1
|
Vaz SC, Woll JPP, Cardoso F, Groheux D, Cook GJR, Ulaner GA, Jacene H, Rubio IT, Schoones JW, Peeters MJV, Poortmans P, Mann RM, Graff SL, Dibble EH, de Geus-Oei LF. Joint EANM-SNMMI guideline on the role of 2-[ 18F]FDG PET/CT in no special type breast cancer : (endorsed by the ACR, ESSO, ESTRO, EUSOBI/ESR, and EUSOMA). Eur J Nucl Med Mol Imaging 2024; 51:2706-2732. [PMID: 38740576 PMCID: PMC11224102 DOI: 10.1007/s00259-024-06696-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 05/16/2024]
Abstract
INTRODUCTION There is much literature about the role of 2-[18F]FDG PET/CT in patients with breast cancer (BC). However, there exists no international guideline with involvement of the nuclear medicine societies about this subject. PURPOSE To provide an organized, international, state-of-the-art, and multidisciplinary guideline, led by experts of two nuclear medicine societies (EANM and SNMMI) and representation of important societies in the field of BC (ACR, ESSO, ESTRO, EUSOBI/ESR, and EUSOMA). METHODS Literature review and expert discussion were performed with the aim of collecting updated information regarding the role of 2-[18F]FDG PET/CT in patients with no special type (NST) BC and summarizing its indications according to scientific evidence. Recommendations were scored according to the National Institute for Health and Care Excellence (NICE) criteria. RESULTS Quantitative PET features (SUV, MTV, TLG) are valuable prognostic parameters. In baseline staging, 2-[18F]FDG PET/CT plays a role from stage IIB through stage IV. When assessing response to therapy, 2-[18F]FDG PET/CT should be performed on certified scanners, and reported either according to PERCIST, EORTC PET, or EANM immunotherapy response criteria, as appropriate. 2-[18F]FDG PET/CT may be useful to assess early metabolic response, particularly in non-metastatic triple-negative and HER2+ tumours. 2-[18F]FDG PET/CT is useful to detect the site and extent of recurrence when conventional imaging methods are equivocal and when there is clinical and/or laboratorial suspicion of relapse. Recent developments are promising. CONCLUSION 2-[18F]FDG PET/CT is extremely useful in BC management, as supported by extensive evidence of its utility compared to other imaging modalities in several clinical scenarios.
Collapse
Affiliation(s)
- Sofia C Vaz
- Nuclear Medicine-Radiopharmacology, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal.
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | - Fatima Cardoso
- Breast Unit, Champalimaud Clinical Center, Champalimaud Foundation, Lisbon, Portugal
| | - David Groheux
- Nuclear Medicine Department, Saint-Louis Hospital, Paris, France
- University Paris-Diderot, INSERM U976, Paris, France
- Centre d'Imagerie Radio-Isotopique (CIRI), La Rochelle, France
| | - Gary J R Cook
- Department of Cancer Imaging, King's College London, London, UK
- King's College London and Guy's & St Thomas' PET Centre, London, UK
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Gary A Ulaner
- Molecular Imaging and Therapy, Hoag Family Cancer Institute, Newport Beach, CA, USA
- University of Southern California, Los Angeles, CA, USA
| | - Heather Jacene
- Dana-Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Isabel T Rubio
- Breast Surgical Oncology, Clinica Universidad de Navarra, Madrid, Cancer Center Clinica Universidad de Navarra, Navarra, Spain
| | - Jan W Schoones
- Directorate of Research Policy, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-Jeanne Vrancken Peeters
- Department of Surgical Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Philip Poortmans
- Department of Radiation Oncology, Iridium Netwerk, Antwerp, Belgium
- University of Antwerp, Wilrijk, Antwerp, Belgium
| | - Ritse M Mann
- Radiology Department, RadboudUMC, Nijmegen, The Netherlands
| | - Stephanie L Graff
- Lifespan Cancer Institute, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
| | - Elizabeth H Dibble
- Department of Diagnostic Imaging, The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA.
| | - Lioe-Fee de Geus-Oei
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
- Biomedical Photonic Imaging Group, University of Twente, Enschede, The Netherlands.
- Department of Radiation Science & Technology, Technical University of Delft, Delft, The Netherlands.
| |
Collapse
|
2
|
Qadir A, Singh N, Moe AAK, Cahoon G, Lye J, Chao M, Foroudi F, Uribe S. Potential of MRI in Assessing Treatment Response After Neoadjuvant Radiation Therapy Treatment in Breast Cancer Patients: A Scoping Review. Clin Breast Cancer 2024:S1526-8209(24)00136-8. [PMID: 38906720 DOI: 10.1016/j.clbc.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/23/2024]
Abstract
The objective of this scoping review is to evaluate the potential of Magnetic Resonance Imaging (MRI) and to determine which of the available MRI techniques reported in the literature are the most promising for assessing treatment response in breast cancer patients following neoadjuvant radiotherapy (NRT). Ovid Medline, Embase, CINAHL, and Cochrane databases were searched to identify relevant studies published from inception until March 13, 2023. After primary selection, 2 reviewers evaluated each study using a standardized data extraction template, guided by set inclusion and exclusion criteria. A total of 5 eligible studies were selected. The positive and negative predictive values for MRI predicting pathological complete response across the studies were 67% to 88% and 76% to 85%, respectively. MRI's potential in assessing postradiotherapy tumor sizes was greater for volume measurements than uni-dimensional longest diameter measurements; however, overestimation in surgical tumor sizes was observed. Apparent diffusion coefficient (ADC) values and Time to Enhance (TTE) was seen to increase post-NRT, with a notable difference between responders and nonresponders at 6 months, indicating a potential role in assessing treatment response. In conclusion, this review highlights tumor volume measurements, ADC, and TTE as promising MRI metrics for assessing treatment response post-NRT in breast cancer. However, further research with larger cohorts is needed to confirm their utility. If MRI can accurately identify responders from nonresponders to NRT, it could enable a more personalized and tailored treatment approach, potentially minimizing radiation therapy related toxicity and enhancing cosmetic outcomes.
Collapse
Affiliation(s)
- Ayyaz Qadir
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia.
| | - Nabita Singh
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Aung Aung Kywe Moe
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| | - Glenn Cahoon
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Jessica Lye
- Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Michael Chao
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia; Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Farshad Foroudi
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia; Department of Radiation Oncology, Olivia Newton-John Cancer Wellness and Research Centre, Austin Health, Heidelberg, Victoria, Australia
| | - Sergio Uribe
- Department of Medical Imaging and Radiation Sciences, School of Primary and Allied Health Care, Monash University, Melbourne, Australia
| |
Collapse
|
3
|
Caracciolo M, Castello A, Urso L, Borgia F, Marzola MC, Uccelli L, Cittanti C, Bartolomei M, Castellani M, Lopci E. Comparison of MRI vs. [ 18F]FDG PET/CT for Treatment Response Evaluation of Primary Breast Cancer after Neoadjuvant Chemotherapy: Literature Review and Future Perspectives. J Clin Med 2023; 12:5355. [PMID: 37629397 PMCID: PMC10455346 DOI: 10.3390/jcm12165355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
The purpose of this systematic review was to investigate the diagnostic accuracy of [18F]FDG PET/CT and breast MRI for primary breast cancer (BC) response assessment after neoadjuvant chemotherapy (NAC) and to evaluate future perspectives in this setting. We performed a critical review using three bibliographic databases (i.e., PubMed, Scopus, and Web of Science) for articles published up to the 6 June 2023, starting from 2012. The Quality Assessment of Diagnosis Accuracy Study (QUADAS-2) tool was adopted to evaluate the risk of bias. A total of 76 studies were identified and screened, while 14 articles were included in our systematic review after a full-text assessment. The total number of patients included was 842. Eight out of fourteen studies (57.1%) were prospective, while all except one study were conducted in a single center. In the majority of the included studies (71.4%), 3.0 Tesla (T) MRI scans were adopted. Three out of fourteen studies (21.4%) used both 1.5 and 3.0 T MRI and only two used 1.5 T. [18F]FDG was the radiotracer used in every study included. All patients accepted surgical treatment after NAC and each study used pathological complete response (pCR) as the reference standard. Some of the studies have demonstrated the superiority of [18F]FDG PET/CT, while others proved that MRI was superior to PET/CT. Recent studies indicate that PET/CT has a better specificity, while MRI has a superior sensitivity for assessing pCR in BC patients after NAC. The complementary value of the combined use of these modalities represents probably the most important tool to improve diagnostic performance in this setting. Overall, larger prospective studies, possibly randomized, are needed, hopefully evaluating PET/MR and allowing for new tools, such as radiomic parameters, to find a proper place in the setting of BC patients undergoing NAC.
Collapse
Affiliation(s)
- Matteo Caracciolo
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy
| | - Angelo Castello
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Luca Urso
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Francesca Borgia
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Cristina Marzola
- Department of Nuclear Medicine PET/CT Centre, S. Maria della Misericordia Hospital, 45100 Rovigo, Italy
| | - Licia Uccelli
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Corrado Cittanti
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Mirco Bartolomei
- Nuclear Medicine Unit, Oncological Medical and Specialists Department, University Hospital of Ferrara, 44124 Ferrara, Italy
| | - Massimo Castellani
- Nuclear Medicine Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Egesta Lopci
- Nuclear Medicine Unit, IRCCS—Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| |
Collapse
|
4
|
Sabatino V, Pignata A, Valentini M, Fantò C, Leonardi I, Campora M. Assessment and Response to Neoadjuvant Treatments in Breast Cancer: Current Practice, Response Monitoring, Future Approaches and Perspectives. Cancer Treat Res 2023; 188:105-147. [PMID: 38175344 DOI: 10.1007/978-3-031-33602-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Neoadjuvant treatments (NAT) for breast cancer (BC) consist in the administration of chemotherapy-more rarely endocrine therapy-before surgery. Firstly, it was introduced 50 years ago to downsize locally advanced (inoperable) BCs. NAT are now widespread and so effective to be used also at the early stage of the disease. NAT are heterogeneous in terms of therapeutic patterns, class of used drugs, dosage, and duration. The poly-chemotherapy regimen and administration schedule are established by a multi-disciplinary team, according to the stage of disease, the tumor subtype and the age, the physical status, and the drug sensitivity of BC patients. Consequently, an accurate monitoring of treatment response can provide significant clinical advantages, such as the treatment de-escalation in case of early recognition of complete response or, on the contrary, the switch to an alternative treatment path in case of early detection of resistance to the ongoing therapy. Future is going toward increasingly personalized therapies and the prediction of individual response to treatment is the key to practice customized care pathways, preserving oncological safety and effectiveness. To gain such goal, the development of an accurate monitoring system, reproducible and reliable alone or as part of more complex diagnostic algorithms, will be promising.
Collapse
Affiliation(s)
- Vincenzo Sabatino
- Breast Imaging Department, Santa Chiara Hospital, APSS, Trento, Italy.
| | - Alma Pignata
- Breast Center, Spedali Civili Hospital, ASST, Brescia, Italy
| | - Marvi Valentini
- Breast Imaging Department, Santa Chiara Hospital, APSS, Trento, Italy
| | - Carmen Fantò
- Breast Imaging Department, Santa Chiara Hospital, APSS, Trento, Italy
| | - Irene Leonardi
- Breast Imaging Department, Santa Chiara Hospital, APSS, Trento, Italy
| | - Michela Campora
- Pathology Department, Santa Chiara Hospital, APSS, Trento, Italy
| |
Collapse
|
5
|
Arici S, Karyagar SS, Karyagar S, Geredeli C, Cekin R, Seçmeler Ş, Atci MM, Sakin A, Cihan Ş. The predictive role of metabolic tumor volume on no response to neoadjuvant chemotherapy in patients with breast cancer. J Oncol Pharm Pract 2020; 26:1415-1420. [DOI: 10.1177/1078155219898504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Introduction To evaluate the predictive significance of pretreatment metabolic tumor volume on pathologic response in patients who received neoadjuvant chemotherapy for breast cancer. Methods Seventy patients who received neoadjuvant chemotherapy between 2013 and 2017 years were enrolled in the study. Pathologic responses and 18-fluorodeoxyglucose positron emission tomography/computed tomography metabolic dates of patients were obtained from archive files. Results Forty-six (65.7%) patients were in stage II and 24 (34.3%) patients were in stage III; 25 (35.7%) patients were human epidermal growth factor receptor 2 positive, 46 (65.7%) patients were estrogen receptor-positive, 26 (37.1%) patients were progesterone receptor-positive. According to the Miller-Payne grading system, 24 (34.3%) patients constituted 100% pathological response; patients with 91–99% pathological response were 12 (17.1%), the number of patients with non-pathologic response was 6 (8.6%). Median metabolic tumor volume was 7.3 cm3 (7.1 ± 3.5), 8.8 (11.4 ± 9.4), 7.7 (8.3 ± 4.6) and 22 cm3 (19.8 ± 11.0) in patients with stages IIA, IIB, IIIA, and IIIB, respectively ( p = 0.032). In Miller-Payne grading, the median metabolic tumor volume value was higher in patients with no pathologic response group than 100% response group ( p = 0.003). The cut-off metabolic tumor volume value determining no pathologic response was calculated as higher than 13.62 cm3 (sensitivity 83.3% and specificity 82.8%). Conclusions Our study results suggest that higher pretreatment metabolic tumor volume values are predictive on no pathologic response in patients treated with neoadjuvant chemotherapy for breast cancer.
Collapse
Affiliation(s)
- Serdar Arici
- Department of Medical Oncology, Istanbul Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Sevda S Karyagar
- Department of Nuclear Medicine, Istanbul Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Savas Karyagar
- Department of Nuclear Medicine, Istanbul Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Caglayan Geredeli
- Department of Medical Oncology, Istanbul Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Ruhper Cekin
- Department of Medical Oncology, Istanbul Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Şaban Seçmeler
- Department of Medical Oncology, Istanbul Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Muhammed M Atci
- Department of Medical Oncology, Istanbul Okmeydani Training and Research Hospital, Istanbul, Turkey
| | - Abdullah Sakin
- Faculity of Medicine, Medical Oncology Department, Yuzuncu Yil University, Yuzuncu Yil, Turkey
| | - Şener Cihan
- Department of Medical Oncology, Istanbul Okmeydani Training and Research Hospital, Istanbul, Turkey
| |
Collapse
|
6
|
Yu N, Leung VWY, Meterissian S. MRI Performance in Detecting pCR After Neoadjuvant Chemotherapy by Molecular Subtype of Breast Cancer. World J Surg 2019; 43:2254-2261. [PMID: 31101952 DOI: 10.1007/s00268-019-05032-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND MRI performance in detecting pathologic complete response (pCR) post-neoadjuvant chemotherapy (NAC) in breast cancer has been previously explored. However, since tumor response varies by molecular subtype, it is plausible that imaging performance also varies. Therefore, we performed a literature review on subtype-specific MRI performance in detecting pCR post-NAC. METHODS Two reviewers searched Cochrane, PubMed, and EMBASE for articles published between 2013 and 2018 that examined MRI performance in detecting pCR post-NAC. After filtering, ten primary research articles were included. Statistical metrics, such as sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV), were extracted per study for triple negative, HR+/HER2-, and HER2+ patients. RESULTS Ten studies involving 2310 patients were included. In triple negative breast cancer, MRI showed NPV (58-100%) and PPV (72.7-94.7%) across 446 patients and sensitivity (45.5-100%) and specificity (49-94.4%) in 375 patients. In HR+/HER2- breast cancer patients, MRI showed NPV (29.4-100%) and PPV (21.4-95.1%) across 851 patients and sensitivity (43-100%) and specificity (45-93%) across 780 patients. In HER2+-enriched subtype, MRI showed NPV (62-94.6%) and PPV (34.9-72%) in 243 patients and sensitivity (36.2-83%) and specificity (47-90%) in 255 patients. CONCLUSION MRI accuracy in detecting pCR post-NAC by subtype is not as consistent, nor as high, as individual studies suggest. Larger studies using standardized pCR definition with appropriate timing of surgery and MRI need to be conducted. This study has shown that MRI is in fact not an accurate prediction of pCR, and thus, clinicians may need to rely on other approaches such as biopsies of the tumor bed.
Collapse
Affiliation(s)
- Nancy Yu
- Faculty of Medicine, McGill University, Montréal, QC, H4A3T2, Canada
| | - Vivian W Y Leung
- Faculty of Medicine, McGill University, Montréal, QC, H4A3T2, Canada
| | - Sarkis Meterissian
- Faculty of Medicine, McGill University, Montréal, QC, H4A3T2, Canada.
- Department of Oncology, McGill University, Montréal, QC, H4A3T2, Canada.
- Department of Surgery, McGill University, Montréal, QC, H3G1A4, Canada.
- Research Institute of MUHC, Glen Site, 1001 Decarie Boulevard, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
7
|
Response to neoadjuvant chemotherapy for breast cancer judged by PERCIST - multicenter study in Japan. Eur J Nucl Med Mol Imaging 2018; 45:1661-1671. [PMID: 29754160 DOI: 10.1007/s00259-018-4008-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 04/05/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE The purpose of this study was to evaluate therapeutic response to neoadjuvant chemotherapy (NAC) and predict breast cancer recurrence using Positron Emission Tomography Response Criteria in Solid Tumors (PERCIST). MATERIALS AND METHODS Fifty-nine breast cancer patients underwent fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT) before and after NAC prior to planned surgical resection. Pathological complete response (pCR) of the primary tumor was evaluated using PERCIST, while effects of clinicopathological factors on progression-free survival (PFS) were examined using log-rank and Cox methods. RESULTS Fifty-six patients and 54 primary tumors were evaluated. Complete metabolic response (CMR), partial metabolic response, stable metabolic disease, and progressive metabolic disease were seen in 45, 7, 3, and 1 patients, respectively, and 43, 7, 3, and 1 primary tumors, respectively. Eighteen (33.3%) of the 54 primary tumors showed pCR. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of PERCIST to predict pCR were 100% (18/18), 30.6% (11/36), 41.9% (18/43), 100% (11/11), and 53.7% (29/54), respectively. An optimal percent decrease in peak standardized uptake value for a primary tumor corrected for lean body mass (SULpeak) of 84.3% was found to have a sensitivity of 77.8% (14/18), specificity of 77.8% (28/36), PPV of 63.6% (14/22), NPV of 87.5% (28/32), and accuracy of 77.8% (42/54). Seven (12.5%) of the 56 patients developed recurrent disease (median follow-up 28.1 months, range 11.4-96.4 months). CMR (p = 0.031), pCR (p = 0.024), and early TNM stage (p = 0.033) were significantly associated with longer PFS. CONCLUSION PERCIST is useful for predicting pathological response and prognosis following NAC in breast cancer patients. However, FDG-PET/CT showed a tendency toward underestimation of the residual tumor, and relatively low specificity and PPV of PERCIST showed that a combination of other imaging modalities would still be needed to predict pCR.
Collapse
|
8
|
Yu YH, Zhu X, Mo QG, Cui Y. Prediction of neoadjuvant chemotherapy response using diffuse optical spectroscopy in breast cancer. Clin Transl Oncol 2017; 20:524-533. [PMID: 28921461 PMCID: PMC5978895 DOI: 10.1007/s12094-017-1745-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 08/20/2017] [Indexed: 12/19/2022]
Abstract
PURPOSE Near-infrared diffuse optical spectroscopy (DOS) has been recently used to predict neoadjuvant chemotherapy response (NAC). In the present study, we explore the change in blood-oxygen content using DOS to predict NAC response against breast cancer. MATERIALS AND METHODS A total of 20 patients were enrolled and underwent DOS scan with blood-oxygen detection before each treatment cycle. The first DOS scan was performed before NAC treatment (pretreatment), and subsequent scans were performed after each NAC treatment circle. Changes in blood content and oxygen content by DOS were evaluated and compared with tumor size, and their changes were analyzed in response versus nonresponse group. RESULTS Thirteen patients were classified into response and seven patients into nonresponse group. The tumor blood content value (-1.06 ± 0.43) and oxygen content value (0.48 ± 0.17) of DOS at pretreatment was significantly different from presurgery in response group (P < 0.05), but not in nonresponse group. In response group, the percentage change in blood content (median 91.19%) was significantly larger than tumor size (median 48.89%) (P = 0.0035), while in oxygen content (median 47.11%) is not (P = 0.2815). Comparing each cycle, the percentage change in blood content could distinguish responder from non-responder as early as after the first treatment cycle (19.1 versus 6.6%, P = 0.0265). Blood content percentage sensitivity was 76.9% and specificity was 85.7% (AUC 0.912), while oxygen content percentage sensitivity was 76.9% and specificity was 71.4% (AUC 0.797). CONCLUSION Both blood and oxygen content measured by DOS could be used to discriminate responder to the treatment versus non-responder. Among the two, percentage change of blood content was more precise and earlier than that of oxygen content to predicted breast tumor response. The percentage change in blood content could distinguish responder from non-responder after the first treatment cycle.
Collapse
Affiliation(s)
- Ying-Hua Yu
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, NO. 71, He Di Lu, Nanning, Guangxi, 530021, People's Republic of China
| | - Xiao Zhu
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, NO. 71, He Di Lu, Nanning, Guangxi, 530021, People's Republic of China
| | - Qin-Guo Mo
- Department of Breast Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, NO. 71, He Di Lu, Nanning, Guangxi, 530021, People's Republic of China.
| | - Ying Cui
- The Graduate School, The Affiliated Tumor Hospital of Guangxi Medical University, NO. 71, He Di Lu, Nanning, Guangxi, 530021, People's Republic of China.
| |
Collapse
|