1
|
Hochhegger B, Pasini R, Roncally Carvalho A, Rodrigues R, Altmayer S, Kayat Bittencourt L, Marchiori E, Forghani R. Artificial Intelligence for Cardiothoracic Imaging: Overview of Current and Emerging Applications. Semin Roentgenol 2023; 58:184-195. [PMID: 37087139 DOI: 10.1053/j.ro.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 03/07/2023]
Abstract
Artificial intelligence algorithms can learn by assimilating information from large datasets in order to decipher complex associations, identify previously undiscovered pathophysiological states, and construct prediction models. There has been tremendous interest and increased incorporation of artificial intelligence into various industries, including healthcare. As a result, there has been an exponential rise in the number of research articles and industry participants producing models intended for a variety of applications in medical imaging, which can be challenging to navigate for radiologists. In thoracic imaging, multiple applications are being evaluated for chest radiography and computed tomography and include applications for lung nodule evaluation and cancer imaging, quantifying diffuse lung disorders, and cardiac imaging, to name a few. This review aims to provide an overview of current clinical AI models, focusing on the most common clinical applications of AI in cardiothoracic imaging.
Collapse
|
2
|
Cellina M, Cè M, Irmici G, Ascenti V, Caloro E, Bianchi L, Pellegrino G, D’Amico N, Papa S, Carrafiello G. Artificial Intelligence in Emergency Radiology: Where Are We Going? Diagnostics (Basel) 2022; 12:diagnostics12123223. [PMID: 36553230 PMCID: PMC9777804 DOI: 10.3390/diagnostics12123223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Emergency Radiology is a unique branch of imaging, as rapidity in the diagnosis and management of different pathologies is essential to saving patients' lives. Artificial Intelligence (AI) has many potential applications in emergency radiology: firstly, image acquisition can be facilitated by reducing acquisition times through automatic positioning and minimizing artifacts with AI-based reconstruction systems to optimize image quality, even in critical patients; secondly, it enables an efficient workflow (AI algorithms integrated with RIS-PACS workflow), by analyzing the characteristics and images of patients, detecting high-priority examinations and patients with emergent critical findings. Different machine and deep learning algorithms have been trained for the automated detection of different types of emergency disorders (e.g., intracranial hemorrhage, bone fractures, pneumonia), to help radiologists to detect relevant findings. AI-based smart reporting, summarizing patients' clinical data, and analyzing the grading of the imaging abnormalities, can provide an objective indicator of the disease's severity, resulting in quick and optimized treatment planning. In this review, we provide an overview of the different AI tools available in emergency radiology, to keep radiologists up to date on the current technological evolution in this field.
Collapse
Affiliation(s)
- Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121 Milan, Italy
- Correspondence:
| | - Maurizio Cè
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Giovanni Irmici
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Velio Ascenti
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Elena Caloro
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Lorenzo Bianchi
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Giuseppe Pellegrino
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
| | - Natascha D’Amico
- Unit of Diagnostic Imaging and Stereotactic Radiosurgery, Centro Diagnostico Italiano, Via Saint Bon 20, 20147 Milan, Italy
| | - Sergio Papa
- Unit of Diagnostic Imaging and Stereotactic Radiosurgery, Centro Diagnostico Italiano, Via Saint Bon 20, 20147 Milan, Italy
| | - Gianpaolo Carrafiello
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono, 7, 20122 Milan, Italy
- Radiology Department, Fondazione IRCCS Cà Granda, Policlinico di Milano Ospedale Maggiore, Via Sforza 35, 20122 Milan, Italy
| |
Collapse
|
3
|
Hoang-Thi TN, Chassagnon G, Tran HD, Le-Dong NN, Dinh-Xuan AT, Revel MP. How Artificial Intelligence in Imaging Can Better Serve Patients with Bronchial and Parenchymal Lung Diseases? J Pers Med 2022; 12:jpm12091429. [PMID: 36143214 PMCID: PMC9505778 DOI: 10.3390/jpm12091429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
With the rapid development of computing today, artificial intelligence has become an essential part of everyday life, with medicine and lung health being no exception. Big data-based scientific research does not mean simply gathering a large amount of data and letting the machines do the work by themselves. Instead, scientists need to identify problems whose solution will have a positive impact on patients’ care. In this review, we will discuss the role of artificial intelligence from both physiological and anatomical standpoints, starting with automatic quantitative assessment of anatomical structures using lung imaging and considering disease detection and prognosis estimation based on machine learning. The evaluation of current strengths and limitations will allow us to have a broader view for future developments.
Collapse
Affiliation(s)
- Trieu-Nghi Hoang-Thi
- Department of Diagnostic Imaging, Vinmec Healthcare System, Ho Chi Minh City 70000, Vietnam
| | - Guillaume Chassagnon
- AP-HP. Centre, Cochin Hospital, Department of Radiology, Université de Paris, 75005 Paris, France
| | - Hai-Dang Tran
- Department of Diagnostic Imaging, Vinmec Healthcare System, Ho Chi Minh City 70000, Vietnam
| | - Nhat-Nam Le-Dong
- AP-HP. Centre, Cochin Hospital, Department of Respiratory Physiology, Université de Paris, 75005 Paris, France
| | - Anh Tuan Dinh-Xuan
- AP-HP. Centre, Cochin Hospital, Department of Respiratory Physiology, Université de Paris, 75005 Paris, France
| | - Marie-Pierre Revel
- AP-HP. Centre, Cochin Hospital, Department of Radiology, Université de Paris, 75005 Paris, France
| |
Collapse
|
4
|
Padash S, Mohebbian MR, Adams SJ, Henderson RDE, Babyn P. Pediatric chest radiograph interpretation: how far has artificial intelligence come? A systematic literature review. Pediatr Radiol 2022; 52:1568-1580. [PMID: 35460035 PMCID: PMC9033522 DOI: 10.1007/s00247-022-05368-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/28/2022] [Accepted: 03/24/2022] [Indexed: 10/24/2022]
Abstract
Most artificial intelligence (AI) studies have focused primarily on adult imaging, with less attention to the unique aspects of pediatric imaging. The objectives of this study were to (1) identify all publicly available pediatric datasets and determine their potential utility and limitations for pediatric AI studies and (2) systematically review the literature to assess the current state of AI in pediatric chest radiograph interpretation. We searched PubMed, Web of Science and Embase to retrieve all studies from 1990 to 2021 that assessed AI for pediatric chest radiograph interpretation and abstracted the datasets used to train and test AI algorithms, approaches and performance metrics. Of 29 publicly available chest radiograph datasets, 2 datasets included solely pediatric chest radiographs, and 7 datasets included pediatric and adult patients. We identified 55 articles that implemented an AI model to interpret pediatric chest radiographs or pediatric and adult chest radiographs. Classification of chest radiographs as pneumonia was the most common application of AI, evaluated in 65% of the studies. Although many studies report high diagnostic accuracy, most algorithms were not validated on external datasets. Most AI studies for pediatric chest radiograph interpretation have focused on a limited number of diseases, and progress is hindered by a lack of large-scale pediatric chest radiograph datasets.
Collapse
Affiliation(s)
- Sirwa Padash
- Department of Medical Imaging, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, S7N 0W8, Canada.
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | - Mohammad Reza Mohebbian
- Department of Electrical and Computer Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Scott J Adams
- Department of Medical Imaging, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, S7N 0W8, Canada
| | - Robert D E Henderson
- Department of Medical Imaging, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, S7N 0W8, Canada
| | - Paul Babyn
- Department of Medical Imaging, University of Saskatchewan, 103 Hospital Drive, Saskatoon, Saskatchewan, S7N 0W8, Canada
| |
Collapse
|
5
|
Reponen J, Niinimäki J. Emergence of teleradiology, PACS, and other radiology IT solutions in Acta Radiologica. Acta Radiol 2021; 62:1525-1533. [PMID: 34637341 DOI: 10.1177/02841851211051003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
For this historical review, we searched a database containing all the articles published in Acta Radiologica during its 100-year history to find those on the use of information technology (IT) in radiology. After reading the full texts, we selected the presented articles according to major radiology IT domains such as teleradiology, picture archiving and communication systems, image processing, image analysis, and computer-aided diagnostics in order to describe the development as it appeared in the journal. Publications generally follow IT megatrends, but because the contents of Acta Radiologica are mainly clinically oriented, some technology achievements appear later than they do in journals discussing mainly imaging informatics topics.
Collapse
Affiliation(s)
- Jarmo Reponen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jaakko Niinimäki
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland
- Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
6
|
Artificial Intelligence for Image Interpretation: Point-The Radiologist's Potential Friend. AJR Am J Roentgenol 2021; 217:556-557. [PMID: 33533640 DOI: 10.2214/ajr.21.25564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|