1
|
Li L, Jalal H, Heath A. Accurate EVSI Estimation for Nonlinear Models Using the Gaussian Approximation Method. Med Decis Making 2024; 44:787-801. [PMID: 39082512 PMCID: PMC11492544 DOI: 10.1177/0272989x241264287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 05/14/2024] [Indexed: 10/20/2024]
Abstract
BACKGROUND The expected value of sample information (EVSI) measures the expected benefits that could be obtained by collecting additional data. Estimating EVSI using the traditional nested Monte Carlo method is computationally expensive, but the recently developed Gaussian approximation (GA) approach can efficiently estimate EVSI across different sample sizes. However, the conventional GA may result in biased EVSI estimates if the decision models are highly nonlinear. This bias may lead to suboptimal study designs when GA is used to optimize the value of different studies. Therefore, we extend the conventional GA approach to improve its performance for nonlinear decision models. METHODS Our method provides accurate EVSI estimates by approximating the conditional expectation of the benefit based on 2 steps. First, a Taylor series approximation is applied to estimate the conditional expectation of the benefit as a function of the conditional moments of the parameters of interest using a spline, which is fitted to the samples of the parameters and the corresponding benefits. Next, the conditional moments of parameters are approximated by the conventional GA and Fisher information. The proposed approach is applied to several data collection exercises involving non-Gaussian parameters and nonlinear decision models. Its performance is compared with the nested Monte Carlo method, the conventional GA approach, and the nonparametric regression-based method for EVSI calculation. RESULTS The proposed approach provides accurate EVSI estimates across different sample sizes when the parameters of interest are non-Gaussian and the decision models are nonlinear. The computational cost of the proposed method is similar to that of other novel methods. CONCLUSIONS The proposed approach can estimate EVSI across sample sizes accurately and efficiently, which may support researchers in determining an economically optimal study design using EVSI. HIGHLIGHTS The Gaussian approximation method efficiently estimates the expected value of sample information (EVSI) for clinical trials with varying sample sizes, but it may introduce bias when health economic models have a nonlinear structure.We introduce the spline-based Taylor series approximation method and combine it with the original Gaussian approximation to correct the nonlinearity-induced bias in EVSI estimation.Our approach can provide more precise EVSI estimates for complex decision models without sacrificing computational efficiency, which can enhance the resource allocation strategies from the cost-effective perspective.
Collapse
Affiliation(s)
- Linke Li
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Statistical Science, University College London, London, UK
| | - Hawre Jalal
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Anna Heath
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Statistical Science, University College London, London, UK
| |
Collapse
|
2
|
Vervaart M. Calculating the Expected Net Benefit of Sampling for Survival Data: A Tutorial and Case Study. Med Decis Making 2024; 44:719-741. [PMID: 39305058 PMCID: PMC11490075 DOI: 10.1177/0272989x241279459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 07/18/2024] [Indexed: 10/20/2024]
Abstract
HIGHLIGHTS The net value of reducing decision uncertainty by collecting additional data is quantified by the expected net benefit of sampling (ENBS). This tutorial presents a general-purpose algorithm for computing the ENBS for collecting survival data along with a step-by-step implementation in R.The algorithm is based on recently published methods for simulating survival data and computing expected value of sample information that do not rely on the survival data to follow any particular parametric distribution and that can take into account any arbitrary censoring process.We demonstrate in a case study based on a previous cancer technology appraisal that ENBS calculations are useful not only for designing new studies but also for optimizing reimbursement decisions for new health technologies based on immature evidence from ongoing trials.
Collapse
Affiliation(s)
- Mathyn Vervaart
- Mathyn Vervaart, Department of Health Management and Health Economics, University of Oslo, Forskningsveien 3A, Harald Schjelderups hus, Oslo, 0373, Norway; ()
| |
Collapse
|
3
|
Glynn D, Gc VS, Claxton K, Littlewood C, Rothery C. Rapid Assessment of the Need for Evidence: Applying the Principles of Value of Information to Research Prioritisation. PHARMACOECONOMICS 2024; 42:919-928. [PMID: 38900241 DOI: 10.1007/s40273-024-01403-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/26/2024] [Indexed: 06/21/2024]
Abstract
We propose a short-cut heuristic approach to rapidly estimate value of information (VOI) using information commonly reported in a research funding application to make a case for the need for further evaluative research. We develop a "Rapid VOI" approach, which focuses on uncertainty in the primary outcome of clinical effectiveness and uses this to explore the health consequences of decision uncertainty. We develop a freely accessible online tool, Rapid Assessment of the Need for Evidence (RANE), to allow for the efficient computation of the value of research. As a case study, the method was applied to a proposal for research on shoulder pain rehabilitation. The analysis was included as part of a successful application for research funding to the UK National Institute for Health and Care Research. Our approach enables research funders and applicants to rapidly estimate the value of proposed research. Rapid VOI relies on information that is readily available and reported in research funding applications. Rapid VOI supports research prioritisation and commissioning decisions where there is insufficient time and resources available to develop and validate complex decision-analytic models. The method provides a practical means for implementing VOI in practice, thus providing a starting point for deliberation and contributing to the transparency and accountability of research prioritisation decisions.
Collapse
Affiliation(s)
- David Glynn
- Centre for Health Economics, University of York, York, UK.
| | - Vijay S Gc
- School of Human and Health Sciences, University of Huddersfield, Huddersfield, UK
| | - Karl Claxton
- Centre for Health Economics, University of York, York, UK
| | - Chris Littlewood
- Allied Health, Social Work & Wellbeing, Edgehill University, Ormskirk, UK
| | - Claire Rothery
- Centre for Health Economics, University of York, York, UK
| |
Collapse
|
4
|
Kunst N, Siu A, Drummond M, Grimm S, Grutters J, Husereau D, Koffijberg H, Rothery C, Wilson ECF, Heath A. Comment on: "Adding Value to CHEERS: New Reporting Standards for Value of Information Analyses". APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2024; 22:265-267. [PMID: 38141116 DOI: 10.1007/s40258-023-00856-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/05/2023] [Indexed: 12/24/2023]
Affiliation(s)
- Natalia Kunst
- Centre for Health Economics, University of York, Heslington, YO10 5DD, York, UK.
- School of Public Health, Yale University, New Haven, CT, USA.
| | - Annisa Siu
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada
| | - Michael Drummond
- Centre for Health Economics, University of York, Heslington, YO10 5DD, York, UK
| | - Sabine Grimm
- Department of Epidemiology and Medical Technology Assessment (KEMTA), Maastricht Health Economics and Technology Assessment (Maastricht HETA) Center, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Janneke Grutters
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Don Husereau
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
- Institute of Health Economics, Edmonton, AB, Canada
| | - Hendrik Koffijberg
- Department of Health Technology and Services Research, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Claire Rothery
- Centre for Health Economics, University of York, Heslington, YO10 5DD, York, UK
| | - Edward C F Wilson
- Peninsula Technology Assessment Group, University of Exeter, Exeter, UK
| | - Anna Heath
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
- Department of Statistical Science, University College London, London, UK
| |
Collapse
|
5
|
Kunst N, Siu A, Drummond M, Grimm SE, Grutters J, Husereau D, Koffijberg H, Rothery C, Wilson ECF, Heath A. Consolidated Health Economic Evaluation Reporting Standards - Value of Information (CHEERS-VOI): Explanation and Elaboration. VALUE IN HEALTH : THE JOURNAL OF THE INTERNATIONAL SOCIETY FOR PHARMACOECONOMICS AND OUTCOMES RESEARCH 2023; 26:1461-1473. [PMID: 37414276 DOI: 10.1016/j.jval.2023.06.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/27/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023]
Abstract
OBJECTIVES Although the ISPOR Value of Information (VOI) Task Force's reports outline VOI concepts and provide good-practice recommendations, there is no guidance for reporting VOI analyses. VOI analyses are usually performed alongside economic evaluations for which the Consolidated Health Economic Evaluation Reporting Standards (CHEERS) 2022 Statement provides reporting guidelines. Thus, we developed the CHEERS-VOI checklist to provide reporting guidance and checklist to support the transparent, reproducible, and high-quality reporting of VOI analyses. METHODS A comprehensive literature review generated a list of 26 candidate reporting items. These candidate items underwent a Delphi procedure with Delphi participants through 3 survey rounds. Participants rated each item on a 9-point Likert scale to indicate its relevance when reporting the minimal, essential information about VOI methods and provided comments. The Delphi results were reviewed at 2-day consensus meetings and the checklist was finalized using anonymous voting. RESULTS We had 30, 25, and 24 Delphi respondents in rounds 1, 2, and 3, respectively. After incorporating revisions recommended by the Delphi participants, all 26 candidate items proceeded to the 2-day consensus meetings. The final CHEERS-VOI checklist includes all CHEERS items, but 7 items require elaboration when reporting VOI. Further, 6 new items were added to report information relevant only to VOI (eg, VOI methods applied). CONCLUSIONS The CHEERS-VOI checklist should be used when a VOI analysis is performed alongside economic evaluations. The CHEERS-VOI checklist will help decision makers, analysts and peer reviewers in the assessment and interpretation of VOI analyses and thereby increase transparency and rigor in decision making.
Collapse
Affiliation(s)
- Natalia Kunst
- Centre for Health Economics, University of York, York, England, UK; Yale University School of Public Health, New Haven, CT, USA.
| | - Annisa Siu
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Michael Drummond
- Centre for Health Economics, University of York, York, England, UK
| | - Sabine E Grimm
- Department of Epidemiology and Medical Technology Assessment (KEMTA), Maastricht Health Economics and Technology Assessment (Maastricht HETA) Center, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Janneke Grutters
- Department for Health Evidence, Radboud Institute for Health Sciences, Radboudumc, Nijmegen, The Netherlands
| | - Don Husereau
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada and Institute of Health Economics, Edmonton, Alberta, Canada
| | - Hendrik Koffijberg
- Department of Health Technology & Services Research, TechMed Centre, University of Twente, Enschede, The Netherlands
| | - Claire Rothery
- Centre for Health Economics, University of York, York, England, UK
| | - Edward C F Wilson
- Peninsula Technology Assessment Group, University of Exeter, Exeter, England, UK
| | - Anna Heath
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Ontario, Canada; Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada; Department of Statistical Science, University College London, London, England, UK
| |
Collapse
|
6
|
Vervaart M, Aas E, Claxton KP, Strong M, Welton NJ, Wisløff T, Heath A. General-Purpose Methods for Simulating Survival Data for Expected Value of Sample Information Calculations. Med Decis Making 2023; 43:595-609. [PMID: 36971425 PMCID: PMC10336715 DOI: 10.1177/0272989x231162069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 02/10/2023] [Indexed: 07/20/2023]
Abstract
BACKGROUND Expected value of sample information (EVSI) quantifies the expected value to a decision maker of reducing uncertainty by collecting additional data. EVSI calculations require simulating plausible data sets, typically achieved by evaluating quantile functions at random uniform numbers using standard inverse transform sampling (ITS). This is straightforward when closed-form expressions for the quantile function are available, such as for standard parametric survival models, but these are often unavailable when assuming treatment effect waning and for flexible survival models. In these circumstances, the standard ITS method could be implemented by numerically evaluating the quantile functions at each iteration in a probabilistic analysis, but this greatly increases the computational burden. Thus, our study aims to develop general-purpose methods that standardize and reduce the computational burden of the EVSI data-simulation step for survival data. METHODS We developed a discrete sampling method and an interpolated ITS method for simulating survival data from a probabilistic sample of survival probabilities over discrete time units. We compared the general-purpose and standard ITS methods using an illustrative partitioned survival model with and without adjustment for treatment effect waning. RESULTS The discrete sampling and interpolated ITS methods agree closely with the standard ITS method, with the added benefit of a greatly reduced computational cost in the scenario with adjustment for treatment effect waning. CONCLUSIONS We present general-purpose methods for simulating survival data from a probabilistic sample of survival probabilities that greatly reduce the computational burden of the EVSI data-simulation step when we assume treatment effect waning or use flexible survival models. The implementation of our data-simulation methods is identical across all possible survival models and can easily be automated from standard probabilistic decision analyses. HIGHLIGHTS Expected value of sample information (EVSI) quantifies the expected value to a decision maker of reducing uncertainty through a given data collection exercise, such as a randomized clinical trial. In this article, we address the problem of computing EVSI when we assume treatment effect waning or use flexible survival models, by developing general-purpose methods that standardize and reduce the computational burden of the EVSI data-generation step for survival data.We developed 2 methods for simulating survival data from a probabilistic sample of survival probabilities over discrete time units, a discrete sampling method and an interpolated inverse transform sampling method, which can be combined with a recently proposed nonparametric EVSI method to accurately estimate EVSI for collecting survival data.Our general-purpose data-simulation methods greatly reduce the computational burden of the EVSI data-simulation step when we assume treatment effect waning or use flexible survival models. The implementation of our data-simulation methods is identical across all possible survival models and can therefore easily be automated from standard probabilistic decision analyses.
Collapse
Affiliation(s)
- Mathyn Vervaart
- Department of Health Management and Health Economics, University of Oslo, Oslo, Norway
| | - Eline Aas
- Department of Health Management and Health Economics, University of Oslo, Oslo, Norway
- Division of Health Services, Norwegian Institute of Public Health, Oslo, Norway
| | - Karl P Claxton
- Centre for Health Economics, University of York, York, UK
- Department of Economics and Related Studies, University of York, York, UK
| | - Mark Strong
- School of Health and Related Research (ScHARR), University of Sheffield, Sheffield, UK
| | - Nicky J Welton
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Torbjørn Wisløff
- Health Services Research Unit, Akershus University Hospital, Oslo, Norway
| | - Anna Heath
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, Canada
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
- Department of Statistical Science, University College London, London, UK
| |
Collapse
|
7
|
Seto BK, Nishizaki L, Akaka G, Kimura JA, Seto TB. Differences in COVID-19 Hospitalizations by Self-Reported Race and Ethnicity in a Hospital in Honolulu, Hawaii. Prev Chronic Dis 2022; 19:E72. [PMID: 36395004 PMCID: PMC9673976 DOI: 10.5888/pcd19.220114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024] Open
Abstract
INTRODUCTION The true extent of racial and ethnic disparities in COVID-19 hospitalizations may be hidden by misclassification of race and ethnicity. This study aimed to quantify this inaccuracy in a hospital's electronic medical record (EMR) against the gold standard of self-identification and then project data onto state-level COVID-19 hospitalizations by self-identified race and ethnicity. METHODS To identify misclassification of race and ethnicity in the EMRs of a hospital in Honolulu, Hawaii, research and quality improvement staff members surveyed all available patients (N = 847) in 5 cohorts in 2007, 2008, 2010, 2013, and 2020 at randomly selected hospital and ambulatory units. The survey asked patients to self-identify up to 12 races and ethnicities. We compared these data with data from EMRs. We then estimated the number of COVID-19 hospitalizations by projecting racial misclassifications onto publicly available data. We determined significant differences via simulation-constructed medians and 95% CIs. RESULTS EMR-based and self-identified race and ethnicity were the same in 86.5% of the sample. Native Hawaiians (79.2%) were significantly less likely than non-Native Hawaiians (89.4%) to be correctly classified on initial analysis; this difference was driven by Native Hawaiians being more likely than non-Native Hawaiians to be multiracial (93.4% vs 30.3%). When restricted to multiracial patients only, we found no significant difference in accuracy (P = .32). The number of COVID-19-related hospitalizations was 8.7% higher among Native Hawaiians and 3.9% higher among Pacific Islanders when we projected self-identified race and ethnicity rather than using EMR data. CONCLUSION Using self-identified rather than hospital EMR data on race and ethnicity may uncover further disparities in COVID-19 hospitalizations.
Collapse
Affiliation(s)
- Brendan K Seto
- John A. Burns School of Medicine, University of Hawaii, 651 Ilaalo St, Honolulu, HI 96813.
- The Queen's Medical Center, Honolulu, Hawaii
| | | | | | | | - Todd B Seto
- John A. Burns School of Medicine, University of Hawaii, Honolulu, Hawaii
- The Queen's Medical Center, Honolulu, Hawaii
| |
Collapse
|
8
|
Abstract
BACKGROUND The expected value of sample information (EVSI) calculates the value of collecting additional information through a research study with a given design. However, standard EVSI analyses do not account for the slow and often incomplete implementation of the treatment recommendations that follow research. Thus, standard EVSI analyses do not correctly capture the value of the study. Previous research has developed measures to calculate the research value while adjusting for implementation challenges, but estimating these measures is a challenge. METHODS Based on a method that assumes the implementation level is related to the strength of evidence in favor of the treatment, 2 implementation-adjusted EVSI calculation methods are developed. These novel methods circumvent the need for analytical calculations, which were restricted to settings in which normality could be assumed. The first method developed in this article uses computationally demanding nested simulations, based on the definition of the implementation-adjusted EVSI. The second method is based on adapting the moment matching method, a recently developed efficient EVSI computation method, to adjust for imperfect implementation. The implementation-adjusted EVSI is then calculated with the 2 methods across 3 examples. RESULTS The maximum difference between the 2 methods is at most 6% in all examples. The efficient computation method is between 6 and 60 times faster than the nested simulation method in this case study and could be used in practice. CONCLUSIONS This article permits the calculation of an implementation-adjusted EVSI using realistic assumptions. The efficient estimation method is accurate and can estimate the implementation-adjusted EVSI in practice. By adapting standard EVSI estimation methods, adjustments for imperfect implementation can be made with the same computational cost as a standard EVSI analysis. HIGHLIGHTS Standard expected value of sample information (EVSI) analyses do not account for the fact that treatment implementation following research is often slow and incomplete, meaning they incorrectly capture the value of the study.Two methods, based on nested Monte Carlo sampling and the moment matching EVSI calculation method, are developed to adjust EVSI calculations for imperfect implementation when the speed and level of the implementation of a new treatment depends on the strength of evidence in favor of the treatment.The 2 methods we develop provide similar estimates for the implementation-adjusted EVSI.Our methods extend current EVSI calculation algorithms and thus require limited additional computational complexity.
Collapse
Affiliation(s)
- Anna Heath
- Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto, ON, Canada.,Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.,Department of Statistical Science, University College London, London, UK
| |
Collapse
|