurosurgery, University Hospital Heidelberg, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany,Department of Neurosurgery, Evangelisches Krankenhaus, Carl-von-Ossietzky University, Oldenburg, Germany,*Correspondence: Edgar Santos,
| |
Collapse
|
6
|
Abstract
Headache disorders can produce recurrent, incapacitating pain. Migraine and cluster headache are notable for their ability to produce significant disability. The anatomy and physiology of headache disorders is fundamental to evolving treatment approaches and research priorities. Key concepts in headache mechanisms include activation and sensitization of trigeminovascular, brainstem, thalamic, and hypothalamic neurons; modulation of cortical brain regions; and activation of descending pain circuits. This review will examine the relevant anatomy of the trigeminal, brainstem, subcortical, and cortical brain regions and concepts related to the pathophysiology of migraine and cluster headache disorders.
Collapse
Affiliation(s)
- Andrea M Harriott
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yulia Orlova
- Department of Neurology, University of Florida, Gainesville, Florida
| |
Collapse
|
7
|
Cramer SW, Pino IP, Naik A, Carlson D, Park MC, Darrow DP. Mapping spreading depolarisations after traumatic brain injury: a pilot clinical study protocol. BMJ Open 2022; 12:e061663. [PMID: 35831043 PMCID: PMC9280885 DOI: 10.1136/bmjopen-2022-061663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/27/2022] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION Cortical spreading depolarisation (CSD) is characterised by a near-complete loss of the ionic membrane potential of cortical neurons and glia propagating across the cerebral cortex, which generates a transient suppression of spontaneous neuronal activity. CSDs have become a recognised phenomenon that imparts ongoing secondary insults after brain injury. Studies delineating CSD generation and propagation in humans after traumatic brain injury (TBI) are lacking. Therefore, this study aims to determine the feasibility of using a multistrip electrode array to identify CSDs and characterise their propagation in space and time after TBI. METHODS AND ANALYSIS This pilot, prospective observational study will enrol patients with TBI requiring therapeutic craniotomy or craniectomy. Subdural electrodes will be placed for continuous electrocorticography monitoring for seizures and CSDs as a research procedure, with surrogate informed consent obtained preoperatively. The propagation of CSDs relative to structural brain pathology will be mapped using reconstructed CT and electrophysiological cross-correlations. The novel use of multiple subdural strip electrodes in conjunction with brain morphometric segmentation is hypothesised to provide sufficient spatial information to characterise CSD propagation across the cerebral cortex and identify cortical foci giving rise to CSDs. ETHICS AND DISSEMINATION Ethical approval for the study was obtained from the Hennepin Healthcare Research Institute's ethics committee, HSR 17-4400, 25 October 2017 to present. Study findings will be submitted for publication in peer-reviewed journals and presented at scientific conferences. TRIAL REGISTRATION NUMBER NCT03321370.
Collapse
Affiliation(s)
- Samuel W Cramer
- Department of Neurosurgery, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Isabela Peña Pino
- Department of Neurosurgery, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Anant Naik
- University of Illinois Urbana-Champaign Carle Illinois College of Medicine, Champaign, Illinois, USA
| | - Danielle Carlson
- Department of Neurosurgery, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Michael C Park
- Department of Neurosurgery, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - David P Darrow
- Neurosurgery, University of Minnesota Medical School Twin Cities, Minneapolis, Minnesota, USA
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, Minnesota, USA
| |
Collapse
|
8
|
Eighteen-hour inhibitory effect of s-ketamine on potassium- and ischemia-induced spreading depolarizations in the gyrencephalic swine brain. Neuropharmacology 2022; 216:109176. [DOI: 10.1016/j.neuropharm.2022.109176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/15/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
|
9
|
Hund SJ, Brown BR, Lemale CL, Menon PG, Easley KA, Dreier JP, Jones SC. Numerical Simulation of Concussive-Generated Cortical Spreading Depolarization to Optimize DC-EEG Electrode Spacing for Noninvasive Visual Detection. Neurocrit Care 2022; 37:67-82. [PMID: 35233716 PMCID: PMC9262830 DOI: 10.1007/s12028-021-01430-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 12/29/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cortical spreading depolarization (SD) is a propagating depolarization wave of neurons and glial cells in the cerebral gray matter. SD occurs in all forms of severe acute brain injury, as documented by using invasive detection methods. Based on many experimental studies of mechanical brain deformation and concussion, the occurrence of SDs in human concussion has often been hypothesized. However, this hypothesis cannot be confirmed in humans, as SDs can only be detected with invasive detection methods that would require either a craniotomy or a burr hole to be performed on athletes. Typical electroencephalography electrodes, placed on the scalp, can help detect the possible presence of SD but have not been able to accurately and reliably identify SDs. METHODS To explore the possibility of a noninvasive method to resolve this hurdle, we developed a finite element numerical model that simulates scalp voltage changes that are induced by a brain surface SD. We then compared our simulation results with retrospectively evaluated data in patients with aneurysmal subarachnoid hemorrhage from Drenckhahn et al. (Brain 135:853, 2012). RESULTS The ratio of peak scalp to simulated peak cortical voltage, Vscalp/Vcortex, was 0.0735, whereas the ratio from the retrospectively evaluated data was 0.0316 (0.0221, 0.0527) (median [1st quartile, 3rd quartile], n = 161, p < 0.001, one sample Wilcoxon signed-rank test). These differing values provide validation because their differences can be attributed to differences in shape between concussive SDs and aneurysmal subarachnoid hemorrhage SDs, as well as the inherent limitations in human study voltage measurements. This simulated scalp surface potential was used to design a virtual scalp detection array. Error analysis and visual reconstruction showed that 1 cm is the optimal electrode spacing to visually identify the propagating scalp voltage from a cortical SD. Electrode spacings of 2 cm and above produce distorted images and high errors in the reconstructed image. CONCLUSIONS Our analysis suggests that concussive (and other) SDs can be detected from the scalp, which could confirm SD occurrence in human concussion, provide concussion diagnosis on the basis of an underlying physiological mechanism, and lead to noninvasive SD detection in the setting of severe acute brain injury.
Collapse
Affiliation(s)
- Samuel J Hund
- CerebroScope, SciencePlusPlease LLC, Pittsburgh, PA, USA
- SimulationSolutions, Pittsburgh, PA, USA
| | | | - Coline L Lemale
- Center for Stroke Research, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Prahlad G Menon
- CerebroScope, SciencePlusPlease LLC, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kirk A Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Jens P Dreier
- Center for Stroke Research, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Experimental Neurology, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité, - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
- Einstein Center for Neurosciences Berlin, Berlin, Germany
| | | |
Collapse
|
10
|
Zheng Z, Luo J, Cao Z, Tan S, Lv J. Spatiotemporal Patterns of Spreading Depolarization and its Correlation with Brain Injury During the Acute Stage of Subarachnoid Hemorrhage in Mice. J Stroke Cerebrovasc Dis 2022; 31:106476. [PMID: 35413591 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/19/2022] [Accepted: 03/24/2022] [Indexed: 11/20/2022] Open
Abstract
OBJECTIVE Spreading depolarization (SD) has been regarded as one cause of neuronal injury in subarachnoid hemorrhage (SAH). However, SD in the hyperacute phase of SAH is still unclear. The objective of this study was to detect real-time spatial-temporal patterns of SD, assess the effect of SD on cerebral blood flow, and test the relationship between SD and brain injury in the acute phase of SAH. METHODS Twenty-eight mice were separated into two groups: 16 animals in the SAH group and 12 animals in the sham group. Experimental SAH was done with an endovascular filament perforation model. Changes in optical reflection were registered with intrinsic optical signal imaging (IOSI) after SAH. Spatial-temporal patterns of SDs were analyzed and brain injury including brain edema and infarction was tested. RESULTS Totally, 117 SDs occurred after SAH. According to the hemodynamic response and duration, SDs could be classified into Type I (short SD), Type II (intermediate SD), and Type III (persistent SD). Most of SDs originated from the somatosensory and visual cortex. SDs demonstrated distinct spreading patterns. Moreover, the number and duration of SDs associated with brain water content (p < 0.05, p < 0.01). SDs, especially, persistent SDs associated with infarct volume in the hyperacute phase of SAH (p < 0.001, p < 0.001). CONCLUSION Our results suggest that SD occurs with a high incidence during the acute stage of SAH in mice. And the lissencephalic mouse brain is capable of different SD propagation patterns. Additionally, SD may aggravate brain edema and induce brain infarction, contributing to early brain injury after SAH.
Collapse
Affiliation(s)
- Zelong Zheng
- The Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Road No.1, Guangdong 510180, China
| | - Jinbiao Luo
- The Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Road No.1, Guangdong 510180, China
| | - Zhikai Cao
- The Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Road No.1, Guangdong 510180, China
| | - Shaojuan Tan
- The Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Road No.1, Guangdong 510180, China
| | - Jianping Lv
- The Department of Neurosurgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Panfu Road No.1, Guangdong 510180, China.
| |
Collapse
|
11
|
Schumm L, Lemale CL, Major S, Hecht N, Nieminen-Kelhä M, Zdunczyk A, Kowoll CM, Martus P, Thiel CM, Dreier JP, Woitzik J. Physiological variables in association with spreading depolarizations in the late phase of ischemic stroke. J Cereb Blood Flow Metab 2022; 42:121-135. [PMID: 34427143 PMCID: PMC8721769 DOI: 10.1177/0271678x211039628] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Physiological effects of spreading depolarizations (SD) are only well studied in the first hours after experimental stroke. In patients with malignant hemispheric stroke (MHS), monitoring of SDs is restricted to the postoperative ICU stay, typically day 2-7 post-ictus. Therefore, we investigated the role of physiological variables (temperature, intracranial pressure, mean arterial pressure and cerebral perfusion pressure) in relationship to SD during the late phase after MHS in humans. Additionally, an experimental stroke model was used to investigate hemodynamic consequences of SD during this time window. In 60 patients with MHS, the occurrence of 1692 SDs was preceded by a decrease in mean arterial pressure (-1.04 mmHg; p = .02) and cerebral perfusion pressure (-1.04 mmHg; p = .03). Twenty-four hours after middle cerebral artery occlusion in 50 C57Bl6/J mice, hypothermia led to prolonged SD-induced hyperperfusion (+2.8 min; p < .05) whereas hypertension mitigated initial hypoperfusion (-1.4 min and +18.5%Δ rCBF; p < .01). MRI revealed that SDs elicited 24 hours after experimental stroke were associated with lesion progression (15.9 vs. 14.8 mm³; p < .01). These findings of small but significant effects of physiological variables on SDs in the late phase after ischemia support the hypothesis that the impact of SDs may be modified by adjusting physiological variables.
Collapse
Affiliation(s)
- Leonie Schumm
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurosurgery, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Nils Hecht
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Zdunczyk
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Peter Martus
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Institute for Clinical Epidemiology and Applied Biostatistics, University of Tübingen, Tübingen, Germany
| | - Christiane M Thiel
- Biological Psychology, Department of Psychology, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Research Center Neurosensory Science, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Carl von Ossietzky Universität Oldenburg, Oldenburg, Germany.,Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
12
|
Hartings JA, Carroll CP, Lee G. Spreading Diffusion-Restriction Events in the Gyrencephalic Brain After Subarachnoid Hemorrhage Revealed by Continuous Magnetic Resonance Imaging. Neurocrit Care 2021; 37:60-66. [PMID: 34796429 DOI: 10.1007/s12028-021-01376-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/08/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND How widely spreading depolarizations (SDs) propagate through the gyrencephalic brain, including sulci and deeper cortical areas, remains an important clinical question. Here, we investigated SDs that occur spontaneously after subarachnoid placement of autologous blood clots in sulci of the juvenile swine brain. METHODS To investigate the three-dimensional spread of waves, animals underwent continuous diffusion-weighted magnetic resonance imaging (DW-MRI) for up to 6 h following clot placement. SD is the mechanism of the cytotoxic edema of developing infarction that is diagnosed by DW-MRI, and DW-MRI also captures transient diffusion restriction caused by SD in less injured or healthy brains. Here, images (b = 0, 375, and 750) were acquired across five coronal slices with 1.25 × 1.25-mm in-plane resolution and 5-mm slice thickness, and the protocol was repeated every 6.83-9.15 s. Spatial drift correction, temporal smoothing, and signal intensity normalization were applied to generate videos of diffusion signal intensity changes for each coronal slice. RESULTS Review of video data from five animals revealed ten discrete events consisting of focal diffusion restriction that propagated through cerebral cortex. All events originated in the cortex surrounding the sulcal clot, either in the gyrus (n = 4) or in the sulcal depth (n = 6). In six cases, two to three independent waves spread simultaneously in medial, lateral, and antero-posterior directions. Waves traveled within sulcal walls, traversed the depths of sulci to re-emerge on the adjacent gyrus, and, in three cases, spread fully around the dorsolateral convexity. One event spread deep to olfactory regions along midline cortex, and no events were observed contralateral to the subarachnoid clot. CONCLUSIONS Together, these results suggest that SDs in the injured gyrencephalic brain originate near the injury focus and can spread extensively through the cortex to wide and deep uninjured regions. These findings have implications for transient neurologic deficits in the neurocritically ill patient and relevance to patient monitoring and therapeutics.
Collapse
Affiliation(s)
- Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Christopher P Carroll
- Department of Brain and Spinal Surgery, Naval Medical Center Portsmouth, Portsmouth, VA, USA.,Department of Surgery, Uniformed Services University, Bethesda, MD, USA
| | - Gregory Lee
- Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
13
|
Yang X, Chen YH, Xia F, Sawan M. Photoacoustic imaging for monitoring of stroke diseases: A review. PHOTOACOUSTICS 2021; 23:100287. [PMID: 34401324 PMCID: PMC8353507 DOI: 10.1016/j.pacs.2021.100287] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 05/14/2023]
Abstract
Stroke is the leading cause of death and disability after ischemic heart disease. However, there is lacking a non-invasive long-time monitoring technique for stroke diagnosis and therapy. The photoacoustic imaging approach reconstructs images of an object based on the energy excitation by optical absorption and its conversion to acoustic waves, due to corresponding thermoelastic expansion, which has optical resolution and acoustic propagation. This emerging functional imaging method is a non-invasive technique. Due to its precision, this method is particularly attractive for stroke monitoring purpose. In this paper, we review the achievements of this technology and its applications on stroke, as well as the development status in both animal and human applications. Also, various photoacoustic systems and multi-modality photoacoustic imaging are introduced as for potential clinical applications. Finally, the challenges of photoacoustic imaging for monitoring stroke are discussed.
Collapse
Affiliation(s)
- Xi Yang
- Zhejiang University, Hangzhou, 310024, Zhejiang, China
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Yun-Hsuan Chen
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Fen Xia
- Zhejiang University, Hangzhou, 310024, Zhejiang, China
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
| | - Mohamad Sawan
- CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China
- Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou, 310024, Zhejiang, China
- Corresponding author at: CenBRAIN Lab., School of Engineering, Westlake University, Hangzhou, 310024, Zhejiang, China.
| |
Collapse
|
14
|
Vinogradova LV, Suleymanova EM, Medvedeva TM. Transient loss of interhemispheric functional connectivity following unilateral cortical spreading depression in awake rats. Cephalalgia 2020; 41:353-365. [PMID: 33164563 DOI: 10.1177/0333102420970172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Growing evidence shows a critical role of network disturbances in the pathogenesis of migraine. Unilateral pattern of neurological symptoms of aura suggests disruption of interhemispheric interactions during the early phase of a migraine attack. Using local field potentials data from the visual and motor cortices, this study explored effects of unilateral cortical spreading depression, the likely pathophysiological mechanism of migraine aura, on interhemispheric functional connectivity in freely behaving rats. METHODS Temporal evolution of the functional connectivity was evaluated using mutual information and phase synchronization measures applied to local field potentials recordings obtained in homotopic points of the motor and visual cortices of the two hemispheres in freely behaving rats after induction of a single unilateral cortical spreading depression in the somatosensory S1 cortex and sham cortical stimulation. RESULTS Cortical spreading depression was followed by a dramatic broadband loss of interhemispheric functional connectivity in the visual and motor regions of the cortex. The hemispheric disconnection started after the end of the depolarization phase of cortical spreading depression, progressed gradually, and terminated by 5 min after initiation of cortical spreading depression. The network impairment had region- and frequency-specific characteristics and was more pronounced in the visual cortex than in the motor cortex. The period of impaired neural synchrony coincided with post-cortical spreading depression electrographic aberrant activation of the ipsilateral cortex and abnormal behavior. CONCLUSION The study provides the first evidence that unilateral cortical spreading depression induces a reversible loss of functional hemispheric connectivity in the cortex of awake animals. Given a critical role of long-distance cortical synchronization in sensory processing and sensorimotor integration, the post-cortical spreading depression breakdown of functional connectivity may contribute to neuropathological mechanisms of aura generation.
Collapse
Affiliation(s)
- Lyudmila V Vinogradova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Department of Molecular Neurobiology, Moscow, Russia
| | - Elena M Suleymanova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Department of Molecular Neurobiology, Moscow, Russia
| | - Tatiana M Medvedeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Department of Molecular Neurobiology, Moscow, Russia
| |
Collapse
|
15
|
Major S, Huo S, Lemale CL, Siebert E, Milakara D, Woitzik J, Gertz K, Dreier JP. Direct electrophysiological evidence that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura and a review of the spreading depolarization continuum of acute neuronal mass injury. GeroScience 2020; 42:57-80. [PMID: 31820363 PMCID: PMC7031471 DOI: 10.1007/s11357-019-00142-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023] Open
Abstract
Spreading depolarization is observed as a large negative shift of the direct current potential, swelling of neuronal somas, and dendritic beading in the brain's gray matter and represents a state of a potentially reversible mass injury. Its hallmark is the abrupt, massive ion translocation between intraneuronal and extracellular compartment that causes water uptake (= cytotoxic edema) and massive glutamate release. Dependent on the tissue's energy status, spreading depolarization can co-occur with different depression or silencing patterns of spontaneous activity. In adequately supplied tissue, spreading depolarization induces spreading depression of activity. In severely ischemic tissue, nonspreading depression of activity precedes spreading depolarization. The depression pattern determines the neurological deficit which is either spreading such as in migraine aura or migraine stroke or nonspreading such as in transient ischemic attack or typical stroke. Although a clinical distinction between spreading and nonspreading focal neurological deficits is useful because they are associated with different probabilities of permanent damage, it is important to note that spreading depolarization, the neuronal injury potential, occurs in all of these conditions. Here, we first review the scientific basis of the continuum of spreading depolarizations. Second, we highlight the transition zone of the continuum from reversibility to irreversibility using clinical cases of aneurysmal subarachnoid hemorrhage and cerebral amyloid angiopathy. These illustrate how modern neuroimaging and neuromonitoring technologies increasingly bridge the gap between basic sciences and clinic. For example, we provide direct electrophysiological evidence for the first time that spreading depolarization-induced spreading depression is the pathophysiological correlate of the migraine aura.
Collapse
Affiliation(s)
- Sebastian Major
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Shufan Huo
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Eberhard Siebert
- Department of Neuroradiology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Denny Milakara
- Solution Centre for Image Guided Local Therapies (STIMULATE), Otto-von-Guericke-University, Magdeburg, Germany
| | - Johannes Woitzik
- Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Karen Gertz
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jens P Dreier
- Center for Stroke Research, Campus Charité Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| |
Collapse
|
16
|
Santos E, Olivares-Rivera A, Major S, Sánchez-Porras R, Uhlmann L, Kunzmann K, Zerelles R, Kentar M, Kola V, Aguilera AH, Herrera MG, Lemale CL, Woitzik J, Hartings JA, Sakowitz OW, Unterberg AW, Dreier JP. Lasting s-ketamine block of spreading depolarizations in subarachnoid hemorrhage: a retrospective cohort study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:427. [PMID: 31888772 PMCID: PMC6937792 DOI: 10.1186/s13054-019-2711-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 12/16/2019] [Indexed: 12/12/2022]
Abstract
Objective Spreading depolarizations (SD) are characterized by breakdown of transmembrane ion gradients and excitotoxicity. Experimentally, N-methyl-d-aspartate receptor (NMDAR) antagonists block a majority of SDs. In many hospitals, the NMDAR antagonist s-ketamine and the GABAA agonist midazolam represent the current second-line combination treatment to sedate patients with devastating cerebral injuries. A pressing clinical question is whether this option should become first-line in sedation-requiring individuals in whom SDs are detected, yet the s-ketamine dose necessary to adequately inhibit SDs is unknown. Moreover, use-dependent tolerance could be a problem for SD inhibition in the clinic. Methods We performed a retrospective cohort study of 66 patients with aneurysmal subarachnoid hemorrhage (aSAH) from a prospectively collected database. Thirty-three of 66 patients received s-ketamine during electrocorticographic neuromonitoring of SDs in neurointensive care. The decision to give s-ketamine was dependent on the need for stronger sedation, so it was expected that patients receiving s-ketamine would have a worse clinical outcome. Results S-ketamine application started 4.2 ± 3.5 days after aSAH. The mean dose was 2.8 ± 1.4 mg/kg body weight (BW)/h and thus higher than the dose recommended for sedation. First, patients were divided according to whether they received s-ketamine at any time or not. No significant difference in SD counts was found between groups (negative binomial model using the SD count per patient as outcome variable, p = 0.288). This most likely resulted from the fact that 368 SDs had already occurred in the s-ketamine group before s-ketamine was given. However, in patients receiving s-ketamine, we found a significant decrease in SD incidence when s-ketamine was started (Poisson model with a random intercept for patient, coefficient − 1.83 (95% confidence intervals − 2.17; − 1.50), p < 0.001; logistic regression model, odds ratio (OR) 0.13 (0.08; 0.19), p < 0.001). Thereafter, data was further divided into low-dose (0.1–2.0 mg/kg BW/h) and high-dose (2.1–7.0 mg/kg/h) segments. High-dose s-ketamine resulted in further significant decrease in SD incidence (Poisson model, − 1.10 (− 1.71; − 0.49), p < 0.001; logistic regression model, OR 0.33 (0.17; 0.63), p < 0.001). There was little evidence of SD tolerance to long-term s-ketamine sedation through 5 days. Conclusions These results provide a foundation for a multicenter, neuromonitoring-guided, proof-of-concept trial of ketamine and midazolam as a first-line sedative regime.
Collapse
Affiliation(s)
- Edgar Santos
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Arturo Olivares-Rivera
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Renán Sánchez-Porras
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Lorenz Uhlmann
- Institute of Medical Biometry and Informatics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Kevin Kunzmann
- Institute of Medical Biometry and Informatics, Ruprecht-Karls-University Heidelberg, Heidelberg, Germany
| | - Roland Zerelles
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Modar Kentar
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Adrian Hernández Aguilera
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Mildred Gutierrez Herrera
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Coline L Lemale
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johannes Woitzik
- Evangelisches Krankenhaus Oldenburg, University of Oldenburg, Oldenburg, Germany
| | - Jed A Hartings
- UC Gardner Neuroscience Institute, University of Cincinnati (UC) College of Medicine, Cincinnati, OH, USA.,Department of Neurosurgery, University of Cincinnati (UC) College of Medicine, Cincinnati, OH, USA
| | - Oliver W Sakowitz
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.,Neurosurgery Center Ludwigsburg-Heilbronn, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Andreas W Unterberg
- Neurosurgery Department, Heidelberg University Hospital- Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.,Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
17
|
Kirchner T, Gröhl J, Herrera MA, Adler T, Hernández-Aguilera A, Santos E, Maier-Hein L. Photoacoustics can image spreading depolarization deep in gyrencephalic brain. Sci Rep 2019; 9:8661. [PMID: 31209253 PMCID: PMC6572820 DOI: 10.1038/s41598-019-44935-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 05/29/2019] [Indexed: 11/09/2022] Open
Abstract
Spreading depolarization (SD) is a self-propagating wave of near-complete neuronal depolarization that is abundant in a wide range of neurological conditions, including stroke. SD was only recently documented in humans and is now considered a therapeutic target for brain injury, but the mechanisms related to SD in complex brains are not well understood. While there are numerous approaches to interventional imaging of SD on the exposed brain surface, measuring SD deep in brain is so far only possible with low spatiotemporal resolution and poor contrast. Here, we show that photoacoustic imaging enables the study of SD and its hemodynamics deep in the gyrencephalic brain with high spatiotemporal resolution. As rapid neuronal depolarization causes tissue hypoxia, we achieve this by continuously estimating blood oxygenation with an intraoperative hybrid photoacoustic and ultrasonic imaging system. Due to its high resolution, promising imaging depth and high contrast, this novel approach to SD imaging can yield new insights into SD and thereby lead to advances in stroke, and brain injury research.
Collapse
Affiliation(s)
- Thomas Kirchner
- Division of Computer Assisted Medical Interventions, German Cancer Research Center, Heidelberg, Germany.
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany.
| | - Janek Gröhl
- Division of Computer Assisted Medical Interventions, German Cancer Research Center, Heidelberg, Germany
- Medical Faculty, Heidelberg University, Heidelberg, Germany
| | - Mildred A Herrera
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Tim Adler
- Division of Computer Assisted Medical Interventions, German Cancer Research Center, Heidelberg, Germany
- Faculty of Mathematics and Computer Science, Heidelberg University, Heidelberg, Germany
| | | | - Edgar Santos
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Lena Maier-Hein
- Division of Computer Assisted Medical Interventions, German Cancer Research Center, Heidelberg, Germany.
- Medical Faculty, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
18
|
Screening spreading depolarizations during epilepsy surgery. Acta Neurochir (Wien) 2019; 161:911-916. [PMID: 30852674 DOI: 10.1007/s00701-019-03870-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/03/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Spreading depolarization (SD) is a fundamental pathophysiological mechanism of both pannecrotic and selective neuronal lesions following deprivation of energy. SD with brain injury has been reported including in one patient during an intracranial operation. However, the incidence of SDs in operative resections is unknown. METHODS We performed (a) retrospective analysis of intraoperative AC-recordings of 69 patients and (b) a prospective study using intraoperative near-DC recording. All patients had the diagnosis of pharmaco-resistant epilepsy. Both studies were designed to determine the incidence and characteristics of SDs intraoperatively. In the retrospective analysis, we used intraoperative electrocorticography (iECoG) recordings obtained from AC-recording of 69 patients. In the prospective analysis, we used an Octal Bio Amp and Power Lab ECoG recorder with near-DC range. RESULTS In the retrospective study, we included 69 patients with a mean of 1 h 3 min of iECoG recordings. In the prospective study, we recruited 20 patients with near DC recordings. A total of 35 h 41 min of iECoG recordings with mean of 2 h 32 min/patient were analyzed. We did not find SD in either study. CONCLUSIONS SDs were not detected during intraoperative recordings of epilepsy surgery using AC- or DC-amplifiers.
Collapse
|
19
|
Abstract
Vascular theories of migraine and cluster headache have dominated for many years the pathobiological concept of these disorders. This view is supported by observations that trigeminal activation induces a vascular response and that several vasodilating molecules trigger acute attacks of migraine and cluster headache in susceptible individuals. Over the past 30 years, this rationale has been questioned as it became clear that the actions of some of these molecules, in particular, calcitonin gene-related peptide and pituitary adenylate cyclase-activating peptide, extend far beyond the vasoactive effects, as they possess the ability to modulate nociceptive neuronal activity in several key regions of the trigeminovascular system. These findings have shifted our understanding of these disorders to a primarily neuronal origin with the vascular manifestations being the consequence rather than the origin of trigeminal activation. Nevertheless, the neurovascular component, or coupling, seems to be far more complex than initially thought, being involved in several accompanying features. The review will discuss in detail the anatomical basis and the functional role of the neurovascular mechanisms relevant to migraine and cluster headache.
Collapse
Affiliation(s)
- Jan Hoffmann
- 1 Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Serapio M Baca
- 2 Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, CO, USA
| | - Simon Akerman
- 3 Department of Neural and Pain Sciences, University of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
20
|
Chamanzar A, George S, Venkatesh P, Chamanzar M, Shutter L, Elmer J, Grover P. An Algorithm for Automated, Noninvasive Detection of Cortical Spreading Depolarizations Based on EEG Simulations. IEEE Trans Biomed Eng 2019; 66:1115-1126. [PMID: 30176578 PMCID: PMC7045617 DOI: 10.1109/tbme.2018.2867112] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE We present a novel signal processing algorithm for automated, noninvasive detection of cortical spreading depolarizations (CSDs) using electroencephalography (EEG) signals and validate the algorithm on simulated EEG signals. CSDs are waves of neurochemical changes that suppress the neuronal activity as they propagate across the brain's cortical surface. CSDs are believed to mediate secondary brain damage after brain trauma and cerebrovascular diseases like stroke. We address the following two key challenges in detecting CSDs from EEG signals: i) attenuation and loss of high spatial resolution information; and ii) cortical folds, which complicate tracking CSD waves. METHODS Our algorithm detects and tracks "wavefronts" of a CSD wave, and stitch together data across space and time to make a detection. To test our algorithm, we provide different models of CSD waves, including different widths of CSD suppressions and different patterns, and use them to simulate scalp EEG signals using head models of four subjects. RESULTS AND CONCLUSION Our results suggest that low-density EEG grids (40 electrodes) can detect CSD widths of 1.1 cm on average, while higher density EEG grids (340 electrodes) can detect CSD patterns as thin as 0.43 cm (less than minimum widths reported in prior works), among which single-gyrus CSDs are the hardest to detect because of their small suppression area. SIGNIFICANCE The proposed algorithm is a first step toward noninvasive, automated detection of CSDs, which can help in reducing secondary brain damages.
Collapse
Affiliation(s)
| | | | | | | | - Lori Shutter
- Departments of Emergency Medicine and Critical Care Medicine, University of Pittsburgh
| | - Jonathan Elmer
- Departments of Emergency Medicine and Critical Care Medicine, University of Pittsburgh
| | | |
Collapse
|
21
|
Taş YÇ, Solaroğlu İ, Gürsoy-Özdemir Y. Spreading Depolarization Waves in Neurological Diseases: A Short Review about its Pathophysiology and Clinical Relevance. Curr Neuropharmacol 2019; 17:151-164. [PMID: 28925885 PMCID: PMC6343201 DOI: 10.2174/1570159x15666170915160707] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/03/2017] [Accepted: 09/09/2017] [Indexed: 02/05/2023] Open
Abstract
Lesion growth following acutely injured brain tissue after stroke, subarachnoid hemorrhage and traumatic brain injury is an important issue and a new target area for promising therapeutic interventions. Spreading depolarization or peri-lesion depolarization waves were demonstrated as one of the significant contributors of continued lesion growth. In this short review, we discuss the pathophysiology for SD forming events and try to list findings detected in neurological disorders like migraine, stroke, subarachnoid hemorrhage and traumatic brain injury in both human as well as experimental studies. Pharmacological and non-pharmacological treatment strategies are highlighted and future directions and research limitations are discussed.
Collapse
Affiliation(s)
| | | | - Yasemin Gürsoy-Özdemir
- Address correspondence to these authors at the Department of Neurosurgery, School of Medicine, Koç University, İstanbul, Turkey; Tel: +90 850 250 8250; E-mails: ,
| |
Collapse
|
22
|
Dreier JP, Lemale CL, Kola V, Friedman A, Schoknecht K. Spreading depolarization is not an epiphenomenon but the principal mechanism of the cytotoxic edema in various gray matter structures of the brain during stroke. Neuropharmacology 2017; 134:189-207. [PMID: 28941738 DOI: 10.1016/j.neuropharm.2017.09.027] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/15/2022]
Abstract
Spreading depolarization (SD) is a phenomenon of various cerebral gray matter structures that only occurs under pathological conditions. In the present paper, we summarize the evidence from several decades of research that SD and cytotoxic edema in these structures are largely overlapping terms. SD/cytotoxic edema is a toxic state that - albeit initially reversible - leads eventually to cellular death when it is persistent. Both hemorrhagic and ischemic stroke are among the most prominent causes of SD/cytotoxic edema. SD/cytotoxic edema is the principal mechanism that mediates neuronal death in these conditions. This applies to gray matter structures in both the ischemic core and the penumbra. SD/cytotoxic edema is often a single terminal event in the core whereas, in the penumbra, a cluster of repetitive prolonged SDs is typical. SD/cytotoxic edema also propagates widely into healthy surrounding tissue as short-lasting, relatively harmless events so that regional electrocorticographic monitoring affords even remote detection of ischemic zones. Ischemia cannot only cause SD/cytotoxic edema but it can also be its consequence through inverse neurovascular coupling. Under this condition, ischemia does not start simultaneously in different regions but spreads in the tissue driven by SD/cytotoxic edema-induced microvascular constriction (= spreading ischemia). Spreading ischemia prolongs SD/cytotoxic edema. Thus, it increases the likelihood for the transition from SD/cytotoxic edema into cellular death. Vasogenic edema is the other major type of cerebral edema with relevance to ischemic stroke. It results from opening of the blood-brain barrier. SD/cytotoxic edema and vasogenic edema are distinct processes with important mutual interactions. This article is part of the Special Issue entitled 'Cerebral Ischemia'.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Departments of Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany.
| | - Coline L Lemale
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Alon Friedman
- Department of Physiology and Cell Biology, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | - Karl Schoknecht
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany; Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
23
|
Simulation of spreading depolarization trajectories in cerebral cortex: Correlation of velocity and susceptibility in patients with aneurysmal subarachnoid hemorrhage. NEUROIMAGE-CLINICAL 2017; 16:524-538. [PMID: 28948141 PMCID: PMC5602748 DOI: 10.1016/j.nicl.2017.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/23/2017] [Accepted: 09/05/2017] [Indexed: 11/23/2022]
Abstract
In many cerebral grey matter structures including the neocortex, spreading depolarization (SD) is the principal mechanism of the near-complete breakdown of the transcellular ion gradients with abrupt water influx into neurons. Accordingly, SDs are abundantly recorded in patients with traumatic brain injury, spontaneous intracerebral hemorrhage, aneurysmal subarachnoid hemorrhage (aSAH) and malignant hemispheric stroke using subdural electrode strips. SD is observed as a large slow potential change, spreading in the cortex at velocities between 2 and 9 mm/min. Velocity and SD susceptibility typically correlate positively in various animal models. In patients monitored in neurocritical care, the Co-Operative Studies on Brain Injury Depolarizations (COSBID) recommends several variables to quantify SD occurrence and susceptibility, although accurate measures of SD velocity have not been possible. Therefore, we developed an algorithm to estimate SD velocities based on reconstructing SD trajectories of the wave-front's curvature center from magnetic resonance imaging scans and time-of-SD-arrival-differences between subdural electrode pairs. We then correlated variables indicating SD susceptibility with algorithm-estimated SD velocities in twelve aSAH patients. Highly significant correlations supported the algorithm's validity. The trajectory search failed significantly more often for SDs recorded directly over emerging focal brain lesions suggesting in humans similar to animals that the complexity of SD propagation paths increase in tissue undergoing injury. An algorithm has been developed to estimate spreading depolarization (SD) velocities in neurocritical care. The algorithm is based on reconstructing SD trajectories of the wave-front's curvature center. It utilizes MRI scans and time-of-SD-arrival-differences between subdural electrode pairs. Variables indicating SD susceptibility correlated with algorithm-estimated SD velocities. The findings establish the opportunity to exploit the SD velocity as part of the multimodal assessment in neurocritical care.
Collapse
Key Words
- 3D, three dimensional
- AC, alternating current
- ADC, apparent diffusion coefficient
- COSBID, Co-Operative Studies on Brain Injury Depolarizations
- CT, computed tomography
- Cytotoxic edema
- DC, direct current
- DWI, diffusion-weighted imaging
- E, electrode
- ECoG, electrocorticography
- FLAIR, fluid-attenuated inversion recovery
- HU, Hounsfield units
- ICH, intracerebral hemorrhage
- IOS, intrinsic optical signal
- Ischemia
- MCA, middle cerebral artery
- MHS, malignant hemispheric stroke
- MPRAGE, magnetization prepared rapid gradient echo
- MRI, magnetic resonance imaging
- NO, nitric oxide
- PTDDD, peak total SD-induced depression duration of a recording day
- R_diff, radius difference
- SAH, subarachnoid hemorrhage
- SD, spreading depolarization
- SPC, slow potential change
- Spreading depression
- Stroke
- Subarachnoid hemorrhage
- TBI, traumatic brain injury
- TOAD, time-of-SD-arrival-difference
- Traumatic brain injury
- V_diff, velocity difference
- WFNS, World Federation of Neurosurgical Societies
- aSAH, aneurysmal subarachnoid hemorrhage
Collapse
|