1
|
Chen Q, Zhang S, Liu W, Sun X, Luo Y, Sun X. Application of emerging technologies in ischemic stroke: from clinical study to basic research. Front Neurol 2024; 15:1400469. [PMID: 38915803 PMCID: PMC11194379 DOI: 10.3389/fneur.2024.1400469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/24/2024] [Indexed: 06/26/2024] Open
Abstract
Stroke is a primary cause of noncommunicable disease-related death and disability worldwide. The most common form, ischemic stroke, is increasing in incidence resulting in a significant burden on patients and society. Urgent action is thus needed to address preventable risk factors and improve treatment methods. This review examines emerging technologies used in the management of ischemic stroke, including neuroimaging, regenerative medicine, biology, and nanomedicine, highlighting their benefits, clinical applications, and limitations. Additionally, we suggest strategies for technological development for the prevention, diagnosis, and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Qiuyan Chen
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Shuxia Zhang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Wenxiu Liu
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiao Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Yun Luo
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, China
- Key Laboratory of Bioactive Substances and Resource Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
| |
Collapse
|
2
|
Shi Y, Du Q, Li Z, Xue L, Jia Q, Zheng T, Liu J, Ren R, Sun Z. Multiomics profiling of the therapeutic effect of Dan-deng-tong-nao capsule on cerebral ischemia-reperfusion injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155335. [PMID: 38518648 DOI: 10.1016/j.phymed.2023.155335] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 12/20/2023] [Accepted: 12/30/2023] [Indexed: 03/24/2024]
Abstract
BACKGROUND Stroke is a complex physiological process associated with intestinal flora dysbiosis and metabolic disorders. Dan-deng-tong-nao capsule (DDTN) is a traditional Chinese medicine used clinically to treat cerebral ischemia-reperfusion injury (CIRI) for many years. However, little is known about the effects of DDTN in the treatment of CIRI from the perspective of gut microbiota and metabolites. PURPOSE This study aimed to investigate the regulatory roles of DDTN in endogenous metabolism and gut microbiota in CIRI rats, thus providing a basis for clinical rational drug use and discovering natural products with potential physiological activities in DDTN for the treatment of CIRI. METHODS The chemical composition of DDTN in vitro and in vivo was investigated using ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLCHRMS), followed by target prediction using reverse molecular docking. Secondly, a biological evaluation of DDTN ameliorating neural damage in CIRI was performed at the whole animal level. Then, an integrated omics approach based on UHPLCHRMS and 16S rRNA sequencing was proposed to reveal the anti-CIRI effect and possible mechanism of DDTN. Finally, exploring the intrinsic link between changes in metabolite profiles, changes in the intestinal flora, and targets of components to reveal DDTN for the treatment of CIRI. RESULTS A total of 112 chemical components of DDTN were identified in vitro and 10 absorbed constituents in vivo. The efficacy of DDTN in the treatment of CIRI was confirmed by alleviating cerebral infarction and neurological deficits. After the DDTN intervention, 21 and 26 metabolites were significantly altered in plasma and fecal, respectively. Based on the fecal microbiome, a total of 36 genera were enriched among the different groups. Finally, the results of the network integration analysis showed that the 10 potential active ingredients of DDTN could mediate the differential expression of 24 metabolites and 6 gut microbes by targeting 25 target proteins. CONCLUSION This study was the first to outline the landscapes of metabolites as well as gut microbiota regulated by DDTN in CIRI rats using multi-omics data, and comprehensively revealed the systematic relationships among ingredients, targets, metabolites, and gut microbiota, thus providing new perspectives on the mechanism of DDTN in the treatment of CIRI.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Qiuzheng Du
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Zhuolun Li
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Lianping Xue
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Qingquan Jia
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Tianyuan Zheng
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Jiyun Liu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, Fujian Province, 361102, PR China
| | - Ruobing Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China
| | - Zhi Sun
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, 450052, PR China; Henan Engineering Research Center of Clinical Mass Spectrometry for Precision Medicine, Zhengzhou, Henan Province, 450052, PR China.
| |
Collapse
|
3
|
Clain J, Couret D, Bringart M, Lecadieu A, Meilhac O, Lefebvre d'Hellencourt C, Diotel N. Metabolic disorders exacerbate the formation of glial scar after stroke. Eur J Neurosci 2024; 59:3009-3029. [PMID: 38576159 DOI: 10.1111/ejn.16325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
Metabolic disorders are risk factors for stroke exacerbating subsequent complications. Rapidly after brain injury, a glial scar forms, preventing excessive inflammation and limiting axonal regeneration. Despite the growing interest in wound healing following brain injury, the formation of a glial scar in the context of metabolic disorders is poorly documented. In this study, we used db/db mice to investigate the impact of metabolic perturbations on brain repair mechanisms, with a focus on glial scarring. First, we confirmed the development of obesity, poor glucose regulation, hyperglycaemia and liver steatosis in these mice. Then, we observed that 3 days after a 30-min middle cerebral artery occlusion (MCAO), db/db mice had larger infarct area compared with their control counterparts. We next investigated reactive gliosis and glial scar formation in db/+ and db/db mice. We demonstrated that astrogliosis and microgliosis were exacerbated 3 days after stroke in db/db mice. Furthermore, we also showed that the synthesis of extracellular matrix (ECM) proteins (i.e., chondroitin sulphate proteoglycan, collagen IV and tenascin C) was increased in db/db mice. Consequently, we demonstrated for the first time that metabolic disorders impair reactive gliosis post-stroke and increase ECM deposition. Given that the damage size is known to influence glial scar, this study now raises the question of the direct impact of hyperglycaemia/obesity on reactive gliosis and glia scar. It paves the way to promote the development of new therapies targeting glial scar formation to improve functional recovery after stroke in the context of metabolic disorders.
Collapse
Affiliation(s)
- Julien Clain
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - David Couret
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Matthieu Bringart
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - Arnaud Lecadieu
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Olivier Meilhac
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
- CHU de La Réunion, Saint-Denis, France
| | - Christian Lefebvre d'Hellencourt
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| | - Nicolas Diotel
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), Saint-Pierre, France
| |
Collapse
|
4
|
Baucom MR, Price AD, England L, Schuster RM, Pritts TA, Goodman MD. Murine Traumatic Brain Injury Model Comparison: Closed Head Injury Versus Controlled Cortical Impact. J Surg Res 2024; 296:230-238. [PMID: 38295710 DOI: 10.1016/j.jss.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/26/2023] [Accepted: 01/02/2024] [Indexed: 03/19/2024]
Abstract
INTRODUCTION Various murine models have been utilized to study TBI, including closed head injury (CHI) and controlled cortical impact (CCI), without direct comparison. The aim of our study was to evaluate these models to determine differences in neurological and behavioral outcomes postinjury. METHODS Male C57B/6 mice (9-10 wk) were separated into six groups including: untouched, sham craniotomy (4 mm), CCI 0.9 mm depth of impact, CCI 1.6 mm, CCI 2.2 mm, and CHI. CCI was performed using a 3 mm impact tip at a velocity of 5 m/s, dwell time of 250 ms, and depth as noted above. CHI was completed with a centered 400 g weight drop from 1 cm height. Mice were survived to 14-d (n = 5 per group) and 30-d (n = 5 per group) respectively for histological analysis of p-tau within the hippocampus. These mice underwent Morris Water Maze memory testing and Rotarod motor testing. Serum was collected from a separate cohort of mice (n = 5 per group) including untouched, isoflurane only, CCI 1.6 mm, CHI at 1, 4, 6, and 24 h for analysis of neuron specific enolase and glial fibrillary acidic protein (GFAP) via ELISA. Laser speckle contrast imaging was analyzed prior to and after impact in the CHI and CCI 1.6 mm groups. RESULTS There were no significant differences in Morris Water Maze or Rotarod testing times between groups at 14- or 30-d. P-tau was significantly elevated in all groups except CCI 1.6 mm contralateral and CCI 2.2 mm ipsilateral compared to untouched mice at 30-d. P-tau was also significantly elevated in the CHI group at 30 d compared to CCI 1.6 mm contralateral and CCI 2.2 mm on both sides. GFAP was significantly increased in mice undergoing CHI (9959 ± 91 pg/mL) compared to CCI (2299 ± 1288 pg/mL), isoflurane only (133 ± 75 pg/mL), and sham (86 ± 58 pg/mL) at 1-h post TBI (P < 0.0001). There were no differences in serum neuron specific enolase levels between groups. Laser doppler imaging demonstrated similar decreases in cerebral blood flow between CHI and CCI; however, CCI mice had a reduction in blood flow with craniotomy only that did not significantly decrease further with impact. CONCLUSIONS Based on our findings, CHI leads to increased serum GFAP levels and increased p-tau within the hippocampus at 30-d postinjury. While CCI allows the comparison of one cerebral hemisphere to the other, CHI may be a better model of TBI as it requires less technical expertise and has similar neurological outcomes in these murine models.
Collapse
Affiliation(s)
- Matthew R Baucom
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Adam D Price
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | - Lisa England
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | | - Timothy A Pritts
- Department of Surgery, University of Cincinnati, Cincinnati, Ohio
| | | |
Collapse
|
5
|
Xue Y, Tang J, Zhang M, He Y, Fu J, Ding F. Durative sleep fragmentation with or without hypertension suppress rapid eye movement sleep and generate cerebrovascular dysfunction. Neurobiol Dis 2023:106222. [PMID: 37419254 DOI: 10.1016/j.nbd.2023.106222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 06/07/2023] [Accepted: 07/04/2023] [Indexed: 07/09/2023] Open
Abstract
Either hypertension or chronic insomnia is the risk factor of developing vascular dementia. Durative hypertension can induce vascular remodeling and is used for modeling small vessel disease in rodents. It remains undetermined if the combination of hypertension and sleep disturbance exacerbates vascular dysfunction or pathologies. Previously, we found chronic sleep fragmentation (SF) dampened cognition in young mice without disease predispositions. In the current study, we superimposed SF with hypertension modeling in young mice. Angiotensin II (AngII)-releasing osmotic mini pumps were subcutaneously implanted to generate persistent hypertension, while sham surgeries were performed as controls. Sleep fragmentation with repetitive arousals (10 s every 2 min) during light-on 12 h for consecutive 30 days, while mice undergoing normal sleep (NS) processes were set as controls. Sleep architectures, whisker-stimulated cerebral blood flow (CBF) changes, vascular responsiveness as well as vascular pathologies were compared among normal sleep plus sham (NS + sham), SF plus sham (SF + sham), normal sleep plus AngII (NS + AngII), and SF plus AngII (SF + AngII) groups. SF and hypertension both alter sleep structures, particularly suppressing REM sleep. SF no matter if combined with hypertension strongly suppressed whisker-stimulated CBF increase, suggesting the tight association with cognitive decline. Hypertension modeling sensitizes vascular responsiveness toward a vasoactive agent, Acetylcholine (ACh, 5 mg/ml, 10 μl) delivered via cisterna magna infusion, while SF exhibits a similar but much milder effect. None of the modeling above was sufficient to induce arterial or arteriole vascular remodeling, but SF or SF plus hypertension increased vascular network density constructed by all categories of cerebral vessels. The current study would potentially help understand the pathogenesis of vascular dementia, and the interconnection between sleep and vascular health.
Collapse
Affiliation(s)
- Yang Xue
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Jie Tang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Miaoyi Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Yifan He
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jianhui Fu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Fengfei Ding
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
6
|
李 晒, 李 丽, 闵 思, 刘 赛, 秦 志, 熊 志, 徐 建, 王 博, 丁 渡, 赵 士. [Soybean isoflavones alleviate cerebral ischemia/reperfusion injury in rats by inhibiting ferroptosis and inflammatory cascade reaction]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2023; 43:323-330. [PMID: 36946055 PMCID: PMC10034535 DOI: 10.12122/j.issn.1673-4254.2023.02.23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 03/23/2023]
Abstract
OBJECTIVE To explore the mechanism that mediates the effect of soybean isoflavones (SI) against cerebral ischemia/reperfusion (I/R) injury in light of the regulation of regional cerebral blood flow (rCBF), ferroptosis, inflammatory response and blood-brain barrier (BBB) permeability. METHODS A total of 120 male SD rats were equally randomized into sham-operated group (Sham group), cerebral I/R injury group and SI pretreatment group (SI group). Focal cerebral I/R injury was induced in the latter two groups using a modified monofilament occlusion technique, and the intraoperative changes of real-time cerebral cortex blood flow were monitored using a laser Doppler flowmeter (LDF). The postoperative changes of cerebral pathological morphology and the ultrastructure of the neurons and the BBB were observed with optical and transmission electron microscopy. The neurological deficits of the rats was assessed, and the severities of cerebral infarction, brain edema and BBB disruption were quantified. The contents of Fe2+, GSH, MDA and MPO in the ischemic penumbra were determined with spectrophotometric tests. Serum levels of TNF-α and IL-1βwere analyzed using ELISA, and the expressions of GPX4, MMP-9 and occludin around the lesion were detected with Western blotting and immunohistochemistry. RESULTS The rCBF was sharply reduced in the rats in I/R group and SI group after successful insertion of the monofilament. Compared with those in Sham group, the rats in I/R group showed significantly increased neurological deficit scores, cerebral infarction volume, brain water content and Evans blue permeability (P < 0.01), decreased Fe2+ level, increased MDA level, decreased GSH content and GPX4 expression (P < 0.01), increased MPO content and serum levels of TNF-α and IL-1β (P < 0.01), increased MMP-9 expression and lowered occludin expression (P < 0.01). All these changes were significantly ameliorated in rats pretreated with IS prior to I/R injury (P < 0.05 or 0.01). CONCLUSION SI preconditioning reduces cerebral I/R injury in rats possibly by improving rCBF, inhibiting ferroptosis and inflammatory response and protecting the BBB.
Collapse
Affiliation(s)
- 晒 李
- 蚌埠医学院临床医学院,安徽 蚌埠 233000Department of Clinical Medicine, Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu 233000, China
| | - 丽 李
- 蚌埠医学院病理生理学教研室,安徽 蚌埠 233000Department of Pathophysiology, Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu 233000, China
| | - 思敏 闵
- 蚌埠医学院病理生理学教研室,安徽 蚌埠 233000Department of Pathophysiology, Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu 233000, China
| | - 赛赛 刘
- 蚌埠医学院病理生理学教研室,安徽 蚌埠 233000Department of Pathophysiology, Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu 233000, China
| | - 志文 秦
- 蚌埠医学院临床医学院,安徽 蚌埠 233000Department of Clinical Medicine, Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu 233000, China
| | - 志尚 熊
- 蚌埠医学院临床医学院,安徽 蚌埠 233000Department of Clinical Medicine, Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu 233000, China
| | - 建国 徐
- 蚌埠医学院临床医学院,安徽 蚌埠 233000Department of Clinical Medicine, Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu 233000, China
| | - 博文 王
- 蚌埠医学院临床医学院,安徽 蚌埠 233000Department of Clinical Medicine, Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu 233000, China
| | - 渡山 丁
- 蚌埠医学院病理生理学教研室,安徽 蚌埠 233000Department of Pathophysiology, Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu 233000, China
| | - 士弟 赵
- 蚌埠医学院病理生理学教研室,安徽 蚌埠 233000Department of Pathophysiology, Bengbu Medical College, Bengbu 233000, China
- 蚌埠医学院心脑血管疾病基础与临床重点实验室,安徽 蚌埠 233000Key Laboratory of Basic and Clinical Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
7
|
Laser Speckle Flowmetry for the Prognostic Estimation Study of Permanent Focal Ischemia in Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1729255. [PMID: 36177058 PMCID: PMC9514945 DOI: 10.1155/2022/1729255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/21/2022] [Accepted: 09/07/2022] [Indexed: 11/22/2022]
Abstract
The distal middle cerebral artery occlusion (dMCAO) model that mainly targets the cortex and causes low mortality is developed for the study of permanent focal ischemia, and it is highly appropriate for the study in the aged population. The two most common methods used to establish dMCAO models are dMCAO alone and dMCAO plus ipsilateral common carotid artery occlusion (CCAO). Up to now, studies on the prognosis of the two types of dMCAO models and the accuracy of cerebral blood flow (CBF) in predicting prognosis have not yet been reported. In the present study, we established permanent focal ischemia models in two groups of aged mice by dMCAO alone or by dMCAO plus ipsilateral common carotid artery occlusion (CCAO). CBF was evaluated by laser speckle flowmetry (LSF) before and after surgery. Cerebral infarction was assessed by TTC staining at day 2 after surgery and MAP2 staining at day 21 after surgery. In addition, behavioral outcomes were evaluated using the modified Garcia scoring system, adhesive removal test, and foot-fault test. Our results showed that compared with those in the dMCAO alone group, the mice in the dMCAO plus CCAO group had a larger cerebral infarct size and more severe neurological deficits. According to the results of the correlation analysis, the area of the ischemic core region on CBF imaging in the dMCAO group was helpful in predicting the infarct volume. In addition, the total CBF of the ischemic area in the dMCAO plus CCAO group showed a significant correlation with Garcia scores 3 days after surgery, but there was no significant correlation of CBF imaging with the foot-fault test 7 days after surgery. These results suggest that the total CBF of the ischemic area might be helpful to predict the severity of neurological damage at the acute stage.
Collapse
|
8
|
Zheng Y, Hu Y, Han Z, Yan F, Zhang S, Yang Z, Zhao F, Li L, Fan J, Wang R, Luo Y. Lomitapide ameliorates middle cerebral artery occlusion-induced cerebral ischemia/reperfusion injury by promoting neuronal autophagy and inhibiting microglial migration. CNS Neurosci Ther 2022; 28:2183-2194. [PMID: 36052650 PMCID: PMC9627359 DOI: 10.1111/cns.13961] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS Stroke has a high incidence and is a disabling condition that can lead to severe cognitive, motor, and sensory dysfunction. In this study, we employed a drug repurposing strategy to investigate the neuroprotective effect of lomitapide on focal ischemic brain injury and explore its potential mechanism of action. METHODS Experimental cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult male C57BL/6 mice and simulated by oxygen-glucose deprivation in N2a-BV2 cells in co-cultivation. RESULTS Lomitapide significantly increased the survival rate, reduced the neuronal tissue loss, and improved the neurological function after MCAO. Furthermore, lomitapide could increase the expression of LC3-II, reduce the expression of P62 and LAMP2, promote autophagic flux, and inhibit apoptosis by increasing and inhibiting the expression of the apoptosis-associated proteins Bcl-2 and Bax, respectively. In addition, lomitapide inhibited the migration of pro-inflammatory microglia. CONCLUSION Lomitapide is a lipid-lowering drug, and this is the first study to explore its protective effect on ischemic nerve injury in vitro and in vivo. Our results suggest that lomitapide can be repositioned as a potential therapeutic drug for the treatment of stroke.
Collapse
Affiliation(s)
- Yangmin Zheng
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Yue Hu
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Feng Yan
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Sijia Zhang
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Zhenhong Yang
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Fangfang Zhao
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Lingzhi Li
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Junfen Fan
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina,Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| |
Collapse
|
9
|
Adipose-derived mesenchymal stem cells reduced transient cerebral ischemia injury by modulation of inflammatory factors and AMPK signaling. Behav Brain Res 2022; 433:114001. [PMID: 35809694 DOI: 10.1016/j.bbr.2022.114001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
Abstract
Stem cell-based treatments have been recommended as a feasible therapy for stroke victims due to their potential for angiogenesis, neurogenesis, and synaptic plasticity. The intracellular mechanisms of stem cells against cerebral hypoperfusion are not well recognized. In this study, by releasing the clips, the reperfusion period was extended to 96 h, and two hours after cerebral ischemia, animals received adipose-derived MSCs. MSCs were isolated from the inguinal fat pads of rats and injected into two-vessel occlusion (2VO) rats 1 h after ischemia induction. Ninety-six hours after 2VO induction, behavioral and molecular tests were assessed. Adipose-derived MSCs treatment improves neurological scores, passive avoidance memory, and novel object recognition tests in the 2VO model compared to 2VO rats (P < 0.001). MSCs treatment decreased TNF-α (P < 0.01) and IL-6 (P < 0.01) and apoptotic factors (Bax/Bcl-2 ratio and caspase-3 level (P < 0.01)) compared with ischemic rats. MSCs treatment of ischemic rats could enhance Klotho-α and AMPK-α compared with ischemic rats (P < 0.001). The study disclosed that adipose-derived MSCs could improve neurological damage and memory deficits by reducing neuronal death in cerebral ischemia. Data proposed that adipose-derived MSCs inhibit pro-inflammatory factors such as IL-6 and TNF-α, consequently decreasing apoptosis in the hippocampus of CCAO rats. Besides, the Klotho-α and AMPK-α measurements found that MSCs might induce intracellular neuroprotective pathways via activation of Klotho-α/AMPK-α signaling.
Collapse
|
10
|
N-myc Downstream-Regulated Gene 2 (Ndrg2): A Critical Mediator of Estrogen-Induced Neuroprotection Against Cerebral Ischemic Injury. Mol Neurobiol 2022; 59:4793-4804. [PMID: 35622273 DOI: 10.1007/s12035-022-02877-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Growing evidence indicates that estrogen plays a pivotal role in neuroprotection against cerebral ischemia, but the molecular mechanism of this protection is still elusive. N-myc downstream-regulated gene 2 (Ndrg2), an estrogen-targeted gene, has been shown to exert neuroprotective effects against cerebral ischemia in male mice. However, the role of Ndrg2 in the neuroprotective effect of estrogen remains unknown. In this study, we first detected NDRG2 expression levels in the cortex and striatum in both female and male mice with western blot analyses. We then detected cerebral ischemic injury by constructing middle cerebral artery occlusion and reperfusion (MCAO-R) models in Ndrg2 knockout or conditional knockdown female mice. We further implemented estrogen, ERα, or ERβ agonist replacement in the ovariectomized (OVX) Ndrg2 knockout or conditional knockdown female mice, then tested for NDRG2 expression, glial fibrillary acidic protein (GFAP) expression, and extent of cerebral ischemic injury. We found that NDRG2 expression was significantly higher in female than in male mice in both the cortex and striatum. Ndrg2 knockouts and conditional knockdowns showed significantly aggravated cerebral ischemic injury in female mice. Estrogen and ERβ replacement treatment (DPN) led to NDRG2 upregulation in both the cortex and striatum of OVX mice. Estrogen and DPN also led to GFAP upregulation in OVX mice. However, the effect of estrogen and DPN in activating astrocytes was lost in Ndrg2 knockout OVX mice and primary cultured astrocytes, but partially retained in conditional knockdown OVX mice. Most importantly, we found that the neuroprotective effects of E2 and DPN against cerebral ischemic injury were lost in Ndrg2 knockout OVX mice but partially retained in conditional knockdown OVX mice. These findings demonstrate that estrogen alleviated cerebral ischemic injury via ERβ upregulation of Ndrg2, which could activate astrocytes, indicating that Ndrg2 is a critical mediator of E2-induced neuroprotection against cerebral ischemic injury.
Collapse
|
11
|
Li C, Wang C, Zhang Y, Alsrouji OK, Chebl AB, Ding G, Jiang Q, Mayer SA, Lu M, Kole MK, Marin HL, Zhang L, Chopp M, Zhang ZG. Cerebral endothelial cell-derived small extracellular vesicles enhance neurovascular function and neurological recovery in rat acute ischemic stroke models of mechanical thrombectomy and embolic stroke treatment with tPA. J Cereb Blood Flow Metab 2021; 41:2090-2104. [PMID: 33557693 PMCID: PMC8327102 DOI: 10.1177/0271678x21992980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023]
Abstract
Treatment of patients with cerebral large vessel occlusion with thrombectomy and tissue plasminogen activator (tPA) leads to incomplete reperfusion. Using rat models of embolic and transient middle cerebral artery occlusion (eMCAO and tMCAO), we investigated the effect on stroke outcomes of small extracellular vesicles (sEVs) derived from rat cerebral endothelial cells (CEC-sEVs) in combination with tPA (CEC-sEVs/tPA) as a treatment of eMCAO and tMCAO in rat. The effect of sEVs derived from clots acquired from patients who had undergone mechanical thrombectomy on healthy human CEC permeability was also evaluated. CEC-sEVs/tPA administered 4 h after eMCAO reduced infarct volume by ∼36%, increased recanalization of the occluded MCA, enhanced cerebral blood flow (CBF), and reduced blood-brain barrier (BBB) leakage. Treatment with CEC-sEVs given upon reperfusion after 2 h tMCAO significantly reduced infarct volume by ∼43%, and neurological outcomes were improved in both CEC-sEVs treated models. CEC-sEVs/tPA reduced a network of microRNAs (miRs) and proteins that mediate thrombosis, coagulation, and inflammation. Patient-clot derived sEVs increased CEC permeability, which was reduced by CEC-sEVs. CEC-sEV mediated suppression of a network of pro-thrombotic, -coagulant, and -inflammatory miRs and proteins likely contribute to therapeutic effects. Thus, CEC-sEVs have a therapeutic effect on acute ischemic stroke by reducing neurovascular damage.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Chunyang Wang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Yi Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Owais K Alsrouji
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Alex B Chebl
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Stephan A Mayer
- Departments of Neurology and Neurosurgery, Westchester Medical Center, New York Medical College, Valhalla, NY, USA
| | - Mei Lu
- Department of Biostatistics and Research Epidemiology, Henry Ford Health System, Detroit, MI, USA
| | - Max K Kole
- Department of Neurological Surgery, Henry Ford Health System, Detroit, MI, USA
| | - Horia L Marin
- Clinical Professor of Radiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Li Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
12
|
Tuo QZ, Zou JJ, Lei P. Rodent Models of Vascular Cognitive Impairment. J Mol Neurosci 2020; 71:1-12. [DOI: 10.1007/s12031-020-01733-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/12/2020] [Indexed: 12/23/2022]
|
13
|
Zhu W, Ding J, Sun L, Wu J, Xu X, Wang W, Li H, Shen H, Li X, Yu Z, Chen G. Heterogeneous nuclear ribonucleoprotein A1 exerts protective role in intracerebral hemorrhage-induced secondary brain injury in rats. Brain Res Bull 2020; 165:169-177. [PMID: 33053433 DOI: 10.1016/j.brainresbull.2020.09.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/23/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) is the most abundant and expressed widely member of the hnRNP family. It has been extensively studied in developmental biology, oncology, and neurodegenerative diseases, which has not been reported on in intracerebral hemorrhage (ICH) induced-secondary brain injury (SBI). The purpose of this study was to explore the role of hnRNPA1 exerts and its underlying mechanism in ICH-induced SBI. Experimental ICH models were established by injecting autologous heart blood into the basal ganglia region of rats and increased or inhibited hnRNPA1 expression through the hnRNPA1 plasmid and small interfering RNA. The results illustrated that the protein levels of hnRNPA1 are significantly elevated after ICH, and hnRNPA1 is transported from the nucleus to the cytoplasm. Upregulated hnRNPA1 could improve neurological function and the learning and memory ability decline after ICH-induced injury. Furthermore, TUNEL and FJB staining indicated that hnRNPA1 overexpression could reduce neuronal cell death and injury induced by ICH. However, downregulated hnRNPA1 damages neurological function and learning and memory abilities and aggravates neuronal cell degeneration and apoptosis. Consistently, the levels of Bcl-xl mRNA and Bcl-xl are elevated or decreased depending on the levels of hnRNPA1, which could be one of the mechanisms through which hnRNPA1 participates in ICH-induced neuronal cell death. In summary, hnRNPA1 plays a protective role in ICH-induced SBI via upregulating Bcl-xl expression, indicating that hnRNPA1 could be a potential target for ICH therapy.
Collapse
Affiliation(s)
- Weiye Zhu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Jiasheng Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Liang Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Wenjie Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhengquan Yu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| |
Collapse
|
14
|
Zhang M, Lu H, Xie X, Shen H, Li X, Zhang Y, Wu J, Ni J, Li H, Chen G. TMEM175 mediates Lysosomal function and participates in neuronal injury induced by cerebral ischemia-reperfusion. Mol Brain 2020; 13:113. [PMID: 32799888 PMCID: PMC7429711 DOI: 10.1186/s13041-020-00651-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 08/03/2020] [Indexed: 01/15/2023] Open
Abstract
As the main organelles for the clearance of damaged proteins and damaged organelles, the function of lysosomes is crucial for maintaining the intracellular homeostasis of long-lived neurons. A stable acidic environment is essential for lysosomes to perform their functions. TMEM175 has been identified as a new K+ channel that is responsible for regulating lysosomal membrane potential and pH stability in neurons. This study aimed to understand the role of TMEM175 in lysosomal function of neurons and neuronal injury following cerebral ischemia-reperfusion (I/R). A middle-cerebral-artery occlusion/reperfusion (MCAO/R) model was established in adult male Sprague-Dawley rats in vivo, and cultured neurons were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to mimic ischemia-reperfusion (I/R) injury in vitro. We found that the protein level of TMEM175 decreased after cerebral I/R injury and that TMEM175 overexpression ameliorated MCAO/R-induced brain-cell death and neurobehavioral deficits in vivo. Furthermore, these results were recapitulated in cultured neurons. Acridine orange (AO) staining, as well as LysoSensor Green DND-189, cathepsin-B (CTSB), and cathepsin-D (CTSD) activities, showed that TMEM175 deficiency inhibited the hydrolytic function of lysosomes by affecting lysosomal pH. In contrast, TMEM175 upregulation reversed OGD/R-induced lysosomal dysfunction and impaired mitochondrial accumulation in cultured neurons. TMEM175 deficiency induced by cerebral I/R injury leads to compromised lysosomal pH stability, thus inhibiting the hydrolytic function of lysosomes. Consequently, lysosomal-dependent degradation of damaged mitochondria is suppressed and thereby exacerbates brain damage. Exogenous up-regulation of TMEM175 protein level could reverse the neuronal lysosomal dysfunction after ischemia-reperfusion.
Collapse
Affiliation(s)
- Mengling Zhang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haifeng Lu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xueshun Xie
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yunhai Zhang
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Jiang Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jianqiang Ni
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
15
|
Zhang Y, Li H, Li X, Wu J, Xue T, Wu J, Shen H, Li X, Shen M, Chen G. TMEM16F Aggravates Neuronal Loss by Mediating Microglial Phagocytosis of Neurons in a Rat Experimental Cerebral Ischemia and Reperfusion Model. Front Immunol 2020; 11:1144. [PMID: 32733436 PMCID: PMC7359929 DOI: 10.3389/fimmu.2020.01144] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/11/2020] [Indexed: 12/20/2022] Open
Abstract
Cerebral ischemia is a severe, acute condition, normally caused by cerebrovascular disease, and results in high rates of disability, and death. Phagoptosis is a newly recognized form of cell death caused by phagocytosis of viable cells, and has been reported to contribute to neuronal loss in brain tissue after ischemic stroke. Previous data indicated that exposure of phosphatidylserine to viable neurons could induce microglial phagocytosis of such neurons. Phosphatidylserine can be reversibly exposed to viable cells as a result of a calcium-activated phospholipid scramblase named TMEM16F. TMEM16F-mediated phospholipid scrambling on platelet membranes is critical for hemostasis and thrombosis, which plays an important role in Scott syndrome and has been confirmed by much research. However, few studies have investigated the association between TMEM16F and phagocytosis in ischemic stroke. In this study, a middle-cerebral-artery occlusion/reperfusion (MCAO/R) model was used in adult male Sprague-Dawley rats in vivo, and cultured neurons were exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) to simulate cerebral ischemia-reperfusion (I/R) injury in vitro. We found that the protein level of TMEM16F was significantly increased at 12 h after I-R injury both in vivo and in vitro, and reversible phosphatidylserine exposure was confirmed in neurons undergoing I/R injury in vitro. Additionally, we constructed a LV-TMEM16F-RNAi transfection system to suppress the expression of TMEM16F during and after cerebral ischemia. As a result, TMEM16F knockdown alleviated motor function injury and decreased the microglial phagocytosis of viable neurons in the penumbra through inhibiting the “eat-me” signal phosphatidylserine. Our data indicate that reducing neuronal phosphatidylserine-exposure via deficiency of TMEM16F blocks phagocytosis of neurons and rescues stressed-but-still-viable neurons in the penumbra, which may contribute to reducing infarct volume and improving functional recovering.
Collapse
Affiliation(s)
- Yijie Zhang
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haiying Li
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Wu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Xue
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiang Wu
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Haitao Shen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Li
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meifen Shen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gang Chen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Trotman-Lucas M, Wong R, Allan SM, Gibson CL. Improved reperfusion following alternative surgical approach for experimental stroke in mice. F1000Res 2020; 9:188. [PMID: 32477496 PMCID: PMC7217225 DOI: 10.12688/f1000research.22594.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/30/2020] [Indexed: 03/29/2024] Open
Abstract
Background: Following ischemic stroke, recanalisation and restoration of blood flow to the affected area of the brain is critical and directly correlates with patient recovery. In vivo models of ischemic stroke show high variability in outcomes, which may be due to variability in reperfusion. We previously reported that a surgical refinement in the middle cerebral artery occlusion (MCAO) model of stroke, via repair of the common carotid artery (CCA), removes the reliance on the Circle of Willis for reperfusion and reduced infarct variability. Here we further assess this refined surgical approach on reperfusion characteristics following transient MCAO in mice. Methods: Mice underwent 60 min of MCAO, followed by either CCA repair or ligation at reperfusion. All mice underwent laser speckle contrast imaging at baseline, 24 h and 48 h post-MCAO. Results: CCA ligation reduced cerebral perfusion in the ipsilateral hemisphere compared to baseline (102.3 ± 4.57%) at 24 h (85.13 ± 16.09%; P < 0.01) and 48 h (75.04 ± 12.954%; P < 0.001) post-MCAO. Repair of the CCA returned perfusion to baseline (94.152 ± 2.44%) levels and perfusion was significantly improved compared to CCA ligation at both 24 h (102.83 ± 8.41%; P < 0.05) and 48 h (102.13 ± 9.34%; P < 0.001) post-MCAO. Conclusions: Our findings show CCA repair, an alternative surgical approach for MCAO, results in improved ischemic hemisphere perfusion during the acute phase.
Collapse
Affiliation(s)
| | - Raymond Wong
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stuart M. Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Claire L. Gibson
- School of Psychology, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
17
|
Trotman-Lucas M, Wong R, Allan SM, Gibson CL. Improved reperfusion following alternative surgical approach for experimental stroke in mice. F1000Res 2020; 9:188. [PMID: 32477496 PMCID: PMC7217225 DOI: 10.12688/f1000research.22594.3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 12/24/2022] Open
Abstract
Background: Following ischemic stroke, recanalisation and restoration of blood flow to the affected area of the brain is critical and directly correlates with patient recovery. In vivo models of ischemic stroke show high variability in outcomes, which may be due to variability in reperfusion. We previously reported that a surgical refinement in the middle cerebral artery occlusion (MCAO) model of stroke, via repair of the common carotid artery (CCA), removes the reliance on the Circle of Willis for reperfusion and reduced infarct variability. Here we further assess this refined surgical approach on reperfusion characteristics following transient MCAO in mice. Methods: Mice underwent 60 min of MCAO, followed by either CCA repair or ligation at reperfusion. All mice underwent laser speckle contrast imaging at baseline, 24 h and 48 h post-MCAO. Results: CCA ligation reduced cerebral perfusion in the ipsilateral hemisphere compared to baseline (102.3 ± 4.57%) at 24 h (85.13 ± 16.09%; P < 0.01) and 48 h (75.04 ± 12.954%; P < 0.001) post-MCAO. Repair of the CCA returned perfusion to baseline (94.152 ± 2.44%) levels and perfusion was significantly improved compared to CCA ligation at both 24 h (102.83 ± 8.41%; P < 0.05) and 48 h (102.13 ± 9.34%; P < 0.001) post-MCAO. Conclusions: Our findings show CCA repair, an alternative surgical approach for MCAO, results in improved ischemic hemisphere perfusion during the acute phase.
Collapse
Affiliation(s)
| | - Raymond Wong
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Stuart M. Allan
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Claire L. Gibson
- School of Psychology, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|