1
|
Howard PG, Zou P, Zhang Y, Huang F, Tesic V, Wu CYC, Lee RHC. Serum/glucocorticoid regulated kinase 1 (SGK1) in neurological disorders: pain or gain. Exp Neurol 2024; 382:114973. [PMID: 39326820 PMCID: PMC11536509 DOI: 10.1016/j.expneurol.2024.114973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Serum/Glucocorticoid Regulated Kinase 1 (SGK1), a serine/threonine kinase, is ubiquitous across a wide range of tissues, orchestrating numerous signaling pathways and associated with various human diseases. SGK1 has been extensively explored in diverse types of immune and inflammatory diseases, cardiovascular disorders, as well as cancer metastasis. These studies link SGK1 to cellular proliferation, survival, metabolism, membrane transport, and drug resistance. Recently, increasing research has focused on SGK1's role in neurological disorders, including a variety of neurodegenerative diseases (e.g., Alzheimer's disease, Huntington's disease and Parkinson's disease), brain injuries (e.g., cerebral ischemia and traumatic brain injury), psychiatric conditions (e.g., depression and drug addiction). SGK1 is emerging as an increasingly compelling therapeutic target across the spectrum of neurological disorders, supported by the availability of several effective agents. However, the conclusions of many studies observing the prevalence and function of SGK1 in neurological disorders are contradictory, necessitating a review of the SGK1 research within neurological disorders. Herein, we review recent literature on SGK1's primary functions within the nervous system and its impacts within different neurological disorders. We summarize significant findings, identify research gaps, and outline possible future research directions based on the current understanding of SGK1 to help further progress the understanding and treatment of neurological disorders.
Collapse
Affiliation(s)
- Peyton Grace Howard
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Peibin Zou
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Yulan Zhang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Fang Huang
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Vesna Tesic
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA
| | - Celeste Yin-Chieh Wu
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA.
| | - Reggie Hui-Chao Lee
- Institute for Cerebrovascular and Neuroregeneration Research, Louisiana State University Health, Shreveport, LA, USA; Department of Neurology, Shreveport, Louisiana State University Health, LA, USA; Department of Department of Cell Biology & Anatomy, Louisiana State University Health, Shreveport, LA, USA.
| |
Collapse
|
2
|
Chen X, Kang H, Xiao Y. The role of SGK1 in neurologic diseases: A friend or foe? IBRO Neurosci Rep 2024; 17:503-512. [PMID: 39737082 PMCID: PMC11683284 DOI: 10.1016/j.ibneur.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Serum and glucocorticoid-regulated kinase 1 (SGK1), a member of the AGC family of serine/threonine protein kinases, is one of the most conserved protein kinases in eukaryotic evolution. SGK1 is expressed to varying degrees in various types of cells throughout the body, and plays an important role in hypertension, ion channels, oxidative stress, neurological disorders, and cardiovascular regulation. In recent years, a number of scholars have devoted themselves to the study of the role and function of SGK1 in neurological diseases. Therefore, this article reviews the role of SGK1 in Alzheimer's disease, Parkinson's disease, epilepsy, stroke and other neurological diseases in recent years, and puts forward some insights on the role of SGK1 in neurological diseases and its relationship with disease activities.
Collapse
Affiliation(s)
- Xiuze Chen
- Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China
| | - Haixian Kang
- Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China
| | - Yechen Xiao
- Department of Biotechnology, Basic Medical School, Guangdong Medical University, Dongguan 523808, China
- Shunde Women and Children's Hospital of Guangdong Medical University, Foshan 528300, China
| |
Collapse
|
3
|
Hoshino T, Takase H, Ishikawa H, Hamanaka G, Kimura S, Fukuda N, Park JH, Nakajima H, Shirakawa H, Shindo A, Kim KW, H Gelman I, Lok J, Arai K. Transcriptomic Profiles of AKAP12 Deficiency in Mouse Corpus Callosum. Bioinform Biol Insights 2024; 18:11779322241276936. [PMID: 39345723 PMCID: PMC11439161 DOI: 10.1177/11779322241276936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/06/2024] [Indexed: 10/01/2024] Open
Abstract
A-kinase anchor protein 12 (AKAP12), a scaffold protein, has been implicated in the central nervous system, including blood-brain barrier (BBB) function. Although its expression level in the corpus callosum is higher than in other brain regions, such as the cerebral cortex, the role of AKAP12 in the corpus callosum remains unclear. In this study, we investigate the impact of AKAP12 deficiency by transcriptome analysis using RNA-sequencing (RNA-seq) on the corpus callosum of AKAP12 knockout (KO) mice. We observed minimal changes, with only 13 genes showing differential expression, including Akap12 itself. Notably, Klf2 and Sgk1, genes potentially involved in BBB function, were downregulated in AKAP12 KO mice and expressed in vascular cells similar to Akap12. These changes in gene expression may affect important biological pathways that may be associated with neurological disorders. Our findings provide an additional data set for future research on the role of AKAP12 in the central nervous system.
Collapse
Affiliation(s)
- Tomonori Hoshino
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hajime Takase
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- YCU Center for Novel and Exploratory Clinical Trials (Y-NEXT), Yokohama City University Hospital, Yokohama, Japan
| | - Hidehiro Ishikawa
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Department of Neurology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Gen Hamanaka
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Shintaro Kimura
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Norito Fukuda
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Ji Hyun Park
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Hiroki Nakajima
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Akihiro Shindo
- Department of Neurology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Kyu-Won Kim
- Research Institute of Pharmaceutical Science, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Irwin H Gelman
- Department of Cancer Genetics & Genomics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Josephine Lok
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Pediatric Critical Care Medicine, Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
4
|
Chaudhary M, Sharma V, Bedi O, Kaur A, Singh TG. SGK-1 Signalling Pathway is a Key Factor in Cell Survival in Ischemic Injury. Curr Drug Targets 2023; 24:1117-1126. [PMID: 37904552 DOI: 10.2174/0113894501239948231013072901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/11/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023]
Abstract
Serum and glucocorticoid-regulated kinases (SGK) are serine/threonine kinases that belong to AGC. The SGK-1, which responds to stress, controls a range of ion channels, cell growth, transcription factors, membrane transporters, cellular enzymes, cell survival, proliferation and death. Its expression is highly controlled by various factors such as hyperosmotic or isotonic oxidative stress, cell shrinkage, radiation, high blood sugar, neuronal injury, DNA damage, mechanical stress, thermal shock, excitement, dehydration and ischemia. The structural and functional deterioration that arises after a period of ischemia when blood flow is restored is referred to as ischemia/ reperfusion injury (I/R). The current review discusses the structure, expression, function and degradation of SGK-1 with special emphasis on the various ischemic injuries in different organs such as renal, myocardial, cerebral, intestinal and lungs. Furthermore, this review highlights the various therapeutic agents that activate the SGK-1 pathway and slow down the progression of I/R injuries.
Collapse
Affiliation(s)
- Manisha Chaudhary
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Veerta Sharma
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Amarjot Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | |
Collapse
|
5
|
Polyfunctionalized α-Phenyl-tert-butyl(benzyl)nitrones: Multifunctional Antioxidants for Stroke Treatment. Antioxidants (Basel) 2022; 11:antiox11091735. [PMID: 36139811 PMCID: PMC9495348 DOI: 10.3390/antiox11091735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/27/2022] [Accepted: 08/27/2022] [Indexed: 11/16/2022] Open
Abstract
Nowadays, most stroke patients are treated exclusively with recombinant tissue plasminogen activator, a drug with serious side effects and limited therapeutic window. For this reason, and because of the known effects of oxidative stress on stroke, a more tolerable and efficient therapy for stroke is being sought that focuses on the control and scavenging of highly toxic reactive oxygen species by appropriate small molecules, such as nitrones with antioxidant properties. In this context, herein we report here the synthesis, antioxidant, and neuroprotective properties of twelve novel polyfunctionalized α-phenyl-tert-butyl(benzyl)nitrones. The antioxidant capacity of these nitrones was investigated by various assays, including the inhibition of lipid peroxidation induced by AAPH, hydroxyl radical scavenging assay, ABTS+-decoloration assay, DPPH scavenging assay, and inhibition of soybean lipoxygenase. The inhibitory effect on monoamine oxidases and cholinesterases and inhibition of β-amyloid aggregation were also investigated. As a result, (Z)-N-benzyl-1-(2-(3-(piperidin-1-yl)propoxy)phenyl)methanimine oxide (5) was found to be one of the most potent antioxidants, with high ABTS+ scavenging activity (19%), and potent lipoxygenase inhibitory capacity (IC50 = 10 µM), selectively inhibiting butyrylcholinesterase (IC50 = 3.46 ± 0.27 µM), and exhibited neuroprotective profile against the neurotoxicant okadaic acid in a neuronal damage model. Overall, these results pave the way for the further in-depth analysis of the neuroprotection of nitrone 5 in in vitro and in vivo models of stroke and possibly other neurodegenerative diseases in which oxidative stress is identified as a critical player.
Collapse
|
6
|
Chi OZ, Chiricolo A, Liu X, Patel N, Jacinto E, Weiss HR. Inhibition of serum and glucocorticoid regulated kinases by GSK650394 reduced infarct size in early cerebral ischemia-reperfusion with decreased BBB disruption. Neurosci Lett 2021; 762:136143. [PMID: 34332027 DOI: 10.1016/j.neulet.2021.136143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
Blood-brain barrier (BBB) disruption is one of the most important pathological changes following cerebral ischemia-reperfusion. We tested whether inhibition of the serum and glucocorticoid regulated kinase 1 (SGK1) would decrease BBB disruption and contribute to decreasing infarct size in the first few hours of cerebral ischemia-reperfusion within the thrombolysis therapy time window. After transient middle cerebral artery occlusion (MCAO), an SGK1 inhibitor GSK650394, or vehicle was administered into the lateral ventricle of rats. After one hour of MCAO and two hours of reperfusion, we determined BBB disruption using the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid, and also determined infarct size, phosphorylation of NDRG1, and MMP2 protein level. Ischemia-reperfusion increased (+34%, p < 0.05) and GSK650394 decreased (-25%, p < 0.05) the Ki in the ischemic-reperfused cortex. GSK650394 decreased the percentage of cortical infarct (-31%, p < 0.001). At the same time GSK650394 reduced NDRG1 phosphorylation and MMP2 protein level in the ischemic-reperfused cortex suggesting that SGK1 was inhibited by GSK650394 and that lower MMP2 could be one of the mechanisms of decreased BBB disruption. Collectively our data suggest that GSK650394 could be neuroprotective and one of the mechanisms of the neuroprotection could be decreased BBB disruption. SGK1 inhibition within the thrombolysis therapy time window might reduce cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Oak Z Chi
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ 08901-1977, USA.
| | - Antonio Chiricolo
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ 08901-1977, USA
| | - Xia Liu
- Department of Anesthesiology and Perioperative Medicine, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ 08901-1977, USA
| | - Nikhil Patel
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ 08854, USA
| |
Collapse
|
7
|
Suzuki T, Sato Y, Kushida Y, Tsuji M, Wakao S, Ueda K, Imai K, Iitani Y, Shimizu S, Hida H, Temma T, Saito S, Iida H, Mizuno M, Takahashi Y, Dezawa M, Borlongan CV, Hayakawa M. Intravenously delivered multilineage-differentiating stress enduring cells dampen excessive glutamate metabolism and microglial activation in experimental perinatal hypoxic ischemic encephalopathy. J Cereb Blood Flow Metab 2021; 41:1707-1720. [PMID: 33222596 PMCID: PMC8217885 DOI: 10.1177/0271678x20972656] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Perinatal hypoxic ischemic encephalopathy (HIE) results in serious neurological dysfunction and mortality. Clinical trials of multilineage-differentiating stress enduring cells (Muse cells) have commenced in stroke using intravenous delivery of donor-derived Muse cells. Here, we investigated the therapeutic effects of human Muse cells in an HIE model. Seven-day-old rats underwent ligation of the left carotid artery then were exposed to 8% oxygen for 60 min, and 72 hours later intravenously transplanted with 1 × 104 of human-Muse and -non-Muse cells, collected from bone marrow-mesenchymal stem cells as stage-specific embryonic antigen-3 (SSEA-3)+ and -, respectively, or saline (vehicle) without immunosuppression. Human-specific probe revealed Muse cells distributed mainly to the injured brain at 2 and 4 weeks, and expressed neuronal and glial markers until 6 months. In contrast, non-Muse cells lodged in the lung at 2 weeks, but undetectable by 4 weeks. Magnetic resonance spectroscopy and positron emission tomography demonstrated that Muse cells dampened excitotoxic brain glutamatergic metabolites and suppressed microglial activation. Muse cell-treated group exhibited significant improvements in motor and cognitive functions at 4 weeks and 5 months. Intravenously transplanted Muse cells afforded functional benefits in experimental HIE possibly via regulation of glutamate metabolism and reduction of microglial activation.
Collapse
Affiliation(s)
- Toshihiko Suzuki
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshiaki Sato
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahiro Tsuji
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuto Ueda
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan.,Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kenji Imai
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukako Iitani
- Department of Obstetrics and Gynaecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shinobu Shimizu
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Hideki Hida
- Department of Neurophysiology and Brain Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Takashi Temma
- Department of Bio-Medical Imaging, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Shigeyoshi Saito
- Department of Bio-Medical Imaging, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Hidehiro Iida
- Department of Bio-Medical Imaging, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Masaaki Mizuno
- Department of Advanced Medicine, Nagoya University Hospital, Nagoya, Japan
| | - Yoshiyuki Takahashi
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Masahiro Hayakawa
- Division of Neonatology, Center for Maternal-Neonatal Care, Nagoya University Hospital, Nagoya, Japan
| |
Collapse
|
8
|
Addition of Popular Exogenous Antioxidant Agent, PBN, to Culture Media May Be an Important Step to Optimization of Myogenic Stem/Progenitor Cell Preparation Protocol. Antioxidants (Basel) 2021; 10:antiox10060959. [PMID: 34203726 PMCID: PMC8232265 DOI: 10.3390/antiox10060959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 11/17/2022] Open
Abstract
The aim of the study was to modify human skeletal muscle-derived stem/progenitor cells (SkMDS/PCs) and demonstrate the optimal cell preparation protocol for application in post-infarction hearts. We used conditioned SkMDS/PC culture medium with α-phenyl-N-tert-butyl nitrone (PBN). SkMDS/PCs were cultured under hypoxic conditions and the results were compared to the standard ones. We observed a significant increase of CD-56 positive phenotypic marker the ability to form functional myotubes, increase in the proportion of young cells in cell primary suspensions, and a decrease in the percentage of apoptotic cells among PBN-conditioned cells in normoxia an hypoxia. We also observed significantly higher levels of SOD3 expression; maintained expression of SOD1, SOD2, and CAT; a higher level of BCL2 gene expression; and a rather significant decrease in Hsp70 gene expression in PBN-conditioned SkMDS/PCs compared to the WT population under hypoxic conditions. In addition, significant increase of myogenic genes expression was observed after PBN addition to culture medium, compared to WT population under hypoxia. Interestingly, PBN addition significantly increased the lengths of telomeres under hypoxia. Based on the data obtained, we can postulate that PBN conditioning of human SkMDS/PCs could be a promising step in improving myogenic cell preparation protocol for pro-regenerative treatment of post-infarction hearts.
Collapse
|
9
|
Martin-Batista E, Maglio LE, Armas-Capote N, Hernández G, Alvarez de la Rosa D, Giraldez T. SGK1.1 limits brain damage after status epilepticus through M current-dependent and independent mechanisms. Neurobiol Dis 2021; 153:105317. [PMID: 33639207 DOI: 10.1016/j.nbd.2021.105317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/04/2021] [Accepted: 02/22/2021] [Indexed: 10/22/2022] Open
Abstract
Epilepsy is a neurological condition associated to significant brain damage produced by status epilepticus (SE) including neurodegeneration, gliosis and ectopic neurogenesis. Reduction of these processes constitutes a useful strategy to improve recovery and ameliorate negative outcomes after an initial insult. SGK1.1, the neuronal isoform of the serum and glucocorticoids-regulated kinase 1 (SGK1), has been shown to increase M-current density in neurons, leading to reduced excitability and protection against seizures. For this study, we used 4-5 months old male transgenic C57BL/6 J and FVB/NJ mice expressing near physiological levels of a constitutively active form of the kinase controlled by its endogenous promoter. Here we show that SGK1.1 activation potently reduces levels of neuronal death (assessed using Fluoro-Jade C staining) and reactive glial activation (reported by GFAP and Iba-1 markers) in limbic regions and cortex, 72 h after SE induced by kainate, even in the context of high seizure activity. This neuroprotective effect is not exclusively through M-current activation but is also directly linked to decreased apoptosis levels assessed by TUNEL assays and quantification of Bim and Bcl-xL by western blot of hippocampal protein extracts. Our results demonstrate that this newly described antiapoptotic role of SGK1.1 activation acts synergistically with the regulation of cellular excitability, resulting in a significant reduction of SE-induced brain damage in areas relevant to epileptogenesis.
Collapse
Affiliation(s)
- Elva Martin-Batista
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristobal de La Laguna, Spain; Instituto de Tecnologías Biomédicas (ITB), Campus de Ciencias de la Salud sn, 38071 San Cristobal de La Laguna, Spain.
| | - Laura E Maglio
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristobal de La Laguna, Spain; Instituto de Tecnologías Biomédicas (ITB), Campus de Ciencias de la Salud sn, 38071 San Cristobal de La Laguna, Spain.
| | - Natalia Armas-Capote
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristobal de La Laguna, Spain; Instituto de Tecnologías Biomédicas (ITB), Campus de Ciencias de la Salud sn, 38071 San Cristobal de La Laguna, Spain.
| | - Guadalberto Hernández
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristobal de La Laguna, Spain; Instituto de Tecnologías Biomédicas (ITB), Campus de Ciencias de la Salud sn, 38071 San Cristobal de La Laguna, Spain.
| | - Diego Alvarez de la Rosa
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristobal de La Laguna, Spain; Instituto de Tecnologías Biomédicas (ITB), Campus de Ciencias de la Salud sn, 38071 San Cristobal de La Laguna, Spain.
| | - Teresa Giraldez
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad de La Laguna, Campus de Ciencias de la Salud sn, 38200 San Cristobal de La Laguna, Spain; Instituto de Tecnologías Biomédicas (ITB), Campus de Ciencias de la Salud sn, 38071 San Cristobal de La Laguna, Spain.
| |
Collapse
|
10
|
Ivanov AV, Martynovskaya SV, Shcherbakova VS, Ushakov IA, Borodina TN, Bobkov AS, Vitkovskaya NM. Ambient access to a new family of pyrrole-fused pyrazine nitrones via 2-carbonyl- N-allenylpyrroles. Org Chem Front 2020. [DOI: 10.1039/d0qo00762e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The chemo-, regio- and stereoselective synthesis of pyrrole-fused pyrazine nitrones via the direct reaction of 2-carbonyl-N-allenylpyrroles (readily accessible from the corresponding NH-pyrroles) with hydroxyl amine hydrochloride has been developed.
Collapse
Affiliation(s)
- Andrey V. Ivanov
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Svetlana V. Martynovskaya
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Victoria S. Shcherbakova
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Igor A. Ushakov
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Tatyana N. Borodina
- Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Alexander S. Bobkov
- Laboratory of Quantum Chemical Modeling of Molecular Systems
- Irkutsk State University
- 664003 Irkutsk
- Russian Federation
| | - Nadezhda M. Vitkovskaya
- Laboratory of Quantum Chemical Modeling of Molecular Systems
- Irkutsk State University
- 664003 Irkutsk
- Russian Federation
| |
Collapse
|