1
|
Kunreuther H, Demidov A, Pauly M, Turcic M, Wilson M. Externalities in the wildland-urban interface: Private decisions, collective action, and results from wildfire simulation models for California. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2023; 43:886-895. [PMID: 37045562 DOI: 10.1111/risa.14135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/27/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Property damage from wildfires occurs from spread into built-up areas, the wildland-urban interface. Fire spread occurs as embers from one burning structure ignite neighboring ones-but mitigation reduces the chances that fire spreads. In this study, we use a simulation model with realistic parameters for a neighborhood in California to illustrate patterns of marginal benefit from mitigation. We extend existing models of fire spread in two novel ways. We show how to describe the no-regulation equilibrium and social optimal levels of mitigation by incorporating data on a key factor, the distribution of house values in the community. We incorporate insurance in the model and show that it improves homeowner decision-making and insurance premium regulation. The fire spread simulations show that under plausible parameter values, there is a pattern in which mitigation's marginal benefit is low at low levels of community mitigation, rises to a maximum, and then falls quickly to a low level. We argue that the maximum marginal benefit is a guide to achieving optimal mitigation in a community. Owner mitigation decisions will depend on the distribution of house values in the neighborhood and other factors. In an illustration, we use the distribution of house values in a California community to illustrate the mitigation owners will choose under independent (Nash) investment decisions, and the efficiency-improving actions involving regulations or insurance premium subsidies that can lead to the social optimum.
Collapse
Affiliation(s)
- Howard Kunreuther
- The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Artem Demidov
- The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mark Pauly
- The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matija Turcic
- The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Michael Wilson
- The Wharton School, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Zhang X, Lobinska G, Feldman M, Dekel E, Nowak MA, Pilpel Y, Pauzner Y, Barzel B, Pauzner A. A spatial vaccination strategy to reduce the risk of vaccine-resistant variants. PLoS Comput Biol 2022; 18:e1010391. [PMID: 35947602 PMCID: PMC9394842 DOI: 10.1371/journal.pcbi.1010391] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 08/22/2022] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
The COVID-19 pandemic demonstrated that the process of global vaccination against a novel virus can be a prolonged one. Social distancing measures, that are initially adopted to control the pandemic, are gradually relaxed as vaccination progresses and population immunity increases. The result is a prolonged period of high disease prevalence combined with a fitness advantage for vaccine-resistant variants, which together lead to a considerably increased probability for vaccine escape. A spatial vaccination strategy is proposed that has the potential to dramatically reduce this risk. Rather than dispersing the vaccination effort evenly throughout a country, distinct geographic regions of the country are sequentially vaccinated, quickly bringing each to effective herd immunity. Regions with high vaccination rates will then have low infection rates and vice versa. Since people primarily interact within their own region, spatial vaccination reduces the number of encounters between infected individuals (the source of mutations) and vaccinated individuals (who facilitate the spread of vaccine-resistant strains). Thus, spatial vaccination may help mitigate the global risk of vaccine-resistant variants.
Collapse
Affiliation(s)
- Xiyun Zhang
- Department of Physics, Jinan University, Guangzhou, China
| | - Gabriela Lobinska
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | - Michal Feldman
- School of Computer Science and Center for Combating Pandemics, Tel Aviv University, Israel
| | - Eddie Dekel
- Department of Economics, Northwestern University, Illinois, United States of America, and School of Economics, Tel Aviv University, Israel
| | - Martin A. Nowak
- Department of Mathematics and Department of Organismic and Evolutionary Biology, Harvard University, Massachusetts, United States of America
| | - Yitzhak Pilpel
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | | | - Baruch Barzel
- Department of Mathematics and Gonda Multidisciplinary Brain Research Center Bar-Ilan University, Israel, and Network Science Institute, Northeastern University, Boston, Massachusetts, United States of America
| | - Ady Pauzner
- School of Economics and Center for Combating Pandemics, Tel Aviv University, Israel
| |
Collapse
|
3
|
Kissler SM, Gog JR, Viboud C, Charu V, Bjørnstad ON, Simonsen L, Grenfell BT. Geographic transmission hubs of the 2009 influenza pandemic in the United States. Epidemics 2018; 26:86-94. [PMID: 30327253 DOI: 10.1016/j.epidem.2018.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 10/28/2022] Open
Abstract
A key issue in infectious disease epidemiology is to identify and predict geographic sites of epidemic establishment that contribute to onward spread, especially in the context of invasion waves of emerging pathogens. Conventional wisdom suggests that these sites are likely to be in densely-populated, well-connected areas. For pandemic influenza, however, epidemiological data have not been available at a fine enough geographic resolution to test this assumption. Here, we make use of fine-scale influenza-like illness incidence data derived from electronic medical claims records gathered from 834 3-digit ZIP (postal) codes across the US to identify the key geographic establishment sites, or "hubs", of the autumn wave of the 2009 A/H1N1pdm influenza pandemic in the United States. A mechanistic spatial transmission model is fit to epidemic onset times inferred from the data. Hubs are identified by tracing the most probable transmission routes back to a likely first establishment site. Four hubs are identified: two in the southeastern US, one in the central valley of California, and one in the midwestern US. According to the model, 75% of the 834 observed ZIP-level outbreaks in the US were seeded by these four hubs or their epidemiological descendants. Counter-intuitively, the pandemic hubs do not coincide with large and well-connected cities, indicating that factors beyond population density and travel volume are necessary to explain the establishment sites of the major autumn wave of the pandemic. Geographic regions are identified where infection can be statistically traced back to a hub, providing a testable prediction of the outbreak's phylogeography. Our method therefore provides an important way forward to reconcile spatial diffusion patterns inferred from epidemiological surveillance data and pathogen sequence data.
Collapse
Affiliation(s)
- Stephen M Kissler
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, United Kingdom.
| | - Julia R Gog
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, United Kingdom
| | - Cécile Viboud
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Vivek Charu
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA; Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Ottar N Bjørnstad
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Lone Simonsen
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA; Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Bryan T Grenfell
- Department of Ecology and Evolutionary Biology, University of Princeton, Princeton, NJ, USA; Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
4
|
Karlsson I, Borggren M, Rosenstierne MW, Trebbien R, Williams JA, Vidal E, Vergara-Alert J, Foz DS, Darji A, Sisteré-Oró M, Segalés J, Nielsen J, Fomsgaard A. Protective effect of a polyvalent influenza DNA vaccine in pigs. Vet Immunol Immunopathol 2018; 195:25-32. [PMID: 29249314 PMCID: PMC5764121 DOI: 10.1016/j.vetimm.2017.11.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/20/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023]
Abstract
BACKGROUND Influenza A virus in swine herds represents a major problem for the swine industry and poses a constant threat for the emergence of novel pandemic viruses and the development of more effective influenza vaccines for pigs is desired. By optimizing the vector backbone and using a needle-free delivery method, we have recently demonstrated a polyvalent influenza DNA vaccine that induces a broad immune response, including both humoral and cellular immunity. OBJECTIVES To investigate the protection of our polyvalent influenza DNA vaccine approach in a pig challenge study. METHODS By intradermal needle-free delivery to the skin, we immunized pigs with two different doses (500μg and 800μg) of an influenza DNA vaccine based on six genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase as previously demonstrated. Two weeks following immunization, the pigs were challenged with the 2009 pandemic H1N1 virus. RESULTS When challenged with 2009 pandemic H1N1, 0/5 vaccinated pigs (800μg DNA) became infected whereas 5/5 unvaccinated control pigs were infected. The pigs vaccinated with the low dose (500μg DNA) were only partially protected. The DNA vaccine elicited binding-, hemagglutination inhibitory (HI) - as well as cross-reactive neutralizing antibody activity and neuraminidase inhibiting antibodies in the immunized pigs, in a dose-dependent manner. CONCLUSION The present data, together with the previously demonstrated immunogenicity of our influenza DNA vaccine, indicate that naked DNA vaccine technology provides a strong approach for the development of improved pig vaccines, applying realistic low doses of DNA and a convenient delivery method for mass vaccination.
Collapse
Affiliation(s)
- Ingrid Karlsson
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Marie Borggren
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Maiken Worsøe Rosenstierne
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Ramona Trebbien
- National Influenza Center Denmark, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - James A Williams
- Nature Technology Corporation, 4701 Innovation Dr, Lincoln, NE 68521, USA
| | - Enric Vidal
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Júlia Vergara-Alert
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - David Solanes Foz
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Ayub Darji
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Marta Sisteré-Oró
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Joaquim Segalés
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; Departament de Sanitat i Anatomia Animals, Facultat de Veterinària, UAB, 08193 Bellaterra, Barcelona, Spain
| | - Jens Nielsen
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Anders Fomsgaard
- Virus Research and Development Laboratory, Department of Virus and Microbiological Special Diagnostics, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark; Infectious Disease Research Unit, Clinical Institute, University of Southern Denmark, Sdr. Boulevard 29, DK-5000 Odense C, Denmark.
| |
Collapse
|
5
|
Ibuka Y, Ohkusa Y, Sugawara T, Chapman GB, Yamin D, Atkins KE, Taniguchi K, Okabe N, Galvani AP. Social contacts, vaccination decisions and influenza in Japan. J Epidemiol Community Health 2015; 70:162-7. [PMID: 26424846 PMCID: PMC4752620 DOI: 10.1136/jech-2015-205777] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 08/04/2015] [Indexed: 11/18/2022]
Abstract
Background Contact patterns and vaccination decisions are fundamental to transmission dynamics of infectious diseases. We report on age-specific contact patterns in Japan and their effect on influenza vaccination behaviour. Methods Japanese adults (N=3146) were surveyed in Spring 2011 to assess the number of their social contacts within a 24 h period, defined as face-to-face conversations within 2 m, and gain insight into their influenza-related behaviour. We analysed the duration and location of contacts according to age. Additionally, we analysed the probability of vaccination and influenza infection in relation to the number of contacts controlling for individual's characteristics. Results The mean and median reported numbers of daily contacts were 15.3 and 12.0, respectively. School-aged children and young adults reported the greatest number of daily contacts, and individuals had the most contacts with those in the same age group. The age-specific contact patterns were different between men and women, and differed between weekdays and weekends. Children had fewer contacts between the same age groups during weekends than during weekdays, due to reduced contacts at school. The probability of vaccination increased with the number of contacts, controlling for age and household size. Influenza infection among unvaccinated individuals was higher than for those vaccinated, and increased with the number of contacts. Conclusions Contact patterns in Japan are age and gender specific. These contact patterns, as well as their interplay with vaccination decisions and infection risks, can help inform the parameterisation of mathematical models of disease transmission and the design of public health policies, to control disease transmission.
Collapse
Affiliation(s)
- Yoko Ibuka
- Graduate School of Economics and Management, Tohoku University, Sendai, Japan
| | - Yasushi Ohkusa
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tamie Sugawara
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Gretchen B Chapman
- Department of Psychology, Rutgers University, Piscataway, New Jersey, USA
| | - Dan Yamin
- School of Public Health, Yale University, New Haven, Connecticut, USA
| | - Katherine E Atkins
- School of Public Health, Yale University, New Haven, Connecticut, USA Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Kiyosu Taniguchi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan Department of Clinical Research, National Mie Hospital, Tsu, Japan
| | - Nobuhiko Okabe
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Tokyo, Japan Kawasaki City Institute for Public Health, Kawasaki, Japan
| | - Alison P Galvani
- School of Public Health, Yale University, New Haven, Connecticut, USA
| |
Collapse
|