1
|
Schramm S, Börner C, Reichert M, Hoffmann G, Kaczmarz S, Griessmair M, Jung K, Berndt MT, Zimmer C, Baum T, Heinen F, Bonfert MV, Sollmann N. Perfusion imaging by arterial spin labeling in migraine: A literature review. J Cereb Blood Flow Metab 2024; 44:1253-1270. [PMID: 38483125 PMCID: PMC11342727 DOI: 10.1177/0271678x241237733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 08/15/2024]
Abstract
Arterial spin labeling (ASL) is a non-invasive magnetic resonance imaging (MRI) method for the assessment of cerebral blood flow (CBF). This review summarizes recent ASL-based investigations in adult and pediatric patients with migraine with aura, migraine without aura, and chronic migraine. A systematic search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted within PubMed and reference sections of articles identified from April 2014 to November 2022. Out of 236 initial articles, 20 remained after filtering, encompassing data from 1155 subjects in total. Cross-sectional studies in adults showed inconsistent results, while longitudinal studies demonstrated that cerebral perfusion changes over the migraine cycle can be tracked using ASL. The most consistent findings were observed in ictal states among pediatric migraine patients, where studies showed hypoperfusion matching aura symptoms during early imaging followed by hyperperfusion. Overall, ASL is a useful but currently underutilized modality for evaluating cerebral perfusion in patients with migraine. The generalizability of results is currently limited by heterogeneities regarding study design and documentation of clinical variables (e.g., relation of attacks to scanning timepoint, migraine subtypes). Future MRI studies should consider augmenting imaging protocols with ASL to further elucidate perfusion dynamics in migraine.
Collapse
Affiliation(s)
- Severin Schramm
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Corinna Börner
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- LMU Hospital, Dr. von Hauner Children’s Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Miriam Reichert
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gabriel Hoffmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan Kaczmarz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Philips GmbH Market DACH, Hamburg, Germany
| | - Michael Griessmair
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kirsten Jung
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maria T Berndt
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Florian Heinen
- LMU Hospital, Dr. von Hauner Children’s Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
| | - Michaela V Bonfert
- LMU Hospital, Dr. von Hauner Children’s Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
2
|
Kapoor A, Dutt S, Alitin JPM, Sible IJ, Marshall A, Shenasa F, Engstrom AC, Gaubert A, Shao X, Bradford DR, Rodgers K, Mather M, Wang DJJ, Nation DA. Older adults with reduced cerebrovascular reactivity exhibit high white matter hyperintensity burden. Neurobiol Aging 2024; 139:5-10. [PMID: 38579393 DOI: 10.1016/j.neurobiolaging.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/07/2024]
Abstract
Cerebrovascular reactivity (CVR) deficits may contribute to small vessel disease, such as white matter hyperintensities (WMH). Moreover, apolipoprotein-e4 (APOE4) carriers at genetic risk for Alzheimer's disease exhibit cerebrovascular dysfunction relative to non-carriers. We examined whether older adults, and APOE4 carriers specifically, with diminished CVR would exhibit higher WMH burden. Independently living older adults (N = 125, mean age = 69.2 years; SD = 7.6; 31.2% male) free of dementia or clinical stroke underwent brain MRI to quantify cerebral perfusion during CVR to hypercapnia and hypocapnia and determine WMH volume. Adjusting for age, sex and intracranial volume, hierarchical regression analysis revealed a significant association between whole brain CVR to hypercapnia and WMH overall [B = -.02, 95% CI (-.04, -.008), p =.003] and in APOE4 carriers [B = -.03, 95% CI (-.06, -.009), p =.009]. Findings suggest deficits in cerebral vasodilatory capacity are associated with WMH burden in older adults and future studies are warranted to further delineate the effect of APOE4 on precipitating WMH.
Collapse
Affiliation(s)
- Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - John Paul M Alitin
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Isabel J Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Anisa Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Fatemah Shenasa
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Allison C Engstrom
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Aimée Gaubert
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Xingfeng Shao
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - David Robert Bradford
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Kathleen Rodgers
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Mara Mather
- University of Southern California Leonard Davis School of Gerontology, USA
| | - Danny J J Wang
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, USA
| | - Daniel A Nation
- University of Southern California Leonard Davis School of Gerontology, USA; Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, University of Southern California Keck School of Medicine, USA.
| |
Collapse
|
3
|
Noh E, Namgung JY, Park Y, Jang Y, Lee MJ, Park BY. Shifts in structural connectome organization in the limbic and sensory systems of patients with episodic migraine. J Headache Pain 2024; 25:99. [PMID: 38862883 PMCID: PMC11165833 DOI: 10.1186/s10194-024-01806-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
Migraine is a complex neurological condition characterized by recurrent headaches, which is often accompanied by various neurological symptoms. Magnetic resonance imaging (MRI) is a powerful tool for investigating whole-brain connectivity patterns; however, systematic assessment of structural connectome organization has rarely been performed. In the present study, we aimed to examine the changes in structural connectivity in patients with episodic migraines using diffusion MRI. First, we computed structural connectivity using diffusion MRI tractography, after which we applied dimensionality reduction techniques to the structural connectivity and generated three low-dimensional eigenvectors. We subsequently calculated the manifold eccentricity, defined as the Euclidean distance between each data point and the center of the data in the manifold space. We then compared the manifold eccentricity between patients with migraines and healthy controls, revealing significant between-group differences in the orbitofrontal cortex, temporal pole, and sensory/motor regions. Between-group differences in subcortico-cortical connectivity further revealed significant changes in the amygdala, accumbens, and caudate nuclei. Finally, supervised machine learning effectively classified patients with migraines and healthy controls using cortical and subcortical structural connectivity features, highlighting the importance of the orbitofrontal and sensory cortices, in addition to the caudate, in distinguishing between the groups. Our findings confirmed that episodic migraine is related to the structural connectome changes in the limbic and sensory systems, suggesting its potential utility as a diagnostic marker for migraine.
Collapse
Affiliation(s)
- Eunchan Noh
- College of Medicine, Inha University, Incheon, Republic of Korea
| | | | - Yeongjun Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yurim Jang
- Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea
| | - Mi Ji Lee
- Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Bo-Yong Park
- Department of Data Science, Inha University, Incheon, Republic of Korea.
- Department of Statistics and Data Science, Inha University, Incheon, Republic of Korea.
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
| |
Collapse
|
4
|
Hoogeveen ES, Pelzer N, Ghariq E, van Osch MJP, Dahan A, Terwindt GM, Kruit MC. Cerebrovascular reactivity to hypercapnia in patients with migraine: A dual-echo arterial spin labeling MRI study. Headache 2024; 64:276-284. [PMID: 38429974 DOI: 10.1111/head.14680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 03/03/2024]
Abstract
OBJECTIVE This study aimed to compare cerebrovascular reactivity between patients with migraine and controls using state-of-the-art magnetic resonance imaging (MRI) techniques. BACKGROUND Migraine is associated with an increased risk of cerebrovascular disease, but the underlying mechanisms are still not fully understood. Impaired cerebrovascular reactivity has been proposed as a link. Previous studies have evaluated cerebrovascular reactivity with different methodologies and results are conflicting. METHODS In this single-center, observational, case-control study, we included 31 interictal patients with migraine without aura (aged 19-66 years, 17 females) and 31 controls (aged 22-64 years, 18 females) with no history of vascular disease. Global and regional cerebrovascular reactivities were assessed with a dual-echo arterial spin labeling (ASL) 3.0 T MRI scan of the brain which measured the change in cerebral blood flow (CBF) and BOLD (blood oxygen level dependent) signal to inhalation of 5% carbon dioxide. RESULTS When comparing patients with migraine to controls, cerebrovascular reactivity values were similar between the groups, including mean gray matter CBF-based cerebrovascular reactivity (3.2 ± 0.9 vs 3.4 ± 1% ΔCBF/mmHg CO2 ; p = 0.527), mean gray matter BOLD-based cerebrovascular reactivity (0.18 ± 0.04 vs 0.18 ± 0.04% ΔBOLD/mmHg CO2 ; p = 0.587), and mean white matter BOLD-based cerebrovascular reactivity (0.08 ± 0.03 vs 0.08 ± 0.02% ΔBOLD/mmHg CO2 ; p = 0.621).There was no association of cerebrovascular reactivity with monthly migraine days or migraine disease duration (all analyses p > 0.05). CONCLUSION Cerebrovascular reactivity to carbon dioxide seems to be preserved in patients with migraine without aura.
Collapse
Affiliation(s)
- E S Hoogeveen
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - N Pelzer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - E Ghariq
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Radiology and Nuclear Medicine, Medisch Spectrum Twente, Enschede, The Netherlands
| | - M J P van Osch
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - A Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, The Netherlands
| | - G M Terwindt
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - M C Kruit
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
5
|
Scheuermann BC, Parr SK, Schulze KM, Kunkel ON, Turpin VG, Liang J, Ade CJ. Associations of Cerebrovascular Regulation and Arterial Stiffness With Cerebral Small Vessel Disease: A Systematic Review and Meta-Analysis. J Am Heart Assoc 2023; 12:e032616. [PMID: 37930079 PMCID: PMC10727345 DOI: 10.1161/jaha.123.032616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 10/24/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Cerebral small vessel disease (cSVD) is a major contributing factor to ischemic stroke and dementia. However, the vascular pathologies of cSVD remain inconclusive. The aim of this systematic review and meta-analysis was to characterize the associations between cSVD and cerebrovascular reactivity (CVR), cerebral autoregulation, and arterial stiffness (AS). METHODS AND RESULTS MEDLINE, Web of Science, and Embase were searched from inception to September 2023 for studies reporting CVR, cerebral autoregulation, or AS in relation to radiological markers of cSVD. Data were extracted in predefined tables, reviewed, and meta-analyses performed using inverse-variance random effects models to determine pooled odds ratios (ORs). A total of 1611 studies were identified; 142 were included in the systematic review, of which 60 had data available for meta-analyses. Systematic review revealed that CVR, cerebral autoregulation, and AS were consistently associated with cSVD (80.4%, 78.6%, and 85.4% of studies, respectively). Meta-analysis in 7 studies (536 participants, 32.9% women) revealed a borderline association between impaired CVR and cSVD (OR, 2.26 [95% CI, 0.99-5.14]; P=0.05). In 37 studies (27 952 participants, 53.0% women) increased AS, per SD, was associated with cSVD (OR, 1.24 [95% CI, 1.15-1.33]; P<0.01). Meta-regression adjusted for comorbidities accounted for one-third of the AS model variance (R2=29.4%, Pmoderators=0.02). Subgroup analysis of AS studies demonstrated an association with white matter hyperintensities (OR, 1.42 [95% CI, 1.18-1.70]; P<0.01). CONCLUSIONS The collective findings of the present systematic review and meta-analyses suggest an association between cSVD and impaired CVR and elevated AS. However, longitudinal investigations into vascular stiffness and regulatory function as possible risk factors for cSVD remain warranted.
Collapse
Affiliation(s)
| | - Shannon K. Parr
- Department of KinesiologyKansas State UniversityManhattanKSUSA
| | | | | | | | - Jia Liang
- Department of Biostatistics, St. Jude Children’s Research HospitalMemphisTNUSA
| | - Carl J. Ade
- Department of KinesiologyKansas State UniversityManhattanKSUSA
- Department of Physician’s Assistant Studies, Kansas State UniversityManhattanKSUSA
- Johnson Cancer Research CenterKansas State UniversityManhattanKSUSA
| |
Collapse
|