2
|
Chen Y, Huang X, Chen H, Yi C. An easy-to-perform method for microvessel isolation and primary brain endothelial cell culture to study Alzheimer's disease. Heliyon 2024; 10:e33077. [PMID: 38994107 PMCID: PMC11238044 DOI: 10.1016/j.heliyon.2024.e33077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Dysfunction of the blood-brain barrier (BBB) has been increasingly recognised as a critical early event in Alzheimer's disease (AD) pathophysiology. Central to this mechanism is the impaired function of brain endothelial cells (BECs), the primary structural constituents of the BBB, the study of which is imperative for understanding AD pathophysiology. However, the published methods to isolate BECs are time-consuming and have a low success rate. Here, we developed a rapid and streamlined protocol for BEC isolation without using transgenic reporters, flow cytometry, and magnetic beads, which are essential for existing methods. Using this novel protocol, we isolated high-purity BECs from cell clusters of cortical microvessels from wild-type and APPswe/PS1dE9 (APP/PS1, a classical AD model) mice at 2, 4 and 9 months of age. Reduced levels of tight junction proteins Claudin-5 and Zonula Occludens-1, as well as glucose transporter 1, were observed in the isolated cortical microvessels from APP/PS1 mice and amyloid-β (Aβ) oligomer-treated BECs from wild-type mice. Trans-well permeability assay showed increased FITC-dextran leakage in BECs treated with Aβ, suggesting impaired BBB permeability. BECs obtained using our novel protocol can undergo various experimental analyses, including immunofluorescence staining, western blotting, real-time PCR, and trans-well permeability assay. In conclusion, our novel protocol represents a reliable and valuable tool for in vitro modelling BBB to study AD-related mechanisms and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yang Chen
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Xiaomin Huang
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Hui Chen
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Chenju Yi
- Research Centre, Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
- Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Shenzhen, 518107, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangzhou, China
| |
Collapse
|
3
|
Hong L, Zang X, Hu Q, He Y, Xu Z, Xie Y, Gu T, Yang H, Yang J, Shi J, Zheng E, Huang S, Xu Z, Liu D, Cai G, Li Z, Wu Z. Uterine luminal-derived extracellular vesicles: potential nanomaterials to improve embryo implantation. J Nanobiotechnology 2023; 21:79. [PMID: 36882792 PMCID: PMC9990359 DOI: 10.1186/s12951-023-01834-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Most pregnancy losses worldwide are caused by implantation failure for which there is a lack of effective therapeutics. Extracellular vesicles are considered potential endogenous nanomedicines because of their unique biological functions. However, the limited supply of ULF-EVs prevents their development and application in infertility diseases such as implantation failure. In this study, pigs were used as a human biomedical model, and ULF-EVs were isolated from the uterine luminal. We comprehensively characterized the proteins enriched in ULF-EVs and revealed their biological functions in promoting embryo implantation. By exogenously supplying ULF-EVs, we demonstrated that ULF-EVs improve embryo implantation, suggesting that ULF-EVs are a potential nanomaterial to treat implantation failure. Furthermore, we identified that MEP1B is important in improving embryo implantation by promoting trophoblast cell proliferation and migration. These results indicated that ULF-EVs can be a potential nanomaterial to improve embryo implantation.
Collapse
Affiliation(s)
- Linjun Hong
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China.
| | - Xupeng Zang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Qun Hu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Yanjuan He
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Zhiqian Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Yanshe Xie
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Ting Gu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Huaqiang Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Jie Yang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Junsong Shi
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, 527300, People's Republic of China
| | - Enqin Zheng
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Sixiu Huang
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Zheng Xu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Dewu Liu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Gengyuan Cai
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China
| | - Zicong Li
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China. .,State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510642, People's Republic of China.
| | - Zhenfang Wu
- National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China. .,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, People's Republic of China. .,State Key Laboratory of Livestock and Poultry Breeding, Guangzhou, 510642, People's Republic of China.
| |
Collapse
|
5
|
Noh SG, Jung HJ, Kim S, Arulkumar R, Chung KW, Park D, Choi YJ, Chung HY. Sex-Mediated Differences in TNF Signaling- and ECM-Related Gene Expression in Aged Rat Kidney. Biol Pharm Bull 2023; 46:552-562. [PMID: 37005299 DOI: 10.1248/bpb.b22-00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
Aging leads to the functional decline of an organism, which is associated with age and sex. To understand the functional change of kidneys depending on age and sex, we carried out a transcriptome analysis using RNA sequencing (RNA-Seq) data from rat kidneys. Four differentially expressed gene (DEG) sets were generated according to age and sex, and Gene Ontology analysis and overlapping analysis of Kyoto Encyclopedia of Genes and Genomes pathways were performed for the DEG sets. Through the analysis, we revealed that inflammation- and extracellular matrix (ECM)-related genes and pathways were upregulated in both males and females during aging, which was more prominent in old males than in old females. Furthermore, quantitative real-time PCR analysis confirmed that the expression of tumor necrosis factor (TNF) signaling-related genes, Birc3, Socs3, and Tnfrsf1b, and ECM-related genes, Cd44, Col3a1, and Col5a2, which showed that the genes were markedly upregulated in males and not females during aging. Also, hematoxylin-eosin (H&E) staining for histological analysis showed that renal damage was highly shown in old males rather than old females. In conclusion, in the rat kidney, the genes involved in TNF signaling and ECM accumulation are upregulated in males more than in females during aging. These results suggest that the upregulation of the genes may have a higher contribution to age-related kidney inflammation and fibrosis in males than in females.
Collapse
Affiliation(s)
- Sang Gyun Noh
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University
- Department of Pharmacy, College of Pharmacy, Pusan National University
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University
| | - Seungwoo Kim
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University
- Department of Pharmacy, College of Pharmacy, Pusan National University
| | - Radha Arulkumar
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University
- Department of Pharmacy, College of Pharmacy, Pusan National University
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology
| | - Yeon Ja Choi
- Department of Biopharmaceutical Engineering, College of Science and Technology, Dongguk University
| | - Hae Young Chung
- Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University
- Department of Pharmacy, College of Pharmacy, Pusan National University
| |
Collapse
|
6
|
Guo H, Zhang W, Wang Z, Li Z, Zhou J, Yang Z. Dexmedetomidine post-conditioning protects blood-brain barrier integrity by modulating microglia/macrophage polarization via inhibiting NF-κB signaling pathway in intracerebral hemorrhage. Front Mol Neurosci 2022; 15:977941. [PMID: 36172260 PMCID: PMC9512049 DOI: 10.3389/fnmol.2022.977941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is one of the most devastating forms of stroke. Dexmedetomidine (DEX) has shown certain neuroprotective roles in ICH. Nevertheless, the details concerning the underlying molecular mechanism of DEX’s protective effects still need further elucidation. Herein, a model of ICH was established. The rats were randomly divided into the sham group, the ICH group, and the ICH + DEX group. Neurological outcomes, neuronal injury, and apoptosis were evaluated. Brain water content, Evans blue extravasation, and the expression of tight junction-associated proteins were also detected to assess the blood-brain barrier (BBB) integrity. Subsequently, the microglia/macrophage polarization state and inflammatory cytokine levels were observed. To further explore the underlying mechanism, NF-κB signaling pathway-associated proteins were detected. The results showed that DEX exerted neuroprotective effects against ICH-induced neurological deficits. DEX significantly increased the numbers of the surviving neurons and ameliorated neuronal cell loss and apoptosis in ICH. The rats that received the DEX displayed a lower level of brain water content and EB extravasation, moreover, ZO-1, occludin, and claudin-5 were markedly increased by DEX. Additionally, DEX facilitated M2 microglia/macrophage polarization, the M1-associated markers were reduced by DEX, while the M2-associated identification significantly increased. We found that DEX dramatically diminished pro-inflammatory cytokines expression, simultaneously promoting anti-inflammatory cytokines expression. DEX inhibited nuclear translocation of NF-κB in ICH rats. Our data suggest that DEX post-conditioning protects BBB integrity by modulating microglia/macrophage polarization via inhibiting the NF-κB signaling pathway in ICH.
Collapse
Affiliation(s)
- Hao Guo
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China.,The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Weiwei Zhang
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Zhi Wang
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Zhishan Li
- Department of Anesthesiology, Shanxi Provincial People's Hospital, Affiliate of Shanxi Medical University, Taiyuan, China
| | - Jing Zhou
- Shanxi Province Academy of Traditional Chinese Medicine, Shanxi Province Hospital of Traditional Chinese Medicine, Taiyuan, China
| | - Zhaoyu Yang
- Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Institute of Integrative Medicine, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|