1
|
Panerai RB, Davies A, Alshehri A, Beishon LC, Minhas JS. Subcomponent analysis of the directional sensitivity of dynamic cerebral autoregulation. Am J Physiol Heart Circ Physiol 2025; 328:H37-H46. [PMID: 39570199 DOI: 10.1152/ajpheart.00498.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
The origin of the directional sensitivity (DS) of dynamic cerebral autoregulation (dCA) is not known. In 140 healthy participants (67 male, 27.5 ± 6.1 yr old), middle cerebral artery velocity (MCAv, transcranial Doppler), arterial blood pressure (ABP, Finometer), and end-tidal CO2 (EtCO2, capnography) were recorded at rest. Critical closing pressure (CrCP) and resistance-area product (RAP) were obtained for each cardiac cycle, as well as mean MCAv and ABP (MAP). The integrated positive and negative derivatives of MAP (MAP+D and MAP-D, respectively) were used as simultaneous inputs to an autoregressive moving average model to generate two distinct MCAv step responses. Similar models allowed the estimation of corresponding MAP-CrCP and MAP-RAP responses to step changes in MAP+D and MAP-D. The strength of DS (ΔDS) was expressed by the difference in mean values of the step responses for the time interval 12-18 s. ΔDS was significant for MCAv (8.5 ± 46.9% vs. 26.7 ± 42.0%, P < 0.001) and RAP (-93.9 ± 48.1 vs. -74.5 ± 43.0%, P < 0.001), respectively, for MAP+D and MAP-D inputs, but not for CrCP (2.2 ± 48.1% vs. 0.72 ± 42.9%, P = 0.76). Compared with males, female participants had higher MCAv (63.9 ± 15.6 cm/s vs. 55.4 ± 12.9 cm/s, P < 0.001) but lower EtCO2 (P < 0.001) and RAP (P = 0.015). Sex did not influence ΔDS for any of the three-step responses. The presence of directional sensitivity in the RAP, but not in the CrCP transfer function, suggests that the origin could be solely myogenic, without metabolic involvement.NEW & NOTEWORTHY The directional sensitivity of the cerebral blood velocity response to a sudden change in mean arterial blood pressure (MAP) is mediated by the resistance-area product, without involvement from the cerebral critical closing pressure. The reduced amplitude of MAP spontaneous fluctuations at rest suggests that it is less likely that directional sensitivity has origins in the sympathetic control of cerebral blood vessels, thus generating the need to consider other alternatives.
Collapse
Affiliation(s)
- Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Aaron Davies
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Abdulaziz Alshehri
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- Emergency Medical Services Department, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Lucy C Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
2
|
Baker WB, Forti RM, Heye P, Heye K, Lynch JM, Yodh AG, Licht DJ, White BR, Hwang M, Ko TS, Kilbaugh TJ. Modified Beer-Lambert algorithm to measure pulsatile blood flow, critical closing pressure, and intracranial hypertension. BIOMEDICAL OPTICS EXPRESS 2024; 15:5511-5532. [PMID: 39296411 PMCID: PMC11407241 DOI: 10.1364/boe.529150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/21/2024]
Abstract
We introduce a frequency-domain modified Beer-Lambert algorithm for diffuse correlation spectroscopy to non-invasively measure flow pulsatility and thus critical closing pressure (CrCP). Using the same optical measurements, CrCP was obtained with the new algorithm and with traditional nonlinear diffusion fitting. Results were compared to invasive determination of intracranial pressure (ICP) in piglets (n = 18). The new algorithm better predicted ICP elevations; the area under curve (AUC) from logistic regression analysis was 0.85 for ICP ≥ 20 mmHg. The corresponding AUC for traditional analysis was 0.60. Improved diagnostic performance likely results from better filtering of extra-cerebral tissue contamination and measurement noise.
Collapse
Affiliation(s)
- Wesley B Baker
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Rodrigo M Forti
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Pascal Heye
- Division of General, Thoracic and Fetal Surgery, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kristina Heye
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer M Lynch
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arjun G Yodh
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J Licht
- Division of Neurology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Prenatal Pediatrics, Children's National, Washington DC, USA
| | - Brian R White
- Division of Pediatric Cardiology, Department of Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Misun Hwang
- Department of Radiology, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tiffany S Ko
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Todd J Kilbaugh
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Davies A, Gurung D, Ladthavorlaphatt K, Mankoo A, Panerai RB, Robinson TG, Minhas JS, Beishon LC. The effect of CO 2 on the age dependence of neurovascular coupling. J Appl Physiol (1985) 2024; 137:445-459. [PMID: 38961823 DOI: 10.1152/japplphysiol.00695.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024] Open
Abstract
Prior studies have identified variable effects of aging on neurovascular coupling (NVC). Carbon dioxide (CO2) affects both cerebral blood velocity (CBv) and NVC, but the effects of age on NVC under different CO2 conditions are unknown. Therefore, we investigated the effects of aging on NVC in different CO2 states during cognitive paradigms. Seventy-eight participants (18-78 yr), with well-controlled comorbidities, underwent continuous recordings of CBv by bilateral insonation of middle (MCA) and posterior (PCA) cerebral arteries (transcranial Doppler), blood pressure, end-tidal CO2, and heart rate during poikilocapnia, hypercapnia (5% CO2 inhalation), and hypocapnia (paced hyperventilation). Neuroactivation via visuospatial (VS) and attention tasks (AT) was used to stimulate NVC. Peak percentage and absolute change in MCAv/PCAv, were compared between CO2 conditions and age groups (≤30, 31-60, and >60 yr). For the VS task, in poikilocapnia, younger adults had a lower NVC response compared with older adults [mean difference (MD): -7.92% (standard deviation (SD): 2.37), P = 0.004], but comparable between younger and middle-aged groups. In hypercapnia, both younger [MD: -4.75% (SD: 1.56), P = 0.009] and middle [MD: -4.58% (SD: 1.69), P = 0.023] age groups had lower NVC responses compared with older adults. Finally, in hypocapnia, both older [MD: 5.92% (SD: 2.21), P = 0.025] and middle [MD: 5.44% (SD: 2.27), P = 0.049] age groups had greater NVC responses, compared with younger adults. In conclusion, the magnitude of NVC response suppression from baseline during hyper- and hypocapnia, did not differ significantly between age groups. However, the middle age group demonstrated a different NVC response while under hypercapnic conditions, compared with hypocapnia.NEW & NOTEWORTHY This study describes the effects of age on neurovascular coupling under altered CO2 conditions. We demonstrated that both hypercapnia and hypocapnia suppress neurovascular coupling (NVC) responses. Furthermore, that middle age exhibits an NVC response comparable with younger adults under hypercapnia, and older adults under hypocapnia.
Collapse
Affiliation(s)
- Aaron Davies
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Dewarkar Gurung
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Kannaphob Ladthavorlaphatt
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Alex Mankoo
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Research Centre, British Heart Foundation Cardiovascular Centre, Leicester, United Kingdom
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Research Centre, British Heart Foundation Cardiovascular Centre, Leicester, United Kingdom
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Research Centre, British Heart Foundation Cardiovascular Centre, Leicester, United Kingdom
| | - Lucy C Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, Glenfield Research Centre, British Heart Foundation Cardiovascular Centre, Leicester, United Kingdom
| |
Collapse
|
4
|
Ince J, Panerai RB, Salinet ASM, Lam MY, Llwyd O, Haunton VJ, Robinson TG, Minhas JS. Dynamics of Critical Closing Pressure Explain Cerebral Autoregulation Impairment in Acute Cerebrovascular Disease. Cerebrovasc Dis 2024:1-9. [PMID: 38964310 DOI: 10.1159/000540206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 06/06/2024] [Indexed: 07/06/2024] Open
Abstract
INTRODUCTION Cerebral autoregulation (CA) is impaired in acute ischemic stroke (AIS) and is associated with worse patient outcomes, but the underlying physiological cause is unclear. This study tests whether depressed CA in AIS can be linked to the dynamic responses of critical closing pressure (CrCP) and resistance area product (RAP). METHODS Continuous recordings of middle cerebral blood velocity (MCAv, transcranial Doppler), arterial blood pressure (BP), end-tidal CO2 and electrocardiography allowed dynamic analysis of the instantaneous MCAv-BP relationship to obtain estimates of CrCP and RAP. The dynamic response of CrCP and RAP to a sudden change in mean BP was obtained by transfer function analysis. Comparisons were made between younger controls (≤50 years), older controls (>50 years), and AIS patients. RESULTS Data from 24 younger controls (36.4 ± 10.9 years, 9 male), 38 older controls (64.7 ± 8.2 years, 20 male), and 20 AIS patients (63.4 ± 13.8 years, 9 male) were included. Dynamic CA was impaired in AIS, with lower autoregulation index (affected hemisphere: 4.0 ± 2.3, unaffected: 4.5 ± 1.8) compared to younger (right: 5.8 ± 1.4, left: 5.8 ± 1.4) and older (right: 4.9 ± 1.6, left: 5.1 ± 1.5) controls. AIS patients also demonstrated an early (0-3 s) peak in CrCP dynamic response that was not influenced by age. CONCLUSION These early transient differences in the CrCP dynamic response are a novel finding in stroke and occur too early to reflect underlying regulatory mechanisms. Instead, these may be caused by structural changes to cerebral vasculature.
Collapse
Affiliation(s)
- Jonathan Ince
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Angela S M Salinet
- Neurology Department, Hospital das Clinicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Man Y Lam
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Osian Llwyd
- Wolfson Centre for Prevention of Stroke and Dementia, Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Victoria J Haunton
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, Leicester, UK
| |
Collapse
|
5
|
Ladthavorlaphatt K, Surti FBS, Beishon LC, Robinson TG, Panerai RB. Depression of dynamic cerebral autoregulation during neural activation: The role of responders and non-responders. J Cereb Blood Flow Metab 2024; 44:1231-1245. [PMID: 38301726 PMCID: PMC11179612 DOI: 10.1177/0271678x241229908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 02/03/2024]
Abstract
Neurovascular coupling (NVC) interaction with dynamic cerebral autoregulation (dCA) remains unclear. We investigated the effect of task complexity and duration on the interaction with dCA. Sixteen healthy participants (31.6 ± 11.6 years) performed verbal fluency (naming-words (NW)) and serial subtraction (SS) paradigms, of varying complexity, at durations of 05, 30 and 60 s. The autoregulation index (ARI), was estimated from the bilateral middle cerebral artery blood velocity (MCAv) step response, calculated by transfer function analysis (TFA), for each paradigm during unstimulated (2 min) and neuroactivated (1 min) segments. Intraclass correlation (ICC) and coefficient of variation (CV) determined reproducibility for two visits and objective criteria were applied to classify responders (R) and non-responders (NoR) to task-induced MCAv increase. ICC values demonstrated fair reproducibility in all tasks. ARI decreased in right (RH) and left (LH) hemispheres, irrespective of paradigm complexity and duration (p < 0.0001). Bilateral ARI estimates were significantly decreased during NW for the R group only (p < 0.0001) but were reduced in both R (p < 0.0001) and NoR (p = 0.03) groups for SS tasks compared with baseline. The reproducible attenuation of dCA efficiency due to paradigm-induced NVC response, its interaction, and different behaviour in R and NoR, warrant further research in different physiological and clinical conditions.
Collapse
Affiliation(s)
- Kannaphob Ladthavorlaphatt
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- Medical Diagnostics Unit, Thammasat University Hospital, Thammasat University, Pathum Thani, Thailand
- Thammasat University Centre of Excellence in Computational Mechanics and Medical Engineering, Thammasat University, Pathum Thani, Thailand
| | - Farhaana BS Surti
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Lucy C Beishon
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
- NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
6
|
Panerai RB, Alshehri A, Beishon LC, Davies A, Haunton VJ, Katsogridakis E, Lam MY, Llwyd O, Robinson TG, Minhas JS. Determinants of the dynamic cerebral critical closing pressure response to changes in mean arterial pressure. Physiol Meas 2024; 45:065006. [PMID: 38838702 DOI: 10.1088/1361-6579/ad548d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Objective. Cerebral critical closing pressure (CrCP) represents the value of arterial blood pressure (BP) where cerebral blood flow (CBF) becomes zero. Its dynamic response to a step change in mean BP (MAP) has been shown to reflect CBF autoregulation, but robust methods for its estimation are lacking. We aim to improve the quality of estimates of the CrCP dynamic response.Approach. Retrospective analysis of 437 healthy subjects (aged 18-87 years, 218 males) baseline recordings with measurements of cerebral blood velocity in the middle cerebral artery (MCAv, transcranial Doppler), non-invasive arterial BP (Finometer) and end-tidal CO2(EtCO2, capnography). For each cardiac cycle CrCP was estimated from the instantaneous MCAv-BP relationship. Transfer function analysis of the MAP and MCAv (MAP-MCAv) and CrCP (MAP-CrCP) allowed estimation of the corresponding step responses (SR) to changes in MAP, with the output in MCAv (SRVMCAv) representing the autoregulation index (ARI), ranging from 0 to 9. Four main parameters were considered as potential determinants of the SRVCrCPtemporal pattern, including the coherence function, MAP spectral power and the reconstruction error for SRVMAP, from the other three separate SRs.Main results. The reconstruction error for SRVMAPwas the main determinant of SRVCrCPsignal quality, by removing the largest number of outliers (Grubbs test) compared to the other three parameters. SRVCrCPshowed highly significant (p< 0.001) changes with time, but its amplitude or temporal pattern was not influenced by sex or age. The main physiological determinants of SRVCrCPwere the ARI and the mean CrCP for the entire 5 min baseline period. The early phase (2-3 s) of SRVCrCPresponse was influenced by heart rate whereas the late phase (10-14 s) was influenced by diastolic BP.Significance. These results should allow better planning and quality of future research and clinical trials of novel metrics of CBF regulation.
Collapse
Affiliation(s)
- Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Abdulaziz Alshehri
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- College of Applied Medical Sciences, University of Najran, Najran, Saudi Arabia
| | - Lucy C Beishon
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Aaron Davies
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Victoria J Haunton
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Emmanuel Katsogridakis
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Man Y Lam
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Osian Llwyd
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- Wolfson Centre for Prevention of Stroke and Dementia, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM), Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
7
|
Vakitbilir N, Froese L, Gomez A, Sainbhi AS, Stein KY, Islam A, Bergmann TJG, Marquez I, Amenta F, Ibrahim Y, Zeiler FA. Time-Series Modeling and Forecasting of Cerebral Pressure-Flow Physiology: A Scoping Systematic Review of the Human and Animal Literature. SENSORS (BASEL, SWITZERLAND) 2024; 24:1453. [PMID: 38474990 DOI: 10.3390/s24051453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
The modeling and forecasting of cerebral pressure-flow dynamics in the time-frequency domain have promising implications for veterinary and human life sciences research, enhancing clinical care by predicting cerebral blood flow (CBF)/perfusion, nutrient delivery, and intracranial pressure (ICP)/compliance behavior in advance. Despite its potential, the literature lacks coherence regarding the optimal model type, structure, data streams, and performance. This systematic scoping review comprehensively examines the current landscape of cerebral physiological time-series modeling and forecasting. It focuses on temporally resolved cerebral pressure-flow and oxygen delivery data streams obtained from invasive/non-invasive cerebral sensors. A thorough search of databases identified 88 studies for evaluation, covering diverse cerebral physiologic signals from healthy volunteers, patients with various conditions, and animal subjects. Methodologies range from traditional statistical time-series analysis to innovative machine learning algorithms. A total of 30 studies in healthy cohorts and 23 studies in patient cohorts with traumatic brain injury (TBI) concentrated on modeling CBFv and predicting ICP, respectively. Animal studies exclusively analyzed CBF/CBFv. Of the 88 studies, 65 predominantly used traditional statistical time-series analysis, with transfer function analysis (TFA), wavelet analysis, and autoregressive (AR) models being prominent. Among machine learning algorithms, support vector machine (SVM) was widely utilized, and decision trees showed promise, especially in ICP prediction. Nonlinear models and multi-input models were prevalent, emphasizing the significance of multivariate modeling and forecasting. This review clarifies knowledge gaps and sets the stage for future research to advance cerebral physiologic signal analysis, benefiting neurocritical care applications.
Collapse
Affiliation(s)
- Nuray Vakitbilir
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Logan Froese
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Alwyn Gomez
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Amanjyot Singh Sainbhi
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Kevin Y Stein
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Abrar Islam
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Tobias J G Bergmann
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Izabella Marquez
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Fiorella Amenta
- Undergraduate Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
| | - Younis Ibrahim
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
| | - Frederick A Zeiler
- Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, MB R3T 5V6, Canada
- Section of Neurosurgery, Department of Surgery, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R3A 1R9, Canada
- Department of Clinical Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
- Division of Anesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
| |
Collapse
|
8
|
Panerai RB, Davies A, Clough RH, Beishon LC, Robinson TG, Minhas JS. The effect of hypercapnia on the directional sensitivity of dynamic cerebral autoregulation and the influence of age and sex. J Cereb Blood Flow Metab 2024; 44:272-283. [PMID: 37747437 PMCID: PMC10993882 DOI: 10.1177/0271678x231203475] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Abstract
The cerebral circulation responds differently to increases in mean arterial pressure (MAP), compared to reductions in MAP. We tested the hypothesis that this directional sensitivity is reduced by hypercapnia. Retrospective analysis of 104 healthy subjects (46 male (44%), age range 19-74 years), with five minute recordings of middle cerebral blood velocity (MCAv, transcranial Doppler), non-invasive MAP (Finometer) and end-tidal CO2 (capnography) at rest, during both poikilocapnia and hypercapnia (5% CO2 breathing in air) produced MCAv step responses allowing estimation of the classical Autoregulation Index (ARIORIG), and corresponding values for both positive (ARI+D) and negative (ARI-D) changes in MAP. Hypercapnia led to marked reductions in ARIORIG, ARI+D and ARI-D (p < 0.0001, all cases). Females had a lower value of ARIORIG compared to males (p = 0.030) at poikilocapnia (4.44 ± 1.74 vs 4.74 ± 1.48) and hypercapnia (2.44 ± 1.93 vs 3.33 ± 1.61). The strength of directional sensitivity (ARI+D-ARI-D) was not influenced by hypercapnia (p = 0.46), sex (p = 0.76) or age (p = 0.61). During poikilocapnia, ARI+D decreased with age in females (p = 0.027), but not in males. Directional sensitivity was not affected by hypercapnia, suggesting that its origins are more likely to be inherent to the mechanics of vascular smooth muscle than to myogenic pathways.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Aaron Davies
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Rebecca H Clough
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Lucy C Beishon
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
| | - Thompson G Robinson
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester, UK
- NIHR Leicester Biomedical Research Centre, BHF Cardiovascular Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
9
|
Zhong J, Lin W, Chen J, Gao Q. Higher critical closing pressure is independently associated with enlarged basal ganglia perivascular spaces. Front Neurol 2023; 14:1165469. [PMID: 37920831 PMCID: PMC10619908 DOI: 10.3389/fneur.2023.1165469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 09/18/2023] [Indexed: 11/04/2023] Open
Abstract
Objective This study aimed to explore the association between cerebral hemodynamic parameters focused on the critical closing pressure (CCP) and enlarged perivascular spaces (EPVS). Methods Cerebral blood velocity in the middle cerebral artery (MCAv) and non-invasive continuous blood pressure (NIBP) were measured using a transcranial Doppler (TCD) and Finometer, followed by the calculation of cerebral hemodynamic parameters including CCP, resistance area product (RAP), pulsatility index (PI), and pulse pressure (PP). EPVS were graded separately in the basal ganglia (BG) and centrum semiovale (CSO), using a visual semiquantitative ordinal scale. Patients with EPVS >10 were classified into the severe BG-EPVS group and severe CSO-EPVS group, and the remainder into the mild BG-EPVS group and the mild CSO-EPVS group. Spearman's correlation and binary logistic regression analysis were performed to analyze the relationship between hemodynamic parameters and BG-EPVS and CSO-EPVS, respectively. Results Overall, 107 patients were enrolled. The severe BG-EPVS group had higher CCP, mean arterial blood pressure (MABP), systolic blood pressure (SBP), and diastolic blood pressure (DBP) than that in the mild BG-EPVS group (p < 0.05). There was no statistical difference in hemodynamic parameters between the severe CSO-EPVS group and the mild CSO-EPVS group. Spearman's correlation analysis showed that CCP was positively associated with BG-EPVS (rho = 0.331, p < 0.001) and CSO-EPVS (rho = 0.154, p = 0.044). The binary logistic regression analysis showed that CCP was independently associated with severe BG-EPVS (p < 0.05) and not with CSO-EPVS (p > 0.05) after adjusting for confounders. Conclusion CCP representing cerebrovascular tension was independently associated with BG-EPVS.
Collapse
Affiliation(s)
| | | | | | - Qingchun Gao
- Department of Neurology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
10
|
Brasil S, de Carvalho Nogueira R, Salinet ÂSM, Yoshikawa MH, Teixeira MJ, Paiva W, Malbouisson LMS, Bor-Seng-Shu E, Panerai RB. Critical Closing Pressure and Cerebrovascular Resistance Responses to Intracranial Pressure Variations in Neurocritical Patients. Neurocrit Care 2023; 39:399-410. [PMID: 36869208 PMCID: PMC10541829 DOI: 10.1007/s12028-023-01691-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/31/2023] [Indexed: 03/05/2023]
Abstract
BACKGROUND Critical closing pressure (CrCP) and resistance-area product (RAP) have been conceived as compasses to optimize cerebral perfusion pressure (CPP) and monitor cerebrovascular resistance, respectively. However, for patients with acute brain injury (ABI), the impact of intracranial pressure (ICP) variability on these variables is poorly understood. The present study evaluates the effects of a controlled ICP variation on CrCP and RAP among patients with ABI. METHODS Consecutive neurocritical patients with ICP monitoring were included along with transcranial Doppler and invasive arterial blood pressure monitoring. Internal jugular veins compression was performed for 60 s for the elevation of intracranial blood volume and ICP. Patients were separated in groups according to previous intracranial hypertension severity, with either no skull opening (Sk1), neurosurgical mass lesions evacuation, or decompressive craniectomy (DC) (patients with DC [Sk3]). RESULTS Among 98 included patients, the correlation between change (Δ) in ICP and the corresponding ΔCrCP was strong (group Sk1 r = 0.643 [p = 0.0007], group with neurosurgical mass lesions evacuation r = 0.732 [p < 0.0001], and group Sk3 r = 0.580 [p = 0.003], respectively). Patients from group Sk3 presented a significantly higher ΔRAP (p = 0.005); however, for this group, a higher response in mean arterial pressure (change in mean arterial pressure p = 0.034) was observed. Exclusively, group Sk1 disclosed reduction in ICP before internal jugular veins compression withholding. CONCLUSIONS This study elucidates that CrCP reliably changes in accordance with ICP, being useful to indicate ideal CPP in neurocritical settings. In the early days after DC, cerebrovascular resistance seems to remain elevated, despite exacerbated arterial blood pressure responses in efforts to maintain CPP stable. Patients with ABI with no need of surgical procedures appear to remain with more effective ICP compensatory mechanisms when compared with those who underwent neurosurgical interventions.
Collapse
Affiliation(s)
- Sérgio Brasil
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil.
| | - Ricardo de Carvalho Nogueira
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Ângela Salomão Macedo Salinet
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Márcia Harumy Yoshikawa
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Manoel Jacobsen Teixeira
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Wellingson Paiva
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | | | - Edson Bor-Seng-Shu
- Division of Neurosurgery, Department of Neurology, School of Medicine, University of São Paulo, Av. Dr. Eneas de Carvalho Aguiar 255, São Paulo, Brazil
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, School of Life Sciences, University of Leicester, Leicester, UK
- National Institute for Health and Care Research, Cardiovascular Research Centre, Glenfield Hospital, University of Leicester, Leicester, UK
| |
Collapse
|
11
|
Mastrandrea CJ, Hedge ET, Robertson AD, Heckman GA, Ho J, Granados Unger F, Hughson RL. High-intensity exercise does not protect against orthostatic intolerance following bedrest in 55- to 65-yr-old men and women. Am J Physiol Regul Integr Comp Physiol 2023; 325:R107-R119. [PMID: 37184226 DOI: 10.1152/ajpregu.00315.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/20/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Prolonged bedrest provokes orthostatic hypotension and intolerance of upright posture. Limited data are available on the cardiovascular responses of older adults to head-up tilt following bedrest, with no studies examining the potential benefits of exercise to mitigate intolerance in this age group. This randomized controlled trial of head-down bedrest (HDBR) in 55- to 65-yr-old men and women investigated if exercise could avert post-HDBR orthostatic intolerance. Twenty-two healthy older adults (11 female) underwent a strict 14-day HDBR and were assigned to either an exercise (EX) or control (CON) group. The exercise intervention included high-intensity, aerobic, and resistance exercises. Head-up tilt-testing to a maximum of 15 minutes was performed at baseline (Pre-Bedrest) and immediately after HDBR (R1), as well as 6 days (R6) and 4 weeks (R4wk) later. At Pre-Bedrest, three participants did not complete the full 15 minutes of tilt. At R1, 18 did not finish, with no difference in tilt end time between CON (422 ± 287 s) and EX (409 ± 346 s). No differences between CON and EX were observed at R6 or R4wk. At R1, just 1 participant self-terminated the test with symptoms, while 12 others reported symptoms only after physiological test termination criteria were reached. Finishers on R1 protected arterial pressure with higher total peripheral resistance relative to Pre-Bedrest. Cerebral blood velocity decreased linearly with reductions in arterial pressure, end-tidal CO2, and cardiac output. High-intensity interval exercise did not benefit post-HDBR orthostatic tolerance in older adults. Multiple factors were associated with the reduction in cerebral blood velocity leading to intolerance.
Collapse
Affiliation(s)
| | - Eric T Hedge
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
- Department of Kinesiology and Health Studies, University of Waterloo, Waterloo, Ontario, Canada
| | - Andrew D Robertson
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
- Department of Kinesiology and Health Studies, University of Waterloo, Waterloo, Ontario, Canada
| | - George A Heckman
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
| | - Joanne Ho
- Schlegel-UW Research Institute for Aging, Waterloo, Ontario, Canada
| | - Federico Granados Unger
- Department of Kinesiology and Health Studies, University of Waterloo, Waterloo, Ontario, Canada
| | | |
Collapse
|
12
|
Urner TM, Cowdrick KR, Brothers RO, Boodooram T, Zhao H, Goyal V, Sathialingam E, Quadri A, Turrentine K, Akbar MM, Triplett SE, Bai S, Buckley EM. Normative cerebral microvascular blood flow waveform morphology assessed with diffuse correlation spectroscopy. BIOMEDICAL OPTICS EXPRESS 2023; 14:3635-3653. [PMID: 37497521 PMCID: PMC10368026 DOI: 10.1364/boe.489760] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 07/28/2023]
Abstract
Microvascular cerebral blood flow exhibits pulsatility at the cardiac frequency that carries valuable information about cerebrovascular health. This study used diffuse correlation spectroscopy to quantify normative features of these waveforms in a cohort of thirty healthy adults. We demonstrate they are sensitive to changes in vascular tone, as indicated by pronounced morphological changes with hypercapnia. Further, we observe significant sex-based differences in waveform morphology, with females exhibiting higher flow, greater area-under-the-curve, and lower pulsatility. Finally, we quantify normative values for cerebral critical closing pressure, i.e., the minimum pressure required to maintain flow in a given vascular region.
Collapse
Affiliation(s)
- Tara M Urner
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Kyle R Cowdrick
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Rowan O Brothers
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Tisha Boodooram
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Hongting Zhao
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Vidisha Goyal
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Eashani Sathialingam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Ayesha Quadri
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Katherine Turrentine
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Mariam M Akbar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Sydney E Triplett
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
| | - Shasha Bai
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
| | - Erin M Buckley
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30322, USA
- Department of Pediatrics, Emory School of Medicine, Atlanta, GA 30322, USA
- Children's Research Scholar, Children's Healthcare of Atlanta, 2015 Uppergate Dr., Atlanta, GA 30322, USA
| |
Collapse
|
13
|
Panerai RB, Brassard P, Burma JS, Castro P, Claassen JA, van Lieshout JJ, Liu J, Lucas SJ, Minhas JS, Mitsis GD, Nogueira RC, Ogoh S, Payne SJ, Rickards CA, Robertson AD, Rodrigues GD, Smirl JD, Simpson DM. Transfer function analysis of dynamic cerebral autoregulation: A CARNet white paper 2022 update. J Cereb Blood Flow Metab 2023; 43:3-25. [PMID: 35962478 PMCID: PMC9875346 DOI: 10.1177/0271678x221119760] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Cerebral autoregulation (CA) refers to the control of cerebral tissue blood flow (CBF) in response to changes in perfusion pressure. Due to the challenges of measuring intracranial pressure, CA is often described as the relationship between mean arterial pressure (MAP) and CBF. Dynamic CA (dCA) can be assessed using multiple techniques, with transfer function analysis (TFA) being the most common. A 2016 white paper by members of an international Cerebrovascular Research Network (CARNet) that is focused on CA strove to improve TFA standardization by way of introducing data acquisition, analysis, and reporting guidelines. Since then, additional evidence has allowed for the improvement and refinement of the original recommendations, as well as for the inclusion of new guidelines to reflect recent advances in the field. This second edition of the white paper contains more robust, evidence-based recommendations, which have been expanded to address current streams of inquiry, including optimizing MAP variability, acquiring CBF estimates from alternative methods, estimating alternative dCA metrics, and incorporating dCA quantification into clinical trials. Implementation of these new and revised recommendations is important to improve the reliability and reproducibility of dCA studies, and to facilitate inter-institutional collaboration and the comparison of results between studies.
Collapse
Affiliation(s)
- Ronney B Panerai
- Department of Cardiovascular Sciences, University of Leicester and NIHR Biomedical Research Centre, Leicester, UK
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, and Research Center of the Institut universitaire de cardiologie et de pneumologie de Québec, Université Laval, Québec, QC, Canada
| | - Joel S Burma
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - Pedro Castro
- Department of Neurology, Centro Hospitalar Universitário de São João, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Jurgen Ahr Claassen
- Department of Geriatric Medicine and Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Johannes J van Lieshout
- Department of Internal Medicine, Amsterdam, UMC, The Netherlands and Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, UK
| | - Jia Liu
- Institute of Advanced Computing and Digital Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen University Town, Shenzhen, China
| | - Samuel Je Lucas
- School of Sport, Exercise and Rehabilitation Sciences and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Jatinder S Minhas
- Department of Cardiovascular Sciences, University of Leicester and NIHR Biomedical Research Centre, Leicester, UK
| | - Georgios D Mitsis
- Department of Bioengineering, McGill University, Montreal, Québec, QC, Canada
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil
| | - Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe-Shi, Saitama, Japan
| | - Stephen J Payne
- Institute of Applied Mechanics, National Taiwan University, Taipei
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Andrew D Robertson
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Gabriel D Rodrigues
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Jonathan D Smirl
- Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada
| | - David M Simpson
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | | |
Collapse
|
14
|
Clough RH, Minhas JS, Haunton VJ, Hanby MF, Robinson TG, Panerai RB. Dynamics of the cerebral autoregulatory response to paced hyperventilation assessed using sub-component and time-varying analyses. J Appl Physiol (1985) 2022; 133:311-319. [PMID: 35736950 DOI: 10.1152/japplphysiol.00100.2022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cerebral blood flow (CBF) can be altered by a change in partial pressure of arterial CO2 (pCO2), being reduced during hyperventilation (HPV). Critical closing pressure (CrCP) and resistance area product (RAP) are parameters which can be studied to understand this change, but their dynamic response has not been investigated during paced HPV (PHPV). Seventy five participants had recordings at rest and during PHPV. Blood pressure (BP) (Finometer), bilateral CBF velocity (CBFV) (transcranial Doppler), end-tidal CO2 (capnography) and heart rate (HR) were recorded continuously. Subcomponent analysis (SCA) and time-varying CrCP, RAP and dynamic cerebral autoregulation (Autoregulation Index, ARI) were estimated comparing PHPV to poikilocapnia. PHPV caused a change in CBFV (p<0.01), EtCO2, (p<0.01), HR (p<0.001) and RAP (p<0.01). SCA demonstrated RAP was the main parameter explaining the changes in CBFV due to PHPV. The time-varying step responses for CBFV and RAP during PHPV demonstrated considerable non-stationarity compared to poikilocapnia (p<0.00001). Although time-varying ARI was temporarily depressed, after 60 s of PHPV it was significantly higher (6.81 ± 1.88) (p<0.0001) than in poikilocapnia (5.08 ± 1.86). The mean plateau of the RAP step response was -98.3 ± 58.8 % 60 s after the onset of PHPV but -71.7 ± 45.0 % for poikilocapnia (p=0.0026), with no corresponding changes in CrCP (p=0.6). Further work is needed to assess the role of sex and aging in our findings, and the potential for using RAP and CrCP to improve the sensitivity and specificity of CO2 reactivity studies in cerebrovascular conditions.
Collapse
Affiliation(s)
- Rebecca H Clough
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Jatinder S Minhas
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Victoria J Haunton
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Martha Frances Hanby
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom
| | - Thompson G Robinson
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Ronney B Panerai
- Cerebral Haemodynamics in Ageing and Stroke Medicine (CHiASM) Research Group, Department of Cardiovascular Sciences, University of Leicester, Leicester, United Kingdom.,NIHR Leicester Biomedical Research Centre, British Heart Foundation Cardiovascular Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
15
|
Simpson DM, Payne SJ, Panerai RB. The INfoMATAS project: Methods for assessing cerebral autoregulation in stroke. J Cereb Blood Flow Metab 2022; 42:411-429. [PMID: 34279146 PMCID: PMC8851676 DOI: 10.1177/0271678x211029049] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Cerebral autoregulation refers to the physiological mechanism that aims to maintain blood flow to the brain approximately constant when blood pressure changes. Impairment of this protective mechanism has been linked to a number of serious clinical conditions, including carotid stenosis, head trauma, subarachnoid haemorrhage and stroke. While the concept and experimental evidence is well established, methods for the assessment of autoregulation in individual patients remains an open challenge, with no gold-standard having emerged. In the current review paper, we will outline some of the basic concepts of autoregulation, as a foundation for experimental protocols and signal analysis methods used to extract indexes of cerebral autoregulation. Measurement methods for blood flow and pressure are discussed, followed by an outline of signal pre-processing steps. An outline of the data analysis methods is then provided, linking the different approaches through their underlying principles and rationale. The methods cover correlation based approaches (e.g. Mx) through Transfer Function Analysis to non-linear, multivariate and time-variant approaches. Challenges in choosing which method may be 'best' and some directions for ongoing and future research conclude this work.
Collapse
Affiliation(s)
- David M Simpson
- Institute of Sound and Vibration Research, University of Southampton, Southampton, UK
| | - Stephen J Payne
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
| | - Ronney B Panerai
- Department of Cardiovascular Sciences, Leicester Royal Infirmary, Leicester, UK
| |
Collapse
|
16
|
Fan JL, Nogueira RC, Brassard P, Rickards CA, Page M, Nasr N, Tzeng YC. Integrative physiological assessment of cerebral hemodynamics and metabolism in acute ischemic stroke. J Cereb Blood Flow Metab 2022; 42:454-470. [PMID: 34304623 PMCID: PMC8985442 DOI: 10.1177/0271678x211033732] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Restoring perfusion to ischemic tissue is the primary goal of acute ischemic stroke care, yet only a small portion of patients receive reperfusion treatment. Since blood pressure (BP) is an important determinant of cerebral perfusion, effective BP management could facilitate reperfusion. But how BP should be managed in very early phase of ischemic stroke remains a contentious issue, due to the lack of clear evidence. Given the complex relationship between BP and cerebral blood flow (CBF)-termed cerebral autoregulation (CA)-bedside monitoring of cerebral perfusion and oxygenation could help guide BP management, thereby improve stroke patient outcome. The aim of INFOMATAS is to 'identify novel therapeutic targets for treatment and management in acute ischemic stroke'. In this review, we identify novel physiological parameters which could be used to guide BP management in acute stroke, and explore methodologies for monitoring them at the bedside. We outline the challenges in translating these potential prognostic markers into clinical use.
Collapse
Affiliation(s)
- Jui-Lin Fan
- Manaaki Mānawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical & Health Sciences, University of Auckland, Auckland, New Zealand
| | - Ricardo C Nogueira
- Neurology Department, School of Medicine, Hospital das Clinicas, University of São Paulo, São Paulo, Brazil.,Neurology Department, Hospital Nove de Julho, São Paulo, Brazil
| | - Patrice Brassard
- Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, Canada.,Research Center of the Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, Canada
| | - Caroline A Rickards
- Department of Physiology & Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Matthew Page
- Department of Radiology, Wellington Regional Hospital, Wellington, New Zealand
| | - Nathalie Nasr
- Department of Neurology, Toulouse University Hospital, NSERM UMR 1297, Toulouse, France
| | - Yu-Chieh Tzeng
- Wellington Medical Technology Group, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand.,Centre for Translational Physiology, Department of Surgery & Anaesthesia, University of Otago, Wellington, New Zealand
| |
Collapse
|