1
|
Watanabe H, Ikawa M, Kakae M, Shirakawa H, Kaneko S, Ono M. Synthesis and biological evaluation of radioiodinated benzoxazole and benzothiazole derivatives for imaging myelin in multiple sclerosis. Bioorg Med Chem Lett 2024; 103:129691. [PMID: 38452827 DOI: 10.1016/j.bmcl.2024.129691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system that results from destruction of the myelin sheath. Due to heterogeneity of the symptoms and course of MS, periodic monitoring of disease activity is important for diagnosis and treatment. In the present study, we synthesized four radioiodinated benzoxazole (BO) and benzothiazole (BT) derivatives, and evaluated their utility as novel myelin imaging probes for single photon emission computed tomography (SPECT). In a biodistribution study using normal mice, three compounds ([125I]BO-1, [125I]BO-2, and [125I]BT-2) displayed moderate brain uptake (2.7, 2.9, and 2.8% ID/g, respectively) at 2 min postinjection. On ex vivo autoradiography using normal mice, [125I]BO-2 showed the most preferable ratio of radioactivity accumulation in white matter (myelin-rich region) versus gray matter (myelin-deficient region). In addition, the radioactivity of [125I]BO-2 was reduced in the lysophosphatidylcholine-induced demyelination region. In conclusion, [123I]BO-2 demonstrated the fundamental characteristics of a myelin imaging probe for SPECT.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Miho Ikawa
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masashi Kakae
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| |
Collapse
|
2
|
van der Weijden CWJ, Meilof JF, van der Hoorn A, Zhu J, Wu C, Wang Y, Willemsen ATM, Dierckx RAJO, Lammertsma AA, de Vries EFJ. Quantitative assessment of myelin density using [ 11C]MeDAS PET in patients with multiple sclerosis: a first-in-human study. Eur J Nucl Med Mol Imaging 2022; 49:3492-3507. [PMID: 35366079 PMCID: PMC9308583 DOI: 10.1007/s00259-022-05770-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/19/2022] [Indexed: 12/21/2022]
Abstract
PURPOSE Multiple sclerosis (MS) is a disease characterized by inflammatory demyelinated lesions. New treatment strategies are being developed to stimulate myelin repair. Quantitative myelin imaging could facilitate these developments. This first-in-man study aimed to evaluate [11C]MeDAS as a PET tracer for myelin imaging in humans. METHODS Six healthy controls and 11 MS patients underwent MRI and dynamic [11C]MeDAS PET scanning with arterial sampling. Lesion detection and classification were performed on MRI. [11C]MeDAS time-activity curves of brain regions and MS lesions were fitted with various compartment models for the identification of the best model to describe [11C]MeDAS kinetics. Several simplified methods were compared to the optimal compartment model. RESULTS Visual analysis of the fits of [11C]MeDAS time-activity curves showed no preference for irreversible (2T3k) or reversible (2T4k) two-tissue compartment model. Both volume of distribution and binding potential estimates showed a high degree of variability. As this was not the case for 2T3k-derived net influx rate (Ki), the 2T3k model was selected as the model of choice. Simplified methods, such as SUV and MLAIR2 correlated well with 2T3k-derived Ki, but SUV showed subject-dependent bias when compared to 2T3k. Both the 2T3k model and the simplified methods were able to differentiate not only between gray and white matter, but also between lesions with different myelin densities. CONCLUSION [11C]MeDAS PET can be used for quantification of myelin density in MS patients and is able to distinguish differences in myelin density within MS lesions. The 2T3k model is the optimal compartment model and MLAIR2 is the best simplified method for quantification. TRIAL REGISTRATION NL7262. Registered 18 September 2018.
Collapse
Affiliation(s)
- Chris W J van der Weijden
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Jan F Meilof
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
- Department of Neurology, Martini Ziekenhuis, Groningen, The Netherlands
| | - Anouk van der Hoorn
- Radiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713GZ, Groningen, The Netherlands
| | - Junqing Zhu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Chunying Wu
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Yanming Wang
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Antoon T M Willemsen
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Rudi A J O Dierckx
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Adriaan A Lammertsma
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands
| | - Erik F J de Vries
- Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Hanzeplein 1, Groningen, The Netherlands.
| |
Collapse
|
3
|
Sun Z, Meikle S, Calamante F. CONN-NLM: A Novel CONNectome-Based Non-local Means Filter for PET-MRI Denoising. Front Neurosci 2022; 16:824431. [PMID: 35712456 PMCID: PMC9197079 DOI: 10.3389/fnins.2022.824431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Background Advancements in hybrid positron emission tomography-magnetic resonance (PET-MR) systems allow for combining the advantages of each modality. Integrating information from MRI and PET can be valuable for diagnosing and treating neurological disorders. However, combining diffusion MRI (dMRI) and PET data, which provide highly complementary information, has rarely been exploited in image post-processing. dMRI has the ability to investigate the white matter pathways of the brain through fibre tractography, which enables comprehensive mapping of the brain connection networks (the "connectome"). Novel methods are required to combine information present in the connectome and PET to increase the full potential of PET-MRI. Methods We developed a CONNectome-based Non-Local Means (CONN-NLM) filter to exploit synergies between dMRI-derived structural connectivity and PET intensity information to denoise PET images. PET-MR data are parcelled into a number of regions based on a brain atlas, and the inter-regional structural connectivity is calculated based on dMRI fibre-tracking. The CONN-NLM filter is then implemented as a post-reconstruction filter by combining the nonlocal means filter and a connectivity-based cortical smoothing. The effect of this approach is to weight voxels with similar PET intensity and highly connected voxels higher when computing the weighted-average to perform more informative denoising. The proposed method was first evaluated using a novel computer phantom framework to simulate realistic hybrid PET-MR images with different lesion scenarios. CONN-NLM was further assessed with clinical dMRI and tau PET examples. Results The results showed that CONN-NLM has the capacity to improve the overall PET image quality by reducing noise while preserving lesion contrasts, and it outperformed a range of filters that did not use dMRI information. The simulations demonstrate that CONN-NLM can handle various lesion contrasts consistently, as well as lesions with different levels of inter-connectivity. Conclusion CONN-NLM has unique advantages of providing more informative and accurate PET smoothing by adding complementary structural connectivity information from dMRI, representing a new avenue to exploit synergies between MRI and PET.
Collapse
Affiliation(s)
- Zhuopin Sun
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Steven Meikle
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Fernando Calamante
- School of Biomedical Engineering, The University of Sydney, Sydney, NSW, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
- Sydney Imaging, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Valizadeh A, Fattahi MR, Sadeghi M, Saghab Torbati M, Sahraian MA, Azimi AR. Disease-modifying therapies and T1 hypointense lesions in patients with multiple sclerosis: A systematic review and meta-analysis. CNS Neurosci Ther 2022; 28:648-657. [PMID: 35218155 PMCID: PMC8981477 DOI: 10.1111/cns.13815] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/12/2022] [Accepted: 02/04/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Previous research has shown that cerebral T1 hypointense lesions are positively correlated with the disability of multiple sclerosis (MS) patients. Hence, they could be used as an objective marker for evaluating the progression of the disease. Up to this date, there has not been a systematic evaluation of the effects of disease-modifying therapies (DMTs) on this prognostic marker. OBJECTIVES To evaluate the effects of FDA-approved DMTs on the numbers and volume of T1 hypointense lesions in adult patients with MS. METHODS We included studies with the mentioned desired outcomes. In March 2021, we searched MEDLINE (Ovid), Embase, and CENTRAL to find relevant studies. All included studies were assessed for the risk of bias using the RoB-2 tool. Extracted data were analyzed using a random-effects model. Certainty of evidence was assessed using GRADE. RESULTS Thirteen studies with 7484 participants were included. Meta-analysis revealed the mean difference between the intervention and comparator groups for the number of lesions was -1.3 (95% CI: -2.1, -0.5) and for the mean volume of lesions was -363.1 (95% CI: -611.6, -114.6). Certainty of evidence was judged to be moderate. Heterogeneity was considerable. DISCUSSION DMTs reduce the number and volume of T1 hypointense lesions. Although, these findings must be interpreted cautiously due to the high values of heterogeneity.
Collapse
Affiliation(s)
- Amir Valizadeh
- Neuroscience InstituteTehran University of Medical SciencesTehranIran
| | | | - Maryam Sadeghi
- Neuroscience InstituteTehran University of Medical SciencesTehranIran
| | | | - Mohammad Ali Sahraian
- Multiple Sclerosis Research CenterNeuroscience InstituteTehran University of Medical SciencesTehranIran
| | - Amir Reza Azimi
- Multiple Sclerosis Research CenterNeuroscience InstituteTehran University of Medical SciencesTehranIran
| |
Collapse
|
5
|
Watanabe H, Maekawa R, Iikuni S, Kakae M, Matsuo N, Shirakawa H, Kaneko S, Ono M. Characterization of Radioiodinated Diaryl Oxadiazole Derivatives as SPECT Probes for Detection of Myelin in Multiple Sclerosis. ACS Chem Neurosci 2022; 13:363-369. [PMID: 35019269 DOI: 10.1021/acschemneuro.1c00753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Multiple sclerosis (MS) is an intractable disease of the central nervous system that results from destruction of the myelin sheath. Direct measurement of de- and remyelination is required for monitoring the disease stage of MS, but no useful method has been established. In this study, we characterized four diaryl oxadiazole derivatives as novel myelin-imaging probes for single photon emission computed tomography (SPECT). All the diaryl oxadiazole derivatives penetrated the blood-brain barrier in normal mice. Among them, the highest ratio of radioactivity accumulation in the white matter (myelin-rich region) against the gray matter (myelin-deficient region) was observed at 60 min postinjection of [125I]1,3,4-PODP-DM in ex vivo autoradiography using normal mice. In the blocking study with ex vivo autoradiography, the radioactivity accumulation of [125I]1,3,4-PODP-DM in the white matter markedly reduced. [125I]1,3,4-PODP-DM detected demyelination in the ex vivo autoradiographic images of not only the spinal cord of the experimental autoimmune encephalomyelitis mice but also the brain after lysophosphatidylcholine (LPC) injection. In addition, [123I]1,3,4-PODP-DM could image LPC-induced demyelination in the mouse brain with SPECT. These results suggest that [123I]1,3,4-PODP-DM may be a potential SPECT probe for imaging myelin in MS.
Collapse
Affiliation(s)
- Hiroyuki Watanabe
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Rinka Maekawa
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Shimpei Iikuni
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Masashi Kakae
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Nagisa Matsuo
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho,
Sakyo-ku, Kyoto 606-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis, Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
6
|
The Role of Molecular Imaging as a Marker of Remyelination and Repair in Multiple Sclerosis. Int J Mol Sci 2021; 23:ijms23010474. [PMID: 35008899 PMCID: PMC8745199 DOI: 10.3390/ijms23010474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
The appearance of new disease-modifying therapies in multiple sclerosis (MS) has revolutionized our ability to fight inflammatory relapses and has immensely improved patients’ quality of life. Although remarkable, this achievement has not carried over into reducing long-term disability. In MS, clinical disability progression can continue relentlessly irrespective of acute inflammation. This “silent” disease progression is the main contributor to long-term clinical disability in MS and results from chronic inflammation, neurodegeneration, and repair failure. Investigating silent disease progression and its underlying mechanisms is a challenge. Standard MRI excels in depicting acute inflammation but lacks the pathophysiological lens required for a more targeted exploration of molecular-based processes. Novel modalities that utilize nuclear magnetic resonance’s ability to display in vivo information on imaging look to bridge this gap. Displaying the CNS through a molecular prism is becoming an undeniable reality. This review will focus on “molecular imaging biomarkers” of disease progression, modalities that can harmoniously depict anatomy and pathophysiology, making them attractive candidates to become the first valid biomarkers of neuroprotection and remyelination.
Collapse
|
7
|
Zhang M, Ni Y, Zhou Q, He L, Meng H, Gao Y, Huang X, Meng H, Li P, Chen M, Wang D, Hu J, Huang Q, Li Y, Chauveau F, Li B, Chen S. 18F-florbetapir PET/MRI for quantitatively monitoring myelin loss and recovery in patients with multiple sclerosis: A longitudinal study. EClinicalMedicine 2021; 37:100982. [PMID: 34195586 PMCID: PMC8234356 DOI: 10.1016/j.eclinm.2021.100982] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 05/19/2021] [Accepted: 06/02/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Amyloid positron emission tomography (PET) can measure in-vivo demyelination in patients with multiple sclerosis (MS). However, the value of 18F-labeled amyloid PET tracer, 18F-florbetapir in the longitudinal study for monitoring myelin loss and recovery has not been confirmed. METHODS From March 2019 to September 2020, twenty-three patients with MS and nine healthy controls (HCs) underwent a hybrid PET/MRI at baseline and expanded disability status scale (EDSS) assessment, and eight of 23 patients further underwent follow-up PET/MRI. The distribution volume ratio (DVR) and standard uptake value ratio (SUVR) of 18F-florbetapir in damaged white matter (DWM) and normal-appearance white matter (NAWM) were obtained from dynamic and static PET acquisition. Diffusion tensor imaging-derived parameters were also calculated. Data were expressed as mean ± standard deviation with 99% confidence interval (99%CI). FINDING The mean DVR (1.08 ± 0.12, 99%CI [1.02 ~ 1.14]) but not the mean SUVR of DWM lesions was lower than that of NAWM in patients with MS (1.25 ± 0.10, 99%CI [1.20 ~ 1.31]) and HCs (1.29 ± 0.08, 99%CI [1.23 ~ 1.36]). A trend toward lower mean fractional anisotropy (374.95 ± 45.30 vs. 419.07 ± 4.83) and higher mean radial diffusivity (0.45 ± 0.05 vs. 0.40 ± 0.01) of NAWM in patients with MS than those in HCs was found. DVR decreased in DWM lesions with higher MD (rho = -0.261, 99%CI [-0.362 ~ -0.144]), higher AD (rho = -0.200, 99%CI [-0.318 ~ -0.070]) and higher RD (rho = -0.198, 99%CI [-0.313 ~ -0.075]). Patients' EDSS scores were reduced (B = 0.04, 99%CI [-0.005 ~ 0.084]) with decreased index of global demyelination in the longitudinal study. INTERPRETATION Our exploratory study suggests that dynamic 18F-florbetapir PET/MRI may be a very promising tool for quantitatively monitoring myelin loss and recovery in patients with MS. FUNDING Shanghai Pujiang Program, Shanghai Municipal Key Clinical Specialty, Shanghai Shuguang Plan Project, Shanghai Health and Family Planning Commission Research Project, Clinical Research Plan of SHDC, French-Chinese program "Xu Guangqi".
Collapse
Affiliation(s)
- Min Zhang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - You Ni
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Qinming Zhou
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Lu He
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Huanyu Meng
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yining Gao
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xinyun Huang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongping Meng
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peihan Li
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Meidi Chen
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Danni Wang
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jingyi Hu
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiu Huang
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Fabien Chauveau
- Univ Lyon, Lyon Neuroscience research Center, CNRS UMR5292, INSERM U1028, Univ Lyon 1, Lyon, France
| | - Biao Li
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| |
Collapse
|
8
|
Petracca M, Pontillo G, Moccia M, Carotenuto A, Cocozza S, Lanzillo R, Brunetti A, Brescia Morra V. Neuroimaging Correlates of Cognitive Dysfunction in Adults with Multiple Sclerosis. Brain Sci 2021; 11:346. [PMID: 33803287 PMCID: PMC8000635 DOI: 10.3390/brainsci11030346] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Cognitive impairment is a frequent and meaningful symptom in multiple sclerosis (MS), caused by the accrual of brain structural damage only partially counteracted by effective functional reorganization. As both these aspects can be successfully investigated through the application of advanced neuroimaging, here, we offer an up-to-date overview of the latest findings on structural, functional and metabolic correlates of cognitive impairment in adults with MS, focusing on the mechanisms sustaining damage accrual and on the identification of useful imaging markers of cognitive decline.
Collapse
Affiliation(s)
- Maria Petracca
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.P.); (S.C.); (A.B.)
- Department of Electrical Engineering and Information Technology, University of Naples “Federico II”, 80125 Naples, Italy
| | - Marcello Moccia
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Antonio Carotenuto
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.P.); (S.C.); (A.B.)
| | - Roberta Lanzillo
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (G.P.); (S.C.); (A.B.)
| | - Vincenzo Brescia Morra
- Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples “Federico II”, 80131 Naples, Italy; (M.P.); (M.M.); (A.C.); (V.B.M.)
| |
Collapse
|
9
|
Oyama S, Hosoi A, Ibaraki M, McGinnity CJ, Matsubara K, Watanuki S, Watabe H, Tashiro M, Shidahara M. Error propagation analysis of seven partial volume correction algorithms for [ 18F]THK-5351 brain PET imaging. EJNMMI Phys 2020; 7:57. [PMID: 32926222 PMCID: PMC7490288 DOI: 10.1186/s40658-020-00324-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Novel partial volume correction (PVC) algorithms have been validated by assuming ideal conditions of image processing; however, in real clinical PET studies, the input datasets include error sources which cause error propagation to the corrected outcome. METHODS We aimed to evaluate error propagations of seven PVCs algorithms for brain PET imaging with [18F]THK-5351 and to discuss the reliability of those algorithms for clinical applications. In order to mimic brain PET imaging of [18F]THK-5351, pseudo-observed SUVR images for one healthy adult and one adult with Alzheimer's disease were simulated from individual PET and MR images. The partial volume effect of pseudo-observed PET images were corrected by using Müller-Gärtner (MG), the geometric transfer matrix (GTM), Labbé (LABBE), regional voxel-based (RBV), iterative Yang (IY), structural functional synergy for resolution recovery (SFS-RR), and modified SFS-RR algorithms with incorporation of error sources in the datasets for PVC processing. Assumed error sources were mismatched FWHM, inaccurate image-registration, and incorrectly segmented anatomical volume. The degree of error propagations in ROI values was evaluated by percent differences (%diff) of PV-corrected SUVR against true SUVR. RESULTS Uncorrected SUVRs were underestimated against true SUVRs (- 15.7 and - 53.7% in hippocampus for HC and AD conditions), and application of each PVC algorithm reduced the %diff. Larger FWHM mismatch led to larger %diff of PVC-SUVRs against true SUVRs for all algorithms. Inaccurate image registration showed systematic propagation for most algorithms except for SFS-RR and modified SFS-RR. Incorrect segmentation of the anatomical volume only resulted in error propagations in limited local regions. CONCLUSIONS We demonstrated error propagation by numerical simulation of THK-PET imaging. Error propagations of 7 PVC algorithms for brain PET imaging with [18F]THK-5351 were significant. Robust algorithms for clinical applications must be carefully selected according to the study design of clinical PET data.
Collapse
Affiliation(s)
- Senri Oyama
- Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Japan
| | - Ayumu Hosoi
- Division of Applied Quantum Medical Engineering, Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Masanobu Ibaraki
- Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Colm J McGinnity
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.,King's College London and Guy's and St Thomas' PET Centre, St Thomas Hospital, London, UK
| | - Keisuke Matsubara
- Department of Radiology and Nuclear Medicine, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita, Japan
| | - Shoichi Watanuki
- Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Japan
| | - Hiroshi Watabe
- Division of Radiation Protection and Safety Control, Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
| | - Manabu Tashiro
- Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Japan
| | - Miho Shidahara
- Division of Cyclotron Nuclear Medicine, Cyclotron and Radioisotope Center, Sendai, Japan. .,Division of Applied Quantum Medical Engineering, Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan.
| |
Collapse
|
10
|
On the merits of non-invasive myelin imaging in epilepsy, a literature review. J Neurosci Methods 2020; 338:108687. [DOI: 10.1016/j.jneumeth.2020.108687] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/09/2020] [Accepted: 03/11/2020] [Indexed: 01/10/2023]
|
11
|
de Paula Faria D. Myelin positron emission tomography (PET) imaging in multiple sclerosis. Neural Regen Res 2020; 15:1842-1843. [PMID: 32246627 PMCID: PMC7513961 DOI: 10.4103/1673-5374.280311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
12
|
[ 18F]Florbetapir PET/MR imaging to assess demyelination in multiple sclerosis. Eur J Nucl Med Mol Imaging 2019; 47:366-378. [PMID: 31637481 PMCID: PMC6974490 DOI: 10.1007/s00259-019-04533-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022]
Abstract
Purpose We evaluated myelin changes throughout the central nervous system in Multiple Sclerosis (MS) patients by using hybrid [18F]florbetapir PET-MR imaging. Methods We included 18 relapsing-remitting MS patients and 12 healthy controls. Each subject performed a hybrid [18F]florbetapir PET-MR and both a clinical and cognitive assessment. [18F]florbetapir binding was measured as distribution volume ratio (DVR), through the Logan graphical reference method and the supervised cluster analysis to extract a reference region, and standard uptake value (SUV) in the 70–90 min interval after injection. The two quantification approaches were compared. We also evaluated changes in the measures derived from diffusion tensor imaging and arterial spin labeling. Results [18F]florbetapir DVRs decreased from normal-appearing white matter to the centre of T2 lesion (P < 0.001), correlated with fractional anisotropy and with mean, axial and radial diffusivity within T2 lesions (coeff. = −0.15, P < 0.001, coeff. = −0.12, P < 0.001 and coeff. = −0.16, P < 0.001, respectively). Cerebral blood flow was reduced in white matter damaged areas compared to white matter in healthy controls (−10.9%, P = 0.005). SUV70–90 and DVR are equally able to discriminate between intact and damaged myelin (area under the curve 0.76 and 0.66, respectively; P = 0.26). Conclusion Our findings demonstrate that [18F]florbetapir PET imaging can measure in-vivo myelin damage in patients with MS. Demyelination in MS is not restricted to lesions detected through conventional MRI but also involves the normal appearing white matter. Although longitudinal studies are needed, [18F]florbetapir PET imaging may have a role in clinical settings in the management of MS patients.
Collapse
|
13
|
Zhu Y, Zhu X. MRI-Driven PET Image Optimization for Neurological Applications. Front Neurosci 2019; 13:782. [PMID: 31417346 PMCID: PMC6684790 DOI: 10.3389/fnins.2019.00782] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 07/12/2019] [Indexed: 12/12/2022] Open
Abstract
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are established imaging modalities for the study of neurological disorders, such as epilepsy, dementia, psychiatric disorders and so on. Since these two available modalities vary in imaging principle and physical performance, each technique has its own advantages and disadvantages over the other. To acquire the mutual complementary information and reinforce each other, there is a need for the fusion of PET and MRI. This combined dual-modality (either sequential or simultaneous) could generate preferable soft tissue contrast of brain tissue, flexible acquisition parameters, and minimized exposure to radiation. The most unique superiority of PET/MRI is mainly manifested in MRI-based improvement for the inherent limitations of PET, such as motion artifacts, partial volume effect (PVE) and invasive procedure in quantitative analysis. Head motion during scanning significantly deteriorates the effective resolution of PET image, especially for the dynamic scan with lengthy time. Hybrid PET/MRI device can offer motion correction (MC) for PET data through MRI information acquired simultaneously. Regarding the PVE associated with limited spatial resolution, the process and reconstruction of PET data can be further optimized by using acquired MRI either sequentially or simultaneously. The quantitative analysis of dynamic PET data mainly relies upon an invasive arterial blood sampling procedure to acquire arterial input function (AIF). An image-derived input function (IDIF) method without the need of arterial cannulization, can serve as a potential alternative estimation of AIF. Compared with using PET data only, combining anatomical or functional information from MRI for improving the accuracy in IDIF approach has been demonstrated. Yet, due to the interference and inherent disparity between the two modalities, these methods for optimizing PET image based on MRI still have many technical challenges. This review discussed upon the most recent progress, current challenges and future directions of MRI-driven PET data optimization for neurological applications, with either sequential or simultaneous acquisition approach.
Collapse
Affiliation(s)
- Yuankai Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Bauckneht M, Capitanio S, Raffa S, Roccatagliata L, Pardini M, Lapucci C, Marini C, Sambuceti G, Inglese M, Gallo P, Cecchin D, Nobili F, Morbelli S. Molecular imaging of multiple sclerosis: from the clinical demand to novel radiotracers. EJNMMI Radiopharm Chem 2019; 4:6. [PMID: 31659498 PMCID: PMC6453990 DOI: 10.1186/s41181-019-0058-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Brain PET imaging with different tracers is mainly clinically used in the field of neurodegenerative diseases and brain tumors. In recent years, the potential usefulness of PET has also gained attention in the field of MS. In fact, MS is a complex disease and several processes can be selected as a target for PET imaging. The use of PET with several different tracers has been mainly evaluated in the research setting to investigate disease pathophysiology (i.e. phenotypes, monitoring of progression) or to explore its use a surrogate end-point in clinical trials. Results We have reviewed PET imaging studies in MS in humans and animal models. Tracers have been grouped according to their pathophysiological targets (ie. tracers for myelin kinetic, neuroinflammation, and neurodegeneration). The emerging clinical indication for brain PET imaging in the differential diagnosis of suspected tumefactive demyelinated plaques as well as the clinical potential provided by PET images in view of the recent introduction of PET/MR technology are also addressed. Conclusion While several preclinical and fewer clinical studies have shown results, full-scale clinical development programs are needed to translate molecular imaging technologies into a clinical reality that could ideally fit into current precision medicine perspectives.
Collapse
Affiliation(s)
- Matteo Bauckneht
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.
| | - Selene Capitanio
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy
| | - Stefano Raffa
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Luca Roccatagliata
- Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy.,Neuroradiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Caterina Lapucci
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy
| | - Cecilia Marini
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.,CNR Institute of Molecular Bioimaging and Physiology, Milan, Italy
| | - Gianmario Sambuceti
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| | - Matilde Inglese
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Paolo Gallo
- Multiple Sclerosis Centre of the Veneto Region, Department of Neurosciences DNS, University of Padua, Padua, Italy
| | - Diego Cecchin
- Nuclear Medicine Unit, Department of Medicine-DIMED, Padova University Hospital, Padua, Italy.,Padua Neuroscience Center, University of Padua, Padua, Italy
| | - Flavio Nobili
- Clinical Neurology, Department of Neuroscience (DINOGMI), University of Genoa, Genoa, Italy.,Clinica Neurologica, IRCCS Ospedale Policlinico, San Martino, Genoa, Italy
| | - Silvia Morbelli
- Nuclear Medicine Unit, IRCCS Ospedale Policlinico San Martino, Largo R. Benzi 10, 16132, Genoa, Italy.,Department of Health Sciences (DISSAL), University of Genova, Genoa, Italy
| |
Collapse
|
15
|
Selvaggi P, Hawkins PC, Dipasquale O, Rizzo G, Bertolino A, Dukart J, Sambataro F, Pergola G, Williams SC, Turkheimer F, Zelaya F, Veronese M, Mehta MA. Increased cerebral blood flow after single dose of antipsychotics in healthy volunteers depends on dopamine D2 receptor density profiles. Neuroimage 2019; 188:774-784. [DOI: 10.1016/j.neuroimage.2018.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/05/2018] [Accepted: 12/12/2018] [Indexed: 12/11/2022] Open
|
16
|
Morbelli S, Bauckneht M, Capitanio S, Pardini M, Roccatagliata L, Nobili F. A new frontier for amyloid PET imaging: multiple sclerosis. Eur J Nucl Med Mol Imaging 2018; 46:276-279. [DOI: 10.1007/s00259-018-4232-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022]
|
17
|
Sollini M, Berchiolli R, Kirienko M, Rossi A, Glaudemans AWJM, Slart R, Erba PA. PET/MRI in Infection and Inflammation. Semin Nucl Med 2018; 48:225-241. [PMID: 29626940 DOI: 10.1053/j.semnuclmed.2018.02.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hybrid positron emission tomography/magnetic resonance imaging (PET/MR) systems are now more and more available for clinical use. PET/MR combines the unique features of MR including excellent soft tissue contrast, diffusion-weighted imaging, dynamic contrast-enhanced imaging, fMRI and other specialized sequences as well as MR spectroscopy with the quantitative physiologic information that is provided by PET. Most of the evidence of the potential clinical utility of PET/MRI is available for neuroimaging. Other areas, where PET/MR can play a larger role include head and neck, upper abdominal, and pelvic tumours. Although the role of PET/MR in infection and inflammation of the cardiovascular system and in musculoskeletal applications are promising, these areas of clinical investigation are still in the early phase and it may be a little longer before these areas reach their full potential in clinical practice. In this review, we outline the potential of hybrid PET/MR for imaging infection and inflammation. A background to the main radiopharmaceuticals and some technical considerations are also included.
Collapse
Affiliation(s)
- Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Raffaella Berchiolli
- Vascular Surgery Unit Department of Translational Research and Advanced Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Margarita Kirienko
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Alexia Rossi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - A W J M Glaudemans
- University of Groningen, University Medical Center Groningen, Medical Imaging Center, Groningen, The Netherlands
| | - Riemer Slart
- University of Groningen, University Medical Center Groningen, Medical Imaging Center, Groningen, The Netherlands.; University of Twente, Faculty of Science and Technology, Biomedical Photonic Imaging, Enschede, The Netherlands
| | - Paola Anna Erba
- Regional Center of Nuclear Medicine, Department of Translational Research and Advanced, Technologies in Medicine, University of Pisa, Pisa, Italy..
| |
Collapse
|
18
|
Spuhler KD, Gardus J, Gao Y, DeLorenzo C, Parsey R, Huang C. Synthesis of Patient-Specific Transmission Data for PET Attenuation Correction for PET/MRI Neuroimaging Using a Convolutional Neural Network. J Nucl Med 2018; 60:555-560. [PMID: 30166355 DOI: 10.2967/jnumed.118.214320] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/23/2018] [Indexed: 02/07/2023] Open
Affiliation(s)
- Karl D Spuhler
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
| | - John Gardus
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, New York
| | - Yi Gao
- Health Science Center, Shenzhen University, Guangdong, China; and
| | - Christine DeLorenzo
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, New York
| | - Ramin Parsey
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, New York
| | - Chuan Huang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, New York
- Department of Radiology, Stony Brook University Medical Center, Stony Brook, New York
| |
Collapse
|