1
|
Edwards L, Waterton JC, Naish J, Short C, Semple T, Jm Parker G, Tibiletti M. Imaging human lung perfusion with contrast media: A meta-analysis. Eur J Radiol 2023; 164:110850. [PMID: 37178490 DOI: 10.1016/j.ejrad.2023.110850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/20/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023]
Abstract
PURPOSE To pool and summarise published data of pulmonary blood flow (PBF), pulmonary blood volume (PBV) and mean transit time (MTT) of the human lung, obtained with perfusion MRI or CT to provide reliable reference values of healthy lung tissue. In addition, the available data regarding diseased lung was investigated. METHODS PubMed was systematically searched to identify studies that quantified PBF/PBV/MTT in the human lung by injection of contrast agent, imaged by MRI or CT. Only data analysed by 'indicator dilution theory' were considered numerically. Weighted mean (wM), weighted standard deviation (wSD) and weighted coefficient of variance (wCoV) were obtained for healthy volunteers (HV), weighted according to the size of the datasets. Signal to concentration conversion method, breath holding method and presence of 'pre-bolus' were noted. RESULTS PBV was obtained from 313 measurements from 14 publications (wM: 13.97 ml/100 ml, wSD: 4.21 ml/100 ml, wCoV 0.30). MTT was obtained from 188 measurements from 10 publications (wM: 5.91 s, wSD: 1.84 s wCoV 0.31). PBF was obtained from 349 measurements from 14 publications (wM: 246.26 ml/100 ml ml/min, wSD: 93.13 ml/100 ml ml/min, wCoV 0.38). PBV and PBF were higher when the signal was normalised than when it was not. No significant differences were found for PBV and PBF between breathing states or between pre-bolus and no pre-bolus. Data for diseased lung were insufficient for meta-analysis. CONCLUSION Reference values for PBF, MTT and PBV were obtained in HV. The literature data are insufficient to draw strong conclusions regarding disease reference values.
Collapse
Affiliation(s)
- Lucy Edwards
- Bioxydyn Limited, St James Tower, 7 Charlotte Street, Manchester, M1 4DZ, UK
| | - John C Waterton
- Bioxydyn Limited, St James Tower, 7 Charlotte Street, Manchester, M1 4DZ, UK; Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | - Josephine Naish
- Bioxydyn Limited, St James Tower, 7 Charlotte Street, Manchester, M1 4DZ, UK; MCMR, Manchester University NHS Foundation Trust, Wythenshawe, Manchester, UK
| | - Christopher Short
- ECFS CTN - LCI Core Facility, Imperial College London, London, UK; Departments of Imaging, Royal Brompton Hospital, Sydney Street, London SW3 6NP, London, UK
| | - Thomas Semple
- Department of Radiology, The Royal Brompton Hospital, London, UK; National Heart and Lung Institute, Imperial College London, London, UK; Centre for Paediatrics and Child Health, Imperial College London, London, UK
| | - Geoff Jm Parker
- Bioxydyn Limited, St James Tower, 7 Charlotte Street, Manchester, M1 4DZ, UK; Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK.
| | - Marta Tibiletti
- Bioxydyn Limited, St James Tower, 7 Charlotte Street, Manchester, M1 4DZ, UK
| |
Collapse
|
2
|
Jimenez-Juan L, Mehrez H, Dey C, Homampour S, Salazar-Ferrer P, Granton JT, Lee TY, Paul N. Quantitative assessment of pulmonary artery occlusion using lung dynamic perfusion CT. Sci Rep 2021; 11:483. [PMID: 33436837 PMCID: PMC7804280 DOI: 10.1038/s41598-020-80177-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/14/2020] [Indexed: 11/09/2022] Open
Abstract
Quantitative measurement of lung perfusion is a promising tool to evaluate lung pathophysiology as well as to assess disease severity and monitor treatment. However, this novel technique has not been adopted clinically due to various technical and physiological challenges; and it is still in the early developmental phase where the correlation between lung pathophysiology and perfusion maps is being explored. The purpose of this research work is to quantify the impact of pulmonary artery occlusion on lung perfusion indices using lung dynamic perfusion CT (DPCT). We performed Lung DPCT in ten anesthetized, mechanically ventilated juvenile pigs (18.6–20.2 kg) with a range of reversible pulmonary artery occlusions (0%, 40–59%, 60–79%, 80–99%, and 100%) created with a balloon catheter. For each arterial occlusion, DPCT data was analyzed using first-pass kinetics to derive blood flow (BF), blood volume (BV) and mean transit time (MTT) perfusion maps. Two radiologists qualitatively assessed perfusion maps for the presence or absence of perfusion defects. Perfusion maps were also analyzed quantitatively using a linear segmented mixed model to determine the thresholds of arterial occlusion associated with perfusion derangement. Inter-observer agreement was assessed using Kappa statistics. Correlation between arterial occlusion and perfusion indices was evaluated using the Spearman-rank correlation coefficient. Our results determined that perfusion defects were detected qualitatively in BF, BV and MTT perfusion maps for occlusions larger than 55%, 80% and 55% respectively. Inter-observer agreement was very good with Kappa scores > 0.92. Quantitative analysis of the perfusion maps determined the arterial occlusion threshold for perfusion defects was 50%, 76% and 44% for BF, BV and MTT respectively. Spearman-rank correlation coefficients between arterial occlusion and normalized perfusion values were strong (− 0.92, − 0.72, and 0.78 for BF, BV and MTT, respectively) and were statically significant (p < 0.01). These findings demonstrate that lung DPCT enables quantification and stratification of pulmonary artery occlusion into three categories: mild, moderate and severe. Severe (occlusion ≥ 80%) alters all perfusion indices; mild (occlusion < 55%) has no detectable effect. Moderate (occlusion 55–80%) impacts BF and MTT but BV is preserved.
Collapse
Affiliation(s)
- Laura Jimenez-Juan
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Department of Medical Imaging, Sunnybrook Health Science Centre, Toronto, ON, Canada
| | - Hatem Mehrez
- Canon Medical Systems Canada, Markham, ON, Canada
| | - Chris Dey
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Department of Medical Imaging, Sunnybrook Health Science Centre, Toronto, ON, Canada
| | - Shabnam Homampour
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Joint Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada
| | | | - John T Granton
- Division of Respirology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ting-Yim Lee
- Imaging Division, Lawson Health Research Institute, Imaging Research Laboratories, Research Institute, London, ON, Canada
| | - Narinder Paul
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada. .,Joint Department of Medical Imaging, Toronto General Hospital, Toronto, ON, Canada. .,Department of Medical Imaging, London Health Sciences Centre, St Joseph's Hospital, Western University, London, ON, Canada.
| |
Collapse
|
3
|
Jimenez-Juan L, Mehrez H, Dey C, Homampour S, Oikonomou A, Ursani F, Paul N. Arterial input function placement effect on computed tomography lung perfusion maps. Quant Imaging Med Surg 2016; 6:25-34. [PMID: 26981452 DOI: 10.3978/j.issn.2223-4292.2016.01.05] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND A critical source of variability in dynamic perfusion computed tomography (DPCT) is the arterial input function (AIF). However, the impact of the AIF location in lung DPCT has not been investigated yet. The purpose of this study is to determine whether the location of the AIF within the central pulmonary arteries influences the accuracy of lung DPCT maps. METHODS A total of 54 lung DPCT scans were performed in three pigs using different rates and volumes of iodinated contrast media. Pulmonary blood flow (PBF) perfusion maps were generated using first-pass kinetics in three different AIF locations: the main pulmonary trunk (PT), the right main (RM) and the left main (LM) pulmonary arteries. A total of 162 time density curves (TDCs) and corresponding PBF perfusion maps were generated. Linear regression and Spearman's rank correlation coefficient were used to compare the TDCs. PBF perfusion maps were compared quantitatively by taking twenty six regions of interest throughout the lung parenchyma. Analysis of variance (ANOVA) was used to compare the mean PBF values among the three AIF locations. Two chest radiologists performed qualitative assessment of the perfusion maps using a 3-point scale to determine regions of perfusion mismatch. RESULTS The linear regression of the TDCs from the RM and LM compared to the PT had a median (range) of 1.01 (0.98-1.03). The Spearman rank correlation between the TDCs was 0.88 (P<0.05). ANOVA analysis of the perfusion maps demonstrated no statistical difference (P>0.05). Qualitative comparison of the perfusion maps resulted in scores of 1 and 2, demonstrating either identical or comparable maps with no significant difference in perfusion defects between the different AIF locations. CONCLUSIONS Accurate PBF perfusion maps can be generated with the AIF located either at the PT, RM or LM pulmonary arteries.
Collapse
Affiliation(s)
- Laura Jimenez-Juan
- 1 Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada ; 2 Department of Medical Imaging, Sunnybrook Health Science Centre, Toronto, Ontario, Canada ; 3 Toshiba Medical Systems, Markham, Ontario, Canada ; 4 Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada ; 5 Department of Biology, University of Toronto, Toronto, Ontario, Canada
| | - Hatem Mehrez
- 1 Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada ; 2 Department of Medical Imaging, Sunnybrook Health Science Centre, Toronto, Ontario, Canada ; 3 Toshiba Medical Systems, Markham, Ontario, Canada ; 4 Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada ; 5 Department of Biology, University of Toronto, Toronto, Ontario, Canada
| | - Chris Dey
- 1 Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada ; 2 Department of Medical Imaging, Sunnybrook Health Science Centre, Toronto, Ontario, Canada ; 3 Toshiba Medical Systems, Markham, Ontario, Canada ; 4 Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada ; 5 Department of Biology, University of Toronto, Toronto, Ontario, Canada
| | - Shabnam Homampour
- 1 Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada ; 2 Department of Medical Imaging, Sunnybrook Health Science Centre, Toronto, Ontario, Canada ; 3 Toshiba Medical Systems, Markham, Ontario, Canada ; 4 Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada ; 5 Department of Biology, University of Toronto, Toronto, Ontario, Canada
| | - Anastasia Oikonomou
- 1 Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada ; 2 Department of Medical Imaging, Sunnybrook Health Science Centre, Toronto, Ontario, Canada ; 3 Toshiba Medical Systems, Markham, Ontario, Canada ; 4 Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada ; 5 Department of Biology, University of Toronto, Toronto, Ontario, Canada
| | - Fatima Ursani
- 1 Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada ; 2 Department of Medical Imaging, Sunnybrook Health Science Centre, Toronto, Ontario, Canada ; 3 Toshiba Medical Systems, Markham, Ontario, Canada ; 4 Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada ; 5 Department of Biology, University of Toronto, Toronto, Ontario, Canada
| | - Narinder Paul
- 1 Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada ; 2 Department of Medical Imaging, Sunnybrook Health Science Centre, Toronto, Ontario, Canada ; 3 Toshiba Medical Systems, Markham, Ontario, Canada ; 4 Department of Medical Imaging, University Health Network, Toronto, Ontario, Canada ; 5 Department of Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
Abstract
Imaging of the lung is a mainstay of respiratory medicine. It provides local information about morphology and function of the lung parenchyma that is unchallenged by other noninvasive techniques. During the 2014 European Respiratory Society International Congress in Munich, Germany, a Clinical Year in Review session was held focusing on the latest developments in pulmonary imaging. This review summarises some of the main findings of peer-reviewed articles that were published in the 12-month period prior to the 2014 International Congress.
Collapse
Affiliation(s)
- Sebastian Ley
- Dept of Diagnostic and Interventional Radiology, Chirurgische Klinik Dr. Rinecker, Munich, Germany Dept of Clinical Radiology, Ludwig Maximilians University, Munich, Germany
| |
Collapse
|
5
|
Ameli-Renani S, Rahman F, Nair A, Ramsay L, Bacon JL, Weller A, Sokhi HK, Devaraj A, Madden B, Vlahos I. Dual-energy CT for imaging of pulmonary hypertension: challenges and opportunities. Radiographics 2015; 34:1769-90. [PMID: 25384277 DOI: 10.1148/rg.347130085] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Computed tomography (CT) is routinely used in the evaluation of patients with pulmonary hypertension (PH) to assess vascular anatomy and parenchymal morphology. The introduction of dual-energy CT (DECT) enables additional qualitative and quantitative insights into pulmonary hemodynamics and the extent and variability of parenchymal enhancement. Lung perfusion assessed at pulmonary blood volume imaging correlates well with findings at scintigraphy, and pulmonary blood volume defects seen in pulmonary embolism studies infer occlusive disease with increased risk of right heart dysfunction. Similarly, perfusion inhomogeneities seen in patients with PH closely reflect mosaic lung changes and may be useful for severity assessment and prognostication. The use of DECT may increase detection of peripheral thromboembolic disease, which is of particular prognostic importance in patients with chronic thromboembolic PH with microvascular involvement. Other DECT applications for imaging of PH include low-kilovoltage images with greater inherent iodine conspicuity and iodine-selective color-coded maps of vascular perfusion (both of which can improve visualization of vascular enhancement), virtual nonenhanced imaging (which better depicts vascular calcification), and, potentially, ventricular perfusion maps (to assess myocardial ischemia). In addition, quantitative assessment of central vascular and parenchymal enhancement can be used to evaluate pulmonary hemodynamics in patients with PH. The current status and potential advantages and limitations of DECT for imaging of PH are reviewed, and current evidence is supplemented with data from a tertiary referral center for PH.
Collapse
Affiliation(s)
- Seyed Ameli-Renani
- From the Department of Radiology (S.A.R., F.R., A.N., L.R., A.W., H.K.S., A.D., I.V.) and Pulmonary Hypertension Unit (J.L.B., B.M.), St George's Hospital, Blackshaw Road, London SW17 0PZ, England
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Chang ST, Desser TS, Gayer G, Menias CO. Metastatic Melanoma in the Chest and Abdomen: The Great Radiologic Imitator. Semin Ultrasound CT MR 2014; 35:272-89. [DOI: 10.1053/j.sult.2014.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|