1
|
Sweeney A, Xavierselvan M, Langley A, Solomon P, Arora A, Mallidi S. Vascular regional analysis unveils differential responses to anti-angiogenic therapy in pancreatic xenografts through macroscopic photoacoustic imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.595784. [PMID: 38854042 PMCID: PMC11160648 DOI: 10.1101/2024.05.27.595784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy and the third leading cause of cancer deaths in the U.S. Despite major innovations in imaging technologies, there are limited surrogate radiographic indicators to aid in therapy planning and monitoring. Amongst the various imaging techniques Ultrasound-guided photoacoustic imaging (US-PAI) is a promising modality based on endogenous blood (hemoglobin) and blood oxygen saturation (StO 2 ) contrast to monitor response to anti-angiogenic therapies. Adaptation of US-PAI to the clinical realm requires macroscopic configurations for adequate depth visualization, illuminating the need for surrogate radiographic markers, including the tumoral microvessel density (MVD). In this work, subcutaneous xenografts with PC cell lines AsPC-1 and MIA-PaCa-2 were used to investigate the effects of receptor tyrosine kinase inhibitor (sunitinib) treatment on MVD and StO 2 . Through histological correlation, we have shown that regions of high and low vascular density (HVD and LVD) can be identified through frequency domain filtering of macroscopic PA images which could not be garnered from purely global analysis. We utilized vascular regional analysis (VRA) of treatment-induced StO 2 and total hemoglobin (HbT) changes. VRA as a tool to monitor treatment response allowed us to identify potential timepoints of vascular remodeling, highlighting its ability to provide insights into the TME not only for sunitinib treatment but also other anti-angiogenic therapies.
Collapse
|
2
|
Chang KW, Karthikesh MS, Zhu Y, Hudson HM, Barbay S, Bundy D, Guggenmos DJ, Frost S, Nudo RJ, Wang X, Yang X. Photoacoustic imaging of squirrel monkey cortical responses induced by peripheral mechanical stimulation. JOURNAL OF BIOPHOTONICS 2024; 17:e202300347. [PMID: 38171947 PMCID: PMC10961203 DOI: 10.1002/jbio.202300347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/08/2023] [Accepted: 11/29/2023] [Indexed: 01/05/2024]
Abstract
Non-human primates (NHPs) are crucial models for studies of neuronal activity. Emerging photoacoustic imaging modalities offer excellent tools for studying NHP brains with high sensitivity and high spatial resolution. In this research, a photoacoustic microscopy (PAM) device was used to provide a label-free quantitative characterization of cerebral hemodynamic changes due to peripheral mechanical stimulation. A 5 × 5 mm area within the somatosensory cortex region of an adult squirrel monkey was imaged. A deep, fully connected neural network was characterized and applied to the PAM images of the cortex to enhance the vessel structures after mechanical stimulation on the forelimb digits. The quality of the PAM images was improved significantly with a neural network while preserving the hemodynamic responses. The functional responses to the mechanical stimulation were characterized based on the improved PAM images. This study demonstrates capability of PAM combined with machine learning for functional imaging of the NHP brain.
Collapse
Affiliation(s)
- Kai-Wei Chang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | | | - Yunhao Zhu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Heather M. Hudson
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - Scott Barbay
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - David Bundy
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - David J. Guggenmos
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - Shawn Frost
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - Randolph J. Nudo
- Landon Center on Aging, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
- Department of Rehabilitation Medicine, University of Kansas Medical Center, Kansas City, Kansas, 66160, United States
| | - Xueding Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, 48109, United States
| | - Xinmai Yang
- Bioengineering Graduate Program and Institute for Bioengineering Research, University of Kansas, Lawrence, Kansas, 66045, United States
- Department of Mechanical Engineering, University of Kansas, Lawrence, Kansas, 66045, United States
| |
Collapse
|
3
|
Wang Y, Sun N, Milne I, Cao R, Liu Q, Li Z, Guan Y, Yan Z, Hu S. Effects of Acute and Endurance Exercise on Cerebrovascular Function and Oxygen Metabolism: A Photoacoustic Microscopy Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1651-1660. [PMID: 37966924 PMCID: PMC10754349 DOI: 10.1109/tuffc.2023.3331697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Regular exercise improves the cerebrovascular function and has shown considerable therapeutic effects on a wide variety of brain diseases. However, the influence of exercise on different aspects of the cerebrovascular function remains to be comprehensively examined. In this study, we combined awake-brain photoacoustic microscopy (PAM) and a motorized treadmill to assess the effects of both acute exercise stimulation and endurance exercise training on the cerebrovascular function and cerebral oxygen metabolism under both physiological and pathological conditions. Acute exercise stimulation in nondiabetic mice resulted in robust vasodilation, increased cerebral blood flow (CBF), reduced oxygen extraction fraction (OEF), and unchanged cerebral metabolic rate of oxygen (CMRO2)-demonstrating the utility of this experimental setting to evaluate the cerebrovascular reactivity. Also, endurance exercise training for six weeks in diabetic mice reversed the diabetes-induced increases in the resting-state CBF and CMRO2 and maintained a stable OEF and CMRO2 under the acute exercise stimulation-shedding new light on how exercise protects the brain from diabetes-induced small vessel disease. In summary, we established an experimental approach to assess the effects of both acute exercise stimulation and endurance exercise training on the cerebrovascular function and tissue oxygen metabolism at the microscopic level and applied it to study the therapeutic benefits of endurance exercise training in diabetic mice.
Collapse
|
4
|
Sokolowski JD, Soldozy S, Sharifi KA, Norat P, Kearns KN, Liu L, Williams AM, Yağmurlu K, Mastorakos P, Miller GW, Kalani MYS, Park MS, Kellogg RT, Tvrdik P. Preclinical models of middle cerebral artery occlusion: new imaging approaches to a classic technique. Front Neurol 2023; 14:1170675. [PMID: 37409019 PMCID: PMC10318149 DOI: 10.3389/fneur.2023.1170675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023] Open
Abstract
Stroke remains a major burden on patients, families, and healthcare professionals, despite major advances in prevention, acute treatment, and rehabilitation. Preclinical basic research can help to better define mechanisms contributing to stroke pathology, and identify therapeutic interventions that can decrease ischemic injury and improve outcomes. Animal models play an essential role in this process, and mouse models are particularly well-suited due to their genetic accessibility and relatively low cost. Here, we review the focal cerebral ischemia models with an emphasis on the middle cerebral artery occlusion technique, a "gold standard" in surgical ischemic stroke models. Also, we highlight several histologic, genetic, and in vivo imaging approaches, including mouse stroke MRI techniques, that have the potential to enhance the rigor of preclinical stroke evaluation. Together, these efforts will pave the way for clinical interventions that can mitigate the negative impact of this devastating disease.
Collapse
Affiliation(s)
- Jennifer D. Sokolowski
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Sauson Soldozy
- Department of Neurological Surgery, Westchester Medical Center, Valhalla, NY, United States
| | - Khadijeh A. Sharifi
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| | - Pedro Norat
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Kathryn N. Kearns
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Lei Liu
- Department of Neurological Surgery and Neuroscience, Northwestern University, Chicago, IL, United States
| | - Ashley M. Williams
- School of Medicine, Morsani College of Medicine, Tampa, FL, United States
| | - Kaan Yağmurlu
- Department of Neurological Surgery, University of Tennessee, Memphis, TN, United States
| | - Panagiotis Mastorakos
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - G. Wilson Miller
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - M. Yashar S. Kalani
- Department of Neurological Surgery, St. John's Neuroscience Institute, Tulsa, OK, United States
| | - Min S. Park
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Ryan T. Kellogg
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
| | - Petr Tvrdik
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, United States
- Department of Neuroscience, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
5
|
Zhong F, Hu S. Thin-film optical-acoustic combiner enables high-speed wide-field multi-parametric photoacoustic microscopy in reflection mode. OPTICS LETTERS 2023; 48:195-198. [PMID: 36638416 PMCID: PMC10238147 DOI: 10.1364/ol.475373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/23/2022] [Indexed: 05/14/2023]
Abstract
Multi-parametric photoacoustic microscopy (PAM) is uniquely capable of simultaneous high-resolution mapping of blood oxygenation and flow in vivo. However, its speed has been limited by the dense sampling required for blood flow quantification. To overcome this limitation, we have developed a high-speed multi-parametric PAM system, which enables simultaneous acquisition of ∼500 densely sampled B-scans by superposing the rapid optical scanning across the line-shaped focus of a cylindrically focused ultrasonic transducer over the conventional mechanical scan of the optical-acoustic dual foci. A novel, to the best of our knowledge, optical-acoustic combiner (OAC) is designed and implemented to accommodate the short working distance of the transducer, enabling convenient confocal alignment of the dual foci in reflection mode. A resonant galvanometer (GM) provides stabilized high-speed large-angle scanning. This new system can continuously monitor microvascular blood oxygenation (sO2) and flow over a 4.5 × 3 mm2 area in the awake mouse brain with high spatial and temporal resolutions (6.9 µm and 0.3 Hz, respectively).
Collapse
Affiliation(s)
- Fenghe Zhong
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, Missouri 63130, USA
| | - Song Hu
- Department of Biomedical Engineering, Washington University in St. Louis; St. Louis, Missouri 63130, USA
| |
Collapse
|
6
|
Warner L, Bach-Hagemann A, Schmidt TP, Pinkernell S, Schubert GA, Clusmann H, Albanna W, Lindauer U, Conzen-Dilger C. Opening a window to the acutely injured brain: Simultaneous retinal and cerebral vascular monitoring in rats. Front Mol Neurosci 2023; 16:1116841. [PMID: 37033376 PMCID: PMC10079937 DOI: 10.3389/fnmol.2023.1116841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/23/2023] [Indexed: 04/11/2023] Open
Abstract
Many recent research projects have described typical chronic changes in the retinal vasculature for diverse neurovascular and neurodegenerative disorders such as stroke or Alzheimer's disease. Unlike cerebral vasculature, retinal blood vessels can be assessed non-invasively by retinal vessel analysis. To date, there is only a little information about potential simultaneous reactions of retinal and cerebral vessels in acute neurovascular diseases. The field of applications of retinal assessment could significantly be widened if more information about potential correlations between those two vascular beds and the feasibility of non-invasive retinal vessel analysis in acute neurovascular disease were available. Here, we present our protocol for the simultaneous assessment of retinal and cerebral vessels in an acute setting in anesthetized rats using a non-invasive retinal vessel analyzer and a superficial tissue imaging system for laser speckle contrast analysis via a closed bone window. We describe the experimental set-up in detail, outline the pitfalls of repeated retinal vessel analyses in an experimental set-up of several hours, and address issues that arise from the simultaneous use of two different assessment tools. Finally, we demonstrate the robustness and variability of the reactivity of retinal vessels to hypercapnia at baseline as well as their reproducibility over time using two anesthetic protocols common for neurovascular research. In summary, the procedures described in this protocol allow us to directly compare retinal and cerebral vascular beds and help to substantiate the role of the retina as a "window to the brain."
Collapse
Affiliation(s)
- Laura Warner
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Annika Bach-Hagemann
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine, Department of Preclinical Pharmacology and Toxicology, Hannover, Germany
| | - Tobias P. Schmidt
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Sarah Pinkernell
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Gerrit A. Schubert
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland
| | - Hans Clusmann
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Walid Albanna
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Institute for Neurophysiology, University of Cologne, Cologne, Germany
| | - Ute Lindauer
- Translational Neurosurgery and Neurobiology, Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Catharina Conzen-Dilger
- Department of Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
- *Correspondence: Catharina Conzen-Dilger
| |
Collapse
|
7
|
Wang Y, Tsai CH, Chu TS, Hung YT, Lee MY, Chen HH, Chen LT, Ger TR, Wang YH, Chiang NJ, Liao LD. Revisiting the cerebral hemodynamics of awake, freely moving rats with repeated ketamine self-administration using a miniature photoacoustic imaging system. NEUROPHOTONICS 2022; 9:045003. [PMID: 36338453 PMCID: PMC9623815 DOI: 10.1117/1.nph.9.4.045003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
SIGNIFICANCE Revealing the dynamic associations between brain functions and behaviors is a significant challenge in neurotechnology, especially for awake subjects. Imaging cerebral hemodynamics in awake animal models is important because the collected data more realistically reflect human disease states. AIM We previously reported a miniature head-mounted scanning photoacoustic imaging (hmPAI) system. In the present study, we utilized this system to investigate the effects of ketamine on the cerebral hemodynamics of normal rats and rats subjected to prolonged ketamine self-administration. APPROACH The cortical superior sagittal sinus (SSS) was continuously monitored. The full-width at half-maximum (FWHM) of the photoacoustic (PA) A-line signal was used as an indicator of the SSS diameter, and the number of pixels in PA B-scan images was used to investigate changes in the cerebral blood volume (CBV). RESULTS We observed a significantly higher FWHM (blood vessel diameter) and CBV in normal rats injected with ketamine than in normal rats injected with saline. For rats subjected to prolonged ketamine self-administration, no significant changes in either the blood vessel diameter or CBV were observed. CONCLUSIONS The lack of significant change in prolonged ketamine-exposed rats was potentially due to an increased ketamine tolerance. Our device can reliably detect changes in the dilation of cortical blood vessels and the CBV. This study validates the utility of the developed hmPAI system in an awake, freely moving rat model for behavioral, cognitive, and preclinical cerebral disease studies.
Collapse
Affiliation(s)
- Yuhling Wang
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| | - Chia-Hua Tsai
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| | - Tsung-Sheng Chu
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
- Chung Yuan Christian University, Department of Biomedical Engineering, Taoyuan City, Taiwan
| | - Yun-Ting Hung
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Mei-Yi Lee
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Hwei-Hsien Chen
- National Health Research Institutes, Center for Neuropsychiatric Research, Zhunan Town, Miaoli County, Taiwan
| | - Li-Tzong Chen
- Kaohsiung Medical University, Kaohsiung Medical University Hospital, Kaohsiung City, Taiwan
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
| | - Tzong-Rong Ger
- Chung Yuan Christian University, Department of Biomedical Engineering, Taoyuan City, Taiwan
| | - Yung-Hsuan Wang
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
| | - Nai-Jung Chiang
- National Health Research Institutes, National Institute of Cancer Research, Zhunan Town, Miaoli County, Taiwan
- Taipei Veterans General Hospital, Department of Oncology, Taipei City, Taiwan
| | - Lun-De Liao
- National Health Research Institutes, Institute of Biomedical Engineering and Nanomedicine, Zhunan Town, Miaoli County, Taiwan
| |
Collapse
|
8
|
Li Z, He P, Xu Y, Deng Y, Gao Y, Chen SL. In vivo evaluation of a lipopolysaccharide-induced ear vascular leakage model in mice using photoacoustic microscopy. BIOMEDICAL OPTICS EXPRESS 2022; 13:4802-4816. [PMID: 36187238 PMCID: PMC9484413 DOI: 10.1364/boe.471079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 06/16/2023]
Abstract
Sepsis is caused by dysregulated host inflammatory response to infection. During sepsis, early identification and monitoring of vascular leakage are pivotal for improved diagnosis, treatment, and prognosis. However, there is a lack of research on noninvasive observation of inflammation-related vascular leakage. Here, we investigate the use of photoacoustic microscopy (PAM) for in vivo visualization of lipopolysaccharide (LPS)-induced ear vascular leakage in mice using Evans blue (EB) as an indicator. A model combining needle pricking on the mouse ear, topical smearing of LPS on the mouse ear, and intravenous tail injection of EB is developed. Topical application of LPS is expected to induce local vascular leakage in skin. Inflammatory response is first validated by ex vivo histology and enzyme-linked immunosorbent assay. Then, local ear vascular leakage is confirmed by ex vivo measurement of swelling, thickening, and EB leakage. Finally, PAM for in vivo identification and evaluation of early vascular leakage using the model is demonstrated. For PAM, common excitation wavelength of 532 nm is used, and an algorithm is developed to extract quantitative metrics for EB leakage. The results show potential of PAM for noninvasive longitudinal monitoring of peripheral skin vascular leakage, which holds promise for clinical sepsis diagnosis and management.
Collapse
Affiliation(s)
- Zhe Li
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- These authors contributed equally to this work
| | - Pengbo He
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- These authors contributed equally to this work
| | - Yuqing Xu
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuxiao Deng
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yuan Gao
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Sung-Liang Chen
- University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai 200240, China
- Engineering Research Center of Digital Medicine and Clinical Translation, Ministry of Education, Shanghai 200030, China
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Kim H, Kim JY, Cho S, Ahn J, Kim Y, Kim H, Kim C. Performance comparison of high-speed photoacoustic microscopy: opto-ultrasound combiner versus ring-shaped ultrasound transducer. Biomed Eng Lett 2022; 12:147-153. [PMID: 35529340 PMCID: PMC9046515 DOI: 10.1007/s13534-022-00218-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/04/2022] [Accepted: 01/26/2022] [Indexed: 12/17/2022] Open
Abstract
Photoacoustic microscopy (PAM) embedded with a 532 nm pulse laser is widely used to visualize the microvascular structures in both small animals and humans in vivo. An opto-ultrasound combiner (OUC) is often utilized in high-speed PAM to confocally align the optical and acoustic beams to improve the system's sensitivity. However, acoustic impedance mismatch in the OUC results in little improvement in the sensitivity. Alternatively, a ring-shaped ultrasound transducer (RUT) can also accomplish the confocal configuration. Here, we compare the performance of OUC and RUT modules through ultrasound pulse-echo tests and PA imaging experiments. The signal-to-noise ratios (SNRs) of the RUT-based system were 15 dB, 12 dB, and 7 dB higher when compared to the OUC-based system for ultrasound pulse-echo test, PA phantom imaging test, and PA in-vivo imaging test, respectively. In addition, the RUT-based system could image the microvascular structures of small parts of a mouse body in a few seconds with minimal loss in SNR. Thus, with increased sensitivity, improved image details, and fast image acquisition, we believe the RUT-based systems could play a significant role in the design of future fast-PAM systems.
Collapse
Affiliation(s)
- Hyojin Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Jin Young Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Seonghee Cho
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Joongho Ahn
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Yeonggeun Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Hyungham Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Chulhong Kim
- Departments of Electrical Engineering, Convergence IT Engineering, Mechanical Engineering, and Interdisciplinary Bioscience and Bioengineering, Medical Device Innovation Center, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673 Republic of Korea
| |
Collapse
|
10
|
Mirg S, Chen H, Turner KL, Gheres KW, Liu J, Gluckman BJ, Drew PJ, Kothapalli SR. Awake mouse brain photoacoustic and optical imaging through a transparent ultrasound cranial window. OPTICS LETTERS 2022; 47:1121-1124. [PMID: 35230306 DOI: 10.1364/ol.450648] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Optical resolution photoacoustic microscopy (OR-PAM) can map the cerebral vasculature at capillary-level resolution. However, the OR-PAM setup's bulky imaging head makes awake mouse brain imaging challenging and inhibits its integration with other optical neuroimaging modalities. Moreover, the glass cranial windows used for optical microscopy are unsuitable for OR-PAM due to the acoustic impedance mismatch between the glass plate and the tissue. To overcome these challenges, we propose a lithium niobate based transparent ultrasound transducer (TUT) as a cranial window on a thinned mouse skull. The TUT cranial window simplifies the imaging head considerably due to its dual functionality as an optical window and ultrasound transducer. The window remains stable for six weeks, with no noticeable inflammation and minimal bone regrowth. The TUT window's potential is demonstrated by imaging the awake mouse cerebral vasculature using OR-PAM, intrinsic optical signal imaging, and two-photon microscopy. The TUT cranial window can potentially also be used for ultrasound stimulation and simultaneous multimodal imaging of the awake mouse brain.
Collapse
|