1
|
Stanchev PE, Dimitrova M, Makakova D, Tilov B. Exploring the Differential Diagnosis of Adrenal Adenoma in the Context of Situs Ambiguous: A Clinical Case Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:2010. [PMID: 39768890 PMCID: PMC11727780 DOI: 10.3390/medicina60122010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025]
Abstract
Situs anomalies, including situs inversus and situs ambiguous (SAMB), are rare congenital conditions typically noted in pediatric populations, with SAMB being particularly uncommon in adults. This case study addresses the incidental discovery of situs ambiguous with polysplenia in a 65-year-old man evaluated for suspected adrenal adenoma. The patient's medical history included benign prostatic hyperplasia and tuberculous pleurisy. Methods included a thorough physical examination and laboratory tests, which showed normal cortisol levels and ACTH rhythm. Contrast-enhanced CT imaging revealed multiple spleens near the right adrenal region, altered liver positioning, a truncated pancreas, and a right-sided stomach, while the right adrenal gland was not visualized. Notably, the patient exhibited minimal symptoms despite these significant anatomical anomalies. The findings underscore the rarity of situs ambiguous in adults and its unexpected association with endocrine pathology. This case highlights the importance of comprehensive imaging and a multidisciplinary approach in managing patients with unusual anatomical presentations. It suggests that situs anomalies may be more prevalent in adult populations than previously recognized and emphasizes the need for increased clinical awareness and evaluation in similar cases.
Collapse
Affiliation(s)
- Pavel E. Stanchev
- Clinic of Endocrinology and Metabolic Diseases, St. George University Hospital, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Mariya Dimitrova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Desislava Makakova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| | - Boris Tilov
- Medical College, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
| |
Collapse
|
2
|
Chen R, Su Q, Li Y, Shen P, Zhang J, Tan Y. Multi-sequence MRI-based radiomics model to preoperatively predict the WHO/ISUP grade of clear Cell Renal Cell Carcinoma: a two-center study. BMC Cancer 2024; 24:1176. [PMID: 39333970 PMCID: PMC11438199 DOI: 10.1186/s12885-024-12930-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES To develop radiomics models based on multi-sequence MRI from two centers for the preoperative prediction of the WHO/ISUP grade of Clear Cell Renal Cell Carcinoma (ccRCC). METHODS This retrospective study included 334 ccRCC patients from two centers. Significant clinical factors were identified through univariate and multivariate analyses. MRI sequences included Dynamic contrast-enhanced MRI, axial fat-suppressed T2-weighted imaging, diffusion-weighted imaging, and in-phase/out-of-phase images. Feature selection methods and logistic regression (LR) were used to construct clinical and radiomics models, and a combined model was developed using the Rad-score and significant clinical factors. Additionally, seven classifiers were used to construct the combined model and different folds LR was used to construct the combined model to evaluate its performance. Models were evaluated using receiver operating characteristic (ROC) curves, area under the curve (AUC), and decision curve analysis (DCA). The Delong test compared ROC performance, with p < 0.050 considered significant. RESULTS Multivariate analysis identified intra-tumoral vessels as an independent predictor of high-grade ccRCC. In the external validation set, the radiomics model (AUC = 0.834) outperformed the clinical model (AUC = 0.762), with the combined model achieving the highest AUC (0.855) and significantly outperforming the clinical model (p = 0.003). DCA showed that the combined model had a higher net benefit within the 0.04-0.54 risk threshold range than clinical model. Additionally, the combined model constructed using logistic regression has a higher priority compared to other classifiers. Additionally, 10-fold cross-validation with LR for the combined model showed consistent AUC values (0.849-0.856) across different folds. CONCLUSION The radiomics models based on multi-sequence MRI might be a noninvasive and effective tool, demonstrating good efficacy in preoperatively predicting the WHO/ISUP grade of ccRCC.
Collapse
Affiliation(s)
- Ruihong Chen
- Department of Radiology, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, Shanxi Province, 030001, P.R. China
- Department of College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, P.R. China
| | - Qiaona Su
- Department of Radiology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/ Cancer Hospital Affiliated to Shanxi Medical University, No. 3 Workers' New Street, Taiyuan, Shanxi Province, 030013, P.R. China
- Department of College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, P.R. China
| | - Yangyang Li
- Department of Radiology, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, Shanxi Province, 030001, P.R. China
- Department of College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, P.R. China
| | - Pengxin Shen
- Department of Radiology, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, Shanxi Province, 030001, P.R. China
- Department of College of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi Province, 030001, P.R. China
| | - Jianxin Zhang
- Department of Radiology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/ Cancer Hospital Affiliated to Shanxi Medical University, No. 3 Workers' New Street, Taiyuan, Shanxi Province, 030013, P.R. China.
| | - Yan Tan
- Department of Radiology, First Hospital of Shanxi Medical University, No. 85 Jiefang South Road, Taiyuan, Shanxi Province, 030001, P.R. China.
- Department of Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030001, P.R. China.
| |
Collapse
|
3
|
Trovato P, Simonetti I, Morrone A, Fusco R, Setola SV, Giacobbe G, Brunese MC, Pecchi A, Triggiani S, Pellegrino G, Petralia G, Sica G, Petrillo A, Granata V. Scientific Status Quo of Small Renal Lesions: Diagnostic Assessment and Radiomics. J Clin Med 2024; 13:547. [PMID: 38256682 PMCID: PMC10816509 DOI: 10.3390/jcm13020547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/05/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024] Open
Abstract
Background: Small renal masses (SRMs) are defined as contrast-enhanced renal lesions less than or equal to 4 cm in maximal diameter, which can be compatible with stage T1a renal cell carcinomas (RCCs). Currently, 50-61% of all renal tumors are found incidentally. Methods: The characteristics of the lesion influence the choice of the type of management, which include several methods SRM of management, including nephrectomy, partial nephrectomy, ablation, observation, and also stereotactic body radiotherapy. Typical imaging methods available for differentiating benign from malignant renal lesions include ultrasound (US), contrast-enhanced ultrasound (CEUS), computed tomography (CT), and magnetic resonance imaging (MRI). Results: Although ultrasound is the first imaging technique used to detect small renal lesions, it has several limitations. CT is the main and most widely used imaging technique for SRM characterization. The main advantages of MRI compared to CT are the better contrast resolution and tissue characterization, the use of functional imaging sequences, the possibility of performing the examination in patients allergic to iodine-containing contrast medium, and the absence of exposure to ionizing radiation. For a correct evaluation during imaging follow-up, it is necessary to use a reliable method for the assessment of renal lesions, represented by the Bosniak classification system. This classification was initially developed based on contrast-enhanced CT imaging findings, and the 2019 revision proposed the inclusion of MRI features; however, the latest classification has not yet received widespread validation. Conclusions: The use of radiomics in the evaluation of renal masses is an emerging and increasingly central field with several applications such as characterizing renal masses, distinguishing RCC subtypes, monitoring response to targeted therapeutic agents, and prognosis in a metastatic context.
Collapse
Affiliation(s)
- Piero Trovato
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Igino Simonetti
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Alessio Morrone
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy;
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Sergio Venanzio Setola
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Giuliana Giacobbe
- General and Emergency Radiology Department, “Antonio Cardarelli” Hospital, 80131 Naples, Italy;
| | - Maria Chiara Brunese
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy;
| | - Annarita Pecchi
- Department of Radiology, University of Modena and Reggio Emilia, 41121 Modena, Italy;
| | - Sonia Triggiani
- Postgraduate School of Radiodiagnostics, University of Milan, 20122 Milan, Italy; (S.T.); (G.P.)
| | - Giuseppe Pellegrino
- Postgraduate School of Radiodiagnostics, University of Milan, 20122 Milan, Italy; (S.T.); (G.P.)
| | - Giuseppe Petralia
- Department of Medical Imaging and Radiation Sciences, IEO European Institute of Oncology IRCCS, Via Ripamonti 435, 20141 Milan, Italy;
| | - Giacomo Sica
- Radiology Unit, Monaldi Hospital, Azienda Ospedaliera dei Colli, 80131 Naples, Italy;
| | - Antonella Petrillo
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| | - Vincenza Granata
- Radiology Division, Istituto Nazionale Tumori-IRCCS-Fondazione G. Pascale, 80131 Naples, Italy; (P.T.); (I.S.); (S.V.S.); (A.P.); (V.G.)
| |
Collapse
|
4
|
Wu LD, Yue XF, Wu LX, Yang M, Chen Y, Yu J, Diao N, Zhang XH, Zhu LR, Han P. Differential diagnosis of adrenal adenomas and metastases using spectral parameters in dual-layer detector spectral CT. J Cancer Res Clin Oncol 2023; 149:10453-10463. [PMID: 37278828 PMCID: PMC10423139 DOI: 10.1007/s00432-023-04931-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/23/2023] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To assess the diagnostic value of spectral parameters in differentiating adrenal adenomas from metastases based on dual-layer detector spectral CT (DLSCT). MATERIALS AND METHODS Patients with adenomas or metastases who underwent enhanced DLSCT of the adrenals were enrolled. The CT values of virtual non-contrast images (CTVNC), iodine density (ID) values, and Z-effective (Z-eff) values, the normalized iodine density (NID) values, slopes of spectral HU curves (s-SHC), and iodine-to-CTVNC ratios of the tumors were measured in each phase. Receiver operating characteristic (ROC) curves were used to compare the diagnostic values. RESULTS Ninety-nine patients with 106 adrenal lesions (63 adenomas, 43 metastases) were included. In the venous phase, all spectral parameters were significantly different between adenomas and metastases (all p < 0.05). The combined spectral parameters showed a better diagnostic performance in the venous phase than in other phase (p < 0.05). The iodine-to-CTVNC value had a larger area under the ROC curve (AUC) than the other spectral parameters in the differential diagnosis of adenomas and metastases, with a diagnostic sensitivity and specificity of 74.4% and 91.9%, respectively. In the differential diagnosis of lipid-rich adenomas, lipid-poor adenomas and metastases, the CTVNC value and s-SHC value also had a larger AUC than the other spectral parameters, with a diagnostic sensitivity of 97.7%, 79.1% and specificity of 91.2%, 93.1%, respectively. CONCLUSION On DLSCT, the combined spectral parameters in the venous phase could help better distinguish adrenal adenomas from metastases. The iodine-to-CTVNC, CTVNC and s-SHC values had the highest AUC values in differentiating adenomas, lipid-rich adenomas and lipid-poor adenomas from metastases, respectively.
Collapse
Affiliation(s)
- Lei-di Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Radiology, Zhongshan City People's Hospital, Zhongshan, China
| | - Xiao-Fei Yue
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin-Xia Wu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Yang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Chen
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Yu
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nan Diao
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Liang-Ru Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Han
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
5
|
Sun J, Xing Z, Pan L, Wang Q, Xing W, Chen J. Using the "2 standard deviations" rule with Dixon MRI to differentiate renal cell carcinoma types. Clin Imaging 2023; 101:113-120. [PMID: 37329638 DOI: 10.1016/j.clinimag.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 05/22/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Clear cell and non-clear cell renal cell carcinoma (RCC) are distinguishable based on microscopic fat, detectable by chemical shift MRI. However, these assessments are often subjective. Conversely, Dixon MRIs and the "2 standard deviations" rule (2SDR) are quantitative methods that may decrease diagnostic subjectivity. Therefore, this study assessed the value of the 2SDR for detecting microscopic fat and thus differentiating clear cell and non-clear cell RCC using Dixon MRI. METHODS This retrospective study included patients with RCC who underwent preoperative Dixon MRI. The patients were grouped based on tumor type: clear cell RCC and non-clear cell RCC. The 2SDR value was calculated based on in-phase and opposed-phase images and then compared between the two groups. 2SDR values >0 indicated clear cell RCCs, whereas values <0 indicated non-clear cell RCC. RESULTS We included 151 patients; 114 patients had clear cell RCC, of which 106 had a 2SDR value >0. Furthermore, 37 patients had non-clear cell RCC, of which 3 had a 2SDR value >0. The 2SDR value was significantly higher in the clear cell RCC group than in the non-clear cell RCC group (p = 0.000). Overall, 93.0% (106/114) and 8.1% (3/37) of patients with clear cell and non-clear cell RCC, respectively, had microscopic fat. The evaluation indices for this 2SDR method were: accuracy: 92.72%, sensitivity: 92.98%, specificity: 91.89%, positive predictive value: 97.25%, and negative predictive value: 80.95%. CONCLUSIONS 2SDR values calculated from Dixon magnetic resonance images can differentiate clear cell from non-clear cell RCCs by detecting microscopic fat. PRECIS The "2 standard deviations" rule value calculated from Dixon MR images differentiates clear cell from non-clear cell renal cell carcinoma with high efficiency by detecting microscopic fat.
Collapse
Affiliation(s)
- Jun Sun
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Zhaoyu Xing
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Liang Pan
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Qing Wang
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Wei Xing
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| | - Jie Chen
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
6
|
Corwin MT, Kadivar SC, Graves CE, Kamangar E, Carney BW, Campbell MJ. CT of hemorrhagic adrenal adenomas: radiologic-pathologic correlation. Abdom Radiol (NY) 2023; 48:680-687. [PMID: 36380211 DOI: 10.1007/s00261-022-03741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE To describe the appearance of chronically hemorrhagic adenomas on adrenal protocol CT and correlate imaging with pathologic findings. METHODS Retrospective case series of adult patients with resected adrenal adenomas showing internal hemorrhage at histology. Seven of nine patients underwent pre-operative adrenal protocol CT and 2/7 underwent unenhanced CT with portal venous phase CT. Two abdominal radiologists in consensus assessed the CT images for the presence of calcifications, macroscopic fat, cystic/necrotic appearance, and the presence, pattern, and percent nodule volume of areas < 10 HU on unenhanced CT. Absolute washout was calculated using a large ROI, and ROIs on the highest and lowest attenuating regions on the portal venous phase. RESULTS Mean adenoma length was 4.9 cm. All adenomas had areas measuring < 10 HU on unenhanced CT, ranging from < 20 to > 80% nodule volume. Calcifications were present in 4/9 adenomas and gross fat in 4/9 on CT. Of the seven cases with adrenal protocol CT, the absolute washout was < 60% in 5/7 using the large ROI, 5/7 using the low attenuation ROI, and 7/7 using the high attenuation ROI. At histology, all nine cases had microscopic evidence of hemorrhage, lipid rich adenoma cells, and fibrosclerosis. Myelolipomatous changes were identified in 4/9 cases, with the remaining five cases showing lipomatous metaplasia without a myeloid component. CONCLUSION Chronically hemorrhagic adrenal adenomas demonstrated variable areas < 10 HU on unenhanced CT corresponding to lipid rich adenoma cells. Absolute washout was most often < 60%, hypothesized to be due to fibrosclerosis within the adenomas.
Collapse
Affiliation(s)
- Michael T Corwin
- Davis Medical Center, Department of Radiology, University of California Davis Medical Center, 4860 Y Street, Suite 3100, Sacramento, CA, 95817, USA.
| | - Sohrab C Kadivar
- Davis Medical Center, Department of Pathology, University of California Davis Medical Center, 4400 V Street, Pathology Building, Sacramento, CA, 95817, USA
| | - Claire E Graves
- Davis Medical Center, Department of Surgery, University of California Davis Medical Center, 2221 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Elham Kamangar
- Davis Medical Center, Department of Pathology, University of California Davis Medical Center, 4400 V Street, Pathology Building, Sacramento, CA, 95817, USA
| | - Benjamin W Carney
- Davis Medical Center, Department of Radiology, University of California Davis Medical Center, 4860 Y Street, Suite 3100, Sacramento, CA, 95817, USA
| | - Michael J Campbell
- Davis Medical Center, Department of Surgery, University of California Davis Medical Center, 2221 Stockton Blvd, Sacramento, CA, 95817, USA
| |
Collapse
|
7
|
Cao L, Xu W. Radiomics approach based on biphasic CT images well differentiate "early stage" of adrenal metastases from lipid-poor adenomas: A STARD compliant article. Medicine (Baltimore) 2022; 101:e30856. [PMID: 36197274 PMCID: PMC9509040 DOI: 10.1097/md.0000000000030856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The aim of the study was to develop an optimal radiomics model based on abdominal contrast-enhanced computed tomography (CECT) for pre-operative differentiation of "early stage" adrenal metastases from lipid-poor adenomas (LPAs). This retrospective study included 188 patients who underwent abdominal CECT (training cohort: LPAs, 68; metastases, 64; validation cohort: LPAs, 29; metastases, 27). Abdominal CECT included plain, arterial, portal, and venous imaging. Clinical and CECT radiological features were assessed and significant features were selected. Radiomic features of the adrenal lesions were extracted from four-phase CECT images. Significant radiomics features were selected using the least absolute shrinkage and selection operator (LASSO) and multivariable logistic regression. The clinical-radiological, unenhanced radiomics, arterial radiomics, portal radiomics, venous radiomics, combined radiomics, and clinical-radiological-radiomics models were established using a support vector machine (SVM). The DeLong test was used to compare the areas under the receiver operating characteristic curves (AUCs) of all models. The AUCs of the unenhanced (0.913), arterial (0.845), portal (0.803), and venous (0.905) radiomics models were all higher than those of the clinical-radiological model (0.788) in the testing dataset. The AUC of the combined radiomics model (incorporating plain and venous radiomics features) was further improved to 0.953, which was significantly higher than portal radiomics model (P = .033) and clinical-radiological model (P = .009), with the highest accuracy (89.13%) and a relatively stable sensitivity (91.67%) and specificity (86.36%). As the optimal model, the combined radiomics model based on biphasic CT images is effective enough to differentiate "early stage" adrenal metastases from LPAs by reducing the radiation dose.
Collapse
Affiliation(s)
- Lixiu Cao
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for China, Tianjin, China
- Department of ECT, Tangshan People’s Hospital, Tangshan, China
| | - Wengui Xu
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for China, Tianjin, China
- *Correspondence: Wengui Xu, Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for China, No. 1 Huanhu West Road, Hexi District, Tianjin 300060, China (e-mail: )
| |
Collapse
|
8
|
In Vivo Renal Lipid Quantification by Accelerated Magnetic Resonance Spectroscopic Imaging at 3T: Feasibility and Reliability Study. Metabolites 2022; 12:metabo12050386. [PMID: 35629890 PMCID: PMC9146867 DOI: 10.3390/metabo12050386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
A reliable and practical renal-lipid quantification and imaging method is needed. Here, the feasibility of an accelerated MRSI method to map renal fat fractions (FF) at 3T and its repeatability were investigated. A 2D density-weighted concentric-ring-trajectory MRSI was used for accelerating the acquisition of 48 × 48 voxels (each of 0.25 mL spatial resolution) without respiratory navigation implementations. The data were collected over 512 complex-FID timepoints with a 1250 Hz spectral bandwidth. The MRSI sequence was designed with a metabolite-cycling technique for lipid–water separation. The in vivo repeatability performance of the sequence was assessed by conducting a test–reposition–retest study within healthy subjects. The coefficient of variation (CV) in the estimated FF from the test–retest measurements showed a high degree of repeatability of MRSI-FF (CV = 4.3 ± 2.5%). Additionally, the matching level of the spectral signature within the same anatomical region was also investigated, and their intrasubject repeatability was also high, with a small standard deviation (8.1 ± 6.4%). The MRSI acquisition duration was ~3 min only. The proposed MRSI technique can be a reliable technique to quantify and map renal metabolites within a clinically acceptable scan time at 3T that supports the future application of this technique for the non-invasive characterization of heterogeneous renal diseases and tumors.
Collapse
|
9
|
Tu W, Gerson R, Abreu-Gomez J, Udare A, Mcphedran R, Schieda N. Comparison of MRI features in lipid-rich and lipid-poor adrenal adenomas using subjective and quantitative analysis. Abdom Radiol (NY) 2021; 46:4864-4872. [PMID: 34120206 DOI: 10.1007/s00261-021-03161-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/25/2021] [Accepted: 06/01/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To compare MR-imaging features in benign lipid-rich and lipid-poor adrenal adenomas. MATERIALS AND METHODS With institutional review board approval, we compared 23 consecutive lipid-poor adenomas (chemical shift [CS] signal intensity [SI] index < 16.5%) imaged with MRI to 29 consecutive lipid-rich adenomas (CS-SI index ≥ 16.5%) imaged during the same time period. A blinded radiologist measured T2-weighted (T2W) SI ratio (adrenal adenoma/psoas muscle), dynamic enhancement wash-in (WI) and wash-out (WO) indices, and T2W texture features. Two blinded Radiologists (R1/R2) assessed T2W-SI (relative to renal cortex) and T2W heterogeneity (using 5-Point Likert scales). Comparisons were performed between groups using independent t tests and Chi-square with Holm-Bonferroni correction. RESULTS There was no difference in age or gender between groups (p = 0.594, 0.051 respectively). Subjectively, all lipid-rich and lipid-poor adenomas were rated hypointense or isointense compared to renal cortex and T2W-SI did not differ between groups (p = 0.129, 0.124 for R1, R2). Agreement was substantial (Kappa = 0.67). There was no difference in T2W SI ratio (1.8 ± 0.9 [0.5-4.3] lipid rich versus 2.2 ± 1.0 [0.6-4.3] lipid poor, p = 0.139). Enhancement WI and WO did not differ comparing lipid-rich and lipid-poor adenomas (p = 0.759, 0.422 respectively). There was no difference comparing lipid-rich and lipid-poor adenomas T2W heterogeneity judged subjectively (p = 0.695, 0.139 for R1, R2; Kappa = 0.19) or by texture analysis (entropy, kurtosis, skewness; p = 0.134-0.191) with all adenomas except for one rated as mostly or completely homogeneous. CONCLUSIONS There is no difference in T2W signal intensity, enhancement pattern or T2W heterogeneity judged subjectively or by quantitative texture analysis comparing lipid-poor and lipid-rich adrenal adenomas.
Collapse
Affiliation(s)
- Wendy Tu
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Rosalind Gerson
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Jorge Abreu-Gomez
- Joint Department of Medical Imaging, The University Health Network, Toronto, ON, Canada
| | - Amar Udare
- Juravinski Hospital, Hamilton Health Sciences, Hamilton, ON, Canada
| | - Rachel Mcphedran
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada
| | - Nicola Schieda
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, Ottawa, ON, Canada.
- C1 Radiology, The Ottawa Hospital, University of Ottawa, 1053 Carling Avenue, Ottawa, ON, K1Y 4E9, Canada.
| |
Collapse
|
10
|
Tu W, Abreu-Gomez J, Udare A, Alrashed A, Schieda N. Utility of T2-weighted MRI to Differentiate Adrenal Metastases from Lipid-Poor Adrenal Adenomas. Radiol Imaging Cancer 2020; 2:e200011. [PMID: 33778748 DOI: 10.1148/rycan.2020200011] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022]
Abstract
Purpose To evaluate T2-weighted MRI features to differentiate adrenal metastases from lipid-poor adenomas. Materials and Methods With institutional review board approval, this study retrospectively compared 40 consecutive patients (mean age, 66 years ± 10 [standard deviation]) with metastases to 23 patients (mean age, 60 years ± 15) with lipid-poor adenomas at 1.5- and 3-T MRI between June 2016 and March 2019. A blinded radiologist measured T2-weighted signal intensity (SI) ratio (SInodule/SIpsoas muscle), T2-weighted histogram features, and chemical shift SI index. Two blinded radiologists (radiologist 1 and radiologist 2) assessed T2-weighted SI and T2-weighted heterogeneity using five-point Likert scales. Results Subjectively, T2-weighted SI (P < .001 for radiologist 1 and radiologist 2) and T2-weighted heterogeneity (P < .001, for radiologist 1 and radiologist 2) were higher in metastases compared with adenomas when assessed by both radiologists. Agreement between the radiologists was substantial for T2-weighted SI (Cohen κ = 0.67) and T2-weighted heterogeneity (κ = 0.62). Metastases had higher T2-weighted SI ratio than adenomas (3.6 ± 1.7 [95% confidence interval {CI}: 0.2, 8.2] vs 2.2 ± 1.0 [95% CI: 0.6, 4.3], P < .001) and higher T2-weighted entropy (6.6 ± 0.6 [95% CI: 4.9, 7.5] vs 5.0 ± 0.8 [95% CI: 3.5, 6.6], P < .001). At multivariate analysis, T2-weighted entropy was the best differentiating feature (P < .001). Chemical shift SI index did not differ between metastases and adenomas (P = .748). Area under the receiver operating characteristic curve (AUC) for T2-weighted SI ratio and T2-weighted entropy were 0.76 (95% CI: 0.64, 0.88) and 0.94 (95% CI: 0.88, 0.99). The logistic regression model combining T2-weighted SI ratio with T2-weighted entropy yielded AUC of 0.95 (95% CI: 0.91, 0.99) and did not differ compared with T2-weighted entropy alone (P = .268). There was no difference in logistic regression model accuracy comparing the data by either field strength, 1.5- or 3-T MRI (P > .05). Conclusion Logistic regression models combining T2-weighted SI and T2-weighted heterogeneity can differentiate metastases from lipid-poor adenomas. Validation of these preliminary results is required.Keywords: Adrenal, MR-Imaging, UrinarySupplemental material is available for this article.© RSNA, 2020.
Collapse
Affiliation(s)
- Wendy Tu
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 1053 Carling Ave, C1 Radiology, Ottawa, ON, Canada K1Y 4E9 (W.T., J.A.G., A.U., N.S.); and Department of Radiology and Medical Imaging, King Saud University Medical City, King Khalid University Hospital, Riyadh, Saudi Arabia (A.A.)
| | - Jorge Abreu-Gomez
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 1053 Carling Ave, C1 Radiology, Ottawa, ON, Canada K1Y 4E9 (W.T., J.A.G., A.U., N.S.); and Department of Radiology and Medical Imaging, King Saud University Medical City, King Khalid University Hospital, Riyadh, Saudi Arabia (A.A.)
| | - Amar Udare
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 1053 Carling Ave, C1 Radiology, Ottawa, ON, Canada K1Y 4E9 (W.T., J.A.G., A.U., N.S.); and Department of Radiology and Medical Imaging, King Saud University Medical City, King Khalid University Hospital, Riyadh, Saudi Arabia (A.A.)
| | - Abdulmohsen Alrashed
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 1053 Carling Ave, C1 Radiology, Ottawa, ON, Canada K1Y 4E9 (W.T., J.A.G., A.U., N.S.); and Department of Radiology and Medical Imaging, King Saud University Medical City, King Khalid University Hospital, Riyadh, Saudi Arabia (A.A.)
| | - Nicola Schieda
- Department of Medical Imaging, The Ottawa Hospital, University of Ottawa, 1053 Carling Ave, C1 Radiology, Ottawa, ON, Canada K1Y 4E9 (W.T., J.A.G., A.U., N.S.); and Department of Radiology and Medical Imaging, King Saud University Medical City, King Khalid University Hospital, Riyadh, Saudi Arabia (A.A.)
| |
Collapse
|
11
|
Yalniz C, Morani AC, Waguespack SG, Elsayes KM. Imaging of Adrenal-Related Endocrine Disorders. Radiol Clin North Am 2020; 58:1099-1113. [PMID: 33040851 DOI: 10.1016/j.rcl.2020.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Endocrine disorders associated with adrenal pathologies can be caused by insufficient adrenal gland function or excess hormone secretion. Excess hormone secretion may result from adrenal hyperplasia or hormone-secreting (ie, functioning) adrenal masses. Based on the hormone type, functioning adrenal masses can be classified as cortisol-producing tumors, aldosterone producing tumors, and androgen-producing tumors, which originate in the adrenal cortex, as well as catecholamine-producing pheochromocytomas, which originate in the medulla. Nonfunctioning lesions can cause adrenal gland enlargement without causing hormonal imbalance. Evaluation of adrenal-related endocrine disorders requires clinical and biochemical workup associated with imaging evaluation to reach a diagnosis and guide management.
Collapse
Affiliation(s)
- Ceren Yalniz
- Department of Abdominal Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Ajaykumar C Morani
- Department of Abdominal Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Steven G Waguespack
- Department of Endocrine Neoplasia and Hormonal Disorders, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA
| | - Khaled M Elsayes
- Department of Abdominal Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Houston, TX 77030, USA.
| |
Collapse
|
12
|
Differentiation of pancreatic neuroendocrine tumors from pancreas renal cell carcinoma metastases on CT using qualitative and quantitative features. Abdom Radiol (NY) 2019; 44:992-999. [PMID: 30603880 DOI: 10.1007/s00261-018-01889-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE To assess qualitative and quantitative imaging features on enhanced CT that may differentiate pancreatic neuroendocrine tumors (PNETs) from pancreatic renal cell carcinoma (RCC) metastases. METHODS This IRB-approved multi-center retrospective case-control study compared 43 resected PNETs and 28 resected RCC metastases with pre-operative enhanced CT identified consecutively between 2003 and 2017. Two blinded radiologists (R1/R2) independently assessed tumor location, attenuation (relative to pancreas), composition (solid/cystic/mixed), homogeneity (homogeneous/heterogeneous), calcification, multiplicity, and for main pancreatic duct (MPD) dilation. Tumors were segmented for quantitative texture analysis. Data were analyzed with Chi square, logistic regression, and receiver operating characteristic (ROC). Inter-observer agreement was assessed (Cohen's kappa). RESULTS There was no difference in age, gender, location, attenuation, or composition (P > 0.05) between groups. PNETs were larger than RCC metastases (37 ± 23 mm vs. 26 ± 21 mm, P = 0.038), more frequently solitary (P < 0.001), subjectively more heterogeneous (P = 0.033/0.144, R1/R2), and associated with calcification (P = 0.002/0.004) and MPD dilation (P = 0.025/0.006). Agreement for subjective features was moderate-to-almost perfect (K = 0.4879-0.9481). Quantitative texture analysis showed higher entropy in PNETs (6.32 ± 0.49 versus 5.96 ± 0.53; P = 0.004) with no difference in other features studied (P > 0.05). Entropy had ROC area under the curve for diagnosis of PNET of 0.77 ± 0.06, with optimal sensitivity/specificity of 71.4/79.1%. CONCLUSIONS Compared to pancreatic RCC metastases, PNETs are larger, more frequently solitary, contain calcification, show MPD dilation, and are subjectively and quantitatively more heterogeneous tumors.
Collapse
|
13
|
Alshahrani MA, Bin Saeedan M, Alkhunaizan T, Aljohani IM, Azzumeea FM. Bilateral adrenal abnormalities: imaging review of different entities. Abdom Radiol (NY) 2019; 44:154-179. [PMID: 29938331 DOI: 10.1007/s00261-018-1670-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bilateral adrenal abnormalities are not infrequently encountered during routine daily radiology practice. The differential diagnoses of bilateral adrenal abnormalities include neoplastic and non-neoplastic entities. The bilateral adrenal tumors include metastasis, lymphoma, neuroblastoma, pheochromocytoma, adenoma, and myelolipoma. Non-neoplastic bilateral adrenal masses include infectious processes and haematomas. There are different diffuse bilateral adrenal changes such as adrenal atrophy, adrenal enlargement, adrenal calcifications, and altered adrenal enhancement. In this pictorial review article, we will discuss the imaging features of these entities with emphasis on their clinical implications.
Collapse
Affiliation(s)
- Meshal Ali Alshahrani
- Department of Radiology, King Faisal Specialist Hospital and Research Center, MBC-28, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Mnahi Bin Saeedan
- Department of Radiology, King Faisal Specialist Hospital and Research Center, MBC-28, P.O. Box 3354, Riyadh, 11211, Saudi Arabia.
| | - Tariq Alkhunaizan
- Department of Radiology, King Faisal Specialist Hospital and Research Center, MBC-28, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Ibtisam Musallam Aljohani
- Department of Radiology, King Faisal Specialist Hospital and Research Center, MBC-28, P.O. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Fahad Mohammed Azzumeea
- National Guard Health Affairs, King Abdulaziz Medical City, Medical Imaging Department, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Krishna S, Schieda N, Flood TA, Shanbhogue AK, Ramanathan S, Siegelman E. Magnetic resonance imaging (MRI) of the renal sinus. Abdom Radiol (NY) 2018; 43:3082-3100. [PMID: 29632991 DOI: 10.1007/s00261-018-1593-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This article presents methods to improve MR imaging approach of disorders of the renal sinus which are relatively uncommon and can be technically challenging. Multi-planar Single-shot T2-weighted (T2W) Fast Spin-Echo sequences are recommended to optimally assess anatomic relations of disease. Multi-planar 3D-T1W Gradient Recalled Echo imaging before and after Gadolinium administration depicts the presence and type of enhancement and relation to arterial, venous, and collecting system structures. To improve urographic phase MRI, concentrated Gadolinium in the collecting systems should be diluted. Diffusion-Weighted Imaging (DWI) should be performed before Gadolinium administration to minimize T2* effects. Renal sinus cysts are common but can occasionally be confused for dilated collecting system or calyceal diverticula, with the latter communicating with the collecting system and filling on urographic phase imaging. Vascular lesions (e.g., aneurysm, fistulas) may mimic cystic (or solid) lesions on non-enhanced MRI but can be suspected by noting similar signal intensity to the blood pool and diagnosis can be confirmed with MR angiogram/venogram. Multilocular cystic nephroma commonly extends to the renal sinus, however, to date are indistinguishable from cystic renal cell carcinoma (RCC). Solid hilar tumors are most commonly RCC and urothelial cell carcinoma (UCC). Hilar RCC are heterogeneous, hypervascular with epicenter in the renal cortex compared to UCC which are centered in the collecting system, homogeneously hypovascular, and show profound restricted diffusion. Diagnosis of renal sinus invasion in RCC is critically important as it is the most common imaging cause of pre-operative under-staging of disease. Fat is a normal component of the renal sinus; however, amount of sinus fat correlates with cardiovascular disease and is also seen in lipomatosis. Fat-containing hilar lesions include lipomas, angiomyolipomas, and less commonly other tumors which engulf sinus fat. Mesenchymal hilar tumors are rare. MR imaging diagnosis is generally not possible, although anatomic relations should be described to guide diagnosis by percutaneous biopsy or surgery.
Collapse
|
15
|
Sun J, Xing Z, Chen J, Zha T, Cao Y, Zhang D, Zeng D, Xing W. Fat status detection and histotypes differentiation in solid renal masses using Dixon technique. Clin Imaging 2018; 51:12-22. [PMID: 29414519 DOI: 10.1016/j.clinimag.2018.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/20/2018] [Accepted: 01/23/2018] [Indexed: 11/26/2022]
Abstract
PURPOSE To detect fat status and differentiate histotypes of renal masses by using Dixon technique. MATERIALS AND METHODS This study included 134 solid renal masses. Signal intensity index (SII) and fat fraction (FF) in different histotypes were compared. RESULTS Only angiomyolipoma (AML), clear cell renal cell carcinoma (RCC), and papillary RCC were confirmed to contain fat. The FF of 16.8% can effectively differentiate AML from clear cell RCC, so did the SII of 9.2% can differentiate clear cell RCC from non-clear cell RCC and rare benign histotypes. CONCLUSION Dixon technique successfully evaluated the fat status and histotypes of renal masses.
Collapse
Affiliation(s)
- Jun Sun
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Zhaoyu Xing
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Jie Chen
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Tingting Zha
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Yunjie Cao
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Dachuan Zhang
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Dexing Zeng
- Department of Medicine & Radiology, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Wei Xing
- Department of Radiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
16
|
|
17
|
Abstract
OBJECTIVE The purpose of this article is to review how fat is detected on imaging and to discuss the differential diagnosis of fat-containing liver lesions. CONCLUSION Fat is a highly useful feature in characterizing liver lesions on imaging. Although a variety of liver lesions can show fat on cross-sectional imaging, the presence of fat usually indicates that the lesion is of hepatocellular origin. Less commonly, nonhepatocellular fatty lesions may be distinguished by ancillary clinical and imaging features.
Collapse
|
18
|
Utility of MRI to Differentiate Clear Cell Renal Cell Carcinoma Adrenal Metastases From Adrenal Adenomas. AJR Am J Roentgenol 2017; 209:W152-W159. [DOI: 10.2214/ajr.16.17649] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Abstract
OBJECTIVE The objective of this article is to review the current role of CT and MRI for the characterization of adrenal nodules. CONCLUSION Unenhanced CT and chemical-shift MRI have high specificity for lipid-rich adenomas. Dual-energy CT provides comparable to slightly lower sensitivity for the diagnosis of lipid-rich adenomas but may improve characterization of lipid-poor adenomas. Nonadenomas containing intracellular lipid pose an imaging challenge; however, nonadenomas that contain lipid may be potentially diagnosed using other imaging features. Multiphase adrenal washout CT can be used to differentiate lipid-poor adenomas from metastases but is limited for the diagnosis of hypervascular malignancies and pheochromocytoma.
Collapse
|
20
|
|