1
|
Wright AM, Wu YC, Feng L, Wen Q. Diffusion magnetic resonance imaging of cerebrospinal fluid dynamics: Current techniques and future advancements. NMR IN BIOMEDICINE 2024; 37:e5162. [PMID: 38715420 PMCID: PMC11303114 DOI: 10.1002/nbm.5162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 03/30/2024] [Indexed: 05/22/2024]
Abstract
Cerebrospinal fluid (CSF) plays a critical role in metabolic waste clearance from the brain, requiring its circulation throughout various brain pathways, including the ventricular system, subarachnoid spaces, para-arterial spaces, interstitial spaces, and para-venous spaces. The complexity of CSF circulation has posed a challenge in obtaining noninvasive measurements of CSF dynamics. The assessment of CSF dynamics throughout its various circulatory pathways is possible using diffusion magnetic resonance imaging (MRI) with optimized sensitivity to incoherent water movement across the brain. This review presents an overview of both established and emerging diffusion MRI techniques designed to measure CSF dynamics and their potential clinical applications. The discussion offers insights into the optimization of diffusion MRI acquisition parameters to enhance the sensitivity and specificity of diffusion metrics on underlying CSF dynamics. Lastly, we emphasize the importance of cautious interpretations of diffusion-based imaging, especially when differentiating between tissue- and fluid-related changes or elucidating structural versus functional alterations.
Collapse
Affiliation(s)
- Adam M. Wright
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering Department, Purdue
University, West Lafayette, Indiana, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering Department, Purdue
University, West Lafayette, Indiana, USA
- Stark Neurosciences Research Institute, Indiana University
School of Medicine, Indianapolis, Indiana, USA
| | - Li Feng
- Center for Advanced Imaging Innovation and Research
(CAI2R), New York University Grossman School of Medicine, New York, New York,
USA
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana
University School of Medicine, Indianapolis, Indiana, USA
- Weldon School of Biomedical Engineering Department, Purdue
University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Boyd ED, Kaur J, Ding G, Chopp M, Jiang Q. Clinical magnetic resonance imaging evaluation of glymphatic function. NMR IN BIOMEDICINE 2024; 37:e5132. [PMID: 38465514 DOI: 10.1002/nbm.5132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 03/12/2024]
Abstract
The glymphatic system is a system of specialized perivascular spaces in the brain that facilitates removal of toxic waste solutes from the brain. Evaluation of glymphatic system function by means of magnetic resonance imaging (MRI) has thus far been largely focused on rodents because of the limitations of intrathecal delivery of gadolinium-based contrast agents to humans. This review discusses MRI methods that can be employed clinically for glymphatic-related measurements intended for early diagnosis, prevention, and the treatment of various neurological conditions. Although glymphatic system-based MRI research is in its early stages, recent studies have identified promising noninvasive MRI markers associated with glymphatic system alterations in neurological diseases. However, further optimization in data acquisition, validation, and modeling are needed to investigate the glymphatic system within the clinical setting.
Collapse
Affiliation(s)
- Edward D Boyd
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Jasleen Kaur
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Guangliang Ding
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| | - Quan Jiang
- Department of Neurology, Henry Ford Health System, Detroit, Michigan, USA
- Department of Radiology, Michigan State University, East Lansing, Michigan, USA
- Department of Physics, Oakland University, Rochester, Michigan, USA
| |
Collapse
|
3
|
Chen Y, Lin L, Bhuiyan MIH, He K, Jha R, Song S, Fiesler VM, Begum G, Yin Y, Sun D. Transient ischemic stroke triggers sustained damage of the choroid plexus blood-CSF barrier. Front Cell Neurosci 2023; 17:1279385. [PMID: 38107410 PMCID: PMC10725199 DOI: 10.3389/fncel.2023.1279385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023] Open
Abstract
Neuroinflammation is a pathological event associated with many neurological disorders, including dementia and stroke. The choroid plexus (ChP) is a key structure in the ventricles of the brain that secretes cerebrospinal fluid (CSF), forms a blood-CSF barrier, and responds to disease conditions by recruiting immune cells and maintaining an immune microenvironment in the brain. Despite these critical roles, the exact structural and functional changes to the ChP over post-stroke time remain to be elucidated. We induced ischemic stroke in C57BL/6J mice via transient middle cerebral artery occlusion which led to reduction of cerebral blood flow and infarct stroke. At 1-7 days post-stroke, we detected time-dependent increase in the ChP blood-CSF barrier permeability to albumin, tight-junction damage, and dynamic changes of SPAK-NKCC1 protein complex, a key ion transport regulatory system for CSF production and clearance. A transient loss of SPAK protein complex but increased phosphorylation of the SPAK-NKCC1 complex was observed in both lateral ventricle ChPs. Most interestingly, stroke also triggered elevation of proinflammatory Lcn2 mRNA and its protein as well as infiltration of anti-inflammatory myeloid cells in ChP at day 5 post-stroke. These findings demonstrate that ischemic strokes cause significant damage to the ChP blood-CSF barrier, contributing to neuroinflammation in the subacute stage.
Collapse
Affiliation(s)
- Yang Chen
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Lin Lin
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | | | - Kai He
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Roshani Jha
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Shanshan Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, United States
| | - Victoria M. Fiesler
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yan Yin
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, United States
- Research Service, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA, United States
| |
Collapse
|
4
|
Jang M, Han S, Cho H. Correspondence between development of cytotoxic edema and cerebrospinal fluid volume and flow in the third ventricle after ischemic stroke. J Stroke Cerebrovasc Dis 2023; 32:107200. [PMID: 37290155 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107200] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
OBJECTIVES The importance of monitoring cerebrospinal fluid for the development of edema in ischemic stroke has been emphasized; however, studies on the relationship between intraventricular cerebrospinal fluid behavior and edema through longitudinal observations and analysis are rare. This study aimed to investigate the correlation between the development of cytotoxic edema and cerebrospinal fluid volume and flow in the third ventricle after ischemic stroke. MATERIALS AND METHODS The ventricle and edema regions were obtained using apparent diffusion coefficients and T2 and subdivided into lateral/ventral 3rd ventricles and cytotoxic/vasogenic (or cyst) edema, respectively. In rat models of ischemic stroke, the volume and flow (via the pseudo-diffusion coefficient [D*]) of the ventricles and edema volumes were longitudinally monitored for up to 45 days after surgery. RESULTS The volume of cytotoxic edema increased in the hyperacute and acute phases, whereas the volume (r = -0.49) and median D* values (r = -0.48 in the anterior-posterior direction) of the ventral 3rd ventricle both decreased, showing negative correlations with the volume of cytotoxic edema. In contrast, the volume of vasogenic edema/cyst was positively correlated with the volume (r = 0.73) and median D* values (r = 0.78 in the anterior-posterior direction) of the lateral ventricle in the subacute and chronic phases. CONCLUSIONS This study showed that the evolution of cerebrospinal fluid volume and flow in the ventricles was associated with edema progression at different time points in the ischemic stroke brain. This provides an efficient framework for monitoring and quantifying the interplay between cerebrospinal fluid and edema.
Collapse
Affiliation(s)
- MinJung Jang
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea; Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - SoHyun Han
- Research Equipment Operations Division, Korea Basic Science Institute, Cheongju 28119, South Korea
| | - HyungJoon Cho
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea.
| |
Collapse
|