1
|
Houbrechts K, Marshall N, Cockmartin L, Bosmans H. Evaluation of the flying focal spot technology in a wide-angle digital breast tomosynthesis system. J Med Imaging (Bellingham) 2025; 12:S13009. [PMID: 39640537 PMCID: PMC11616485 DOI: 10.1117/1.jmi.12.s1.s13009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 12/07/2024] Open
Abstract
Purpose We characterize the flying focal spot (FFS) technology in digital breast tomosynthesis (DBT), designed to overcome source motion blurring. Approach A wide-angle DBT system with continuous gantry and focus motion ("uncompensated focus") and a system with FFS were compared for image sharpness and lesion detectability. The modulation transfer function (MTF) was assessed as a function of height in the projections and reconstructed images, along with lesion detectability using the contrast detail phantom for mammography (CDMAM) and the L1 phantom. Results For the uncompensated focus system, the spatial frequency for 25% MTF value (f 25 % ) measured at 2, 4, and 6 cm in DBT projections fell by 35%, 49%, and 59%, respectively in the tube-travel direction compared with the FFS system. There was no significant difference inf 25 % for the front-back and tube-travel directions for the FFS unit. The in-plane MTF in the tube-travel direction also improved with the FFS technology.The threshold gold thickness (T t ) for the 0.16-mm diameter discs of contrast detail phantom for mammography (CDMAM) improved for the FFS system in DBT mode, especially at greater heights above the table;T t at 45 and 65 mm improved by 16% and 24%, respectively, compared with the uncompensated focus system. In addition, improvements in calcification and mass detection in a structured background were observed for DBT and synthetic mammography. The FFS system demonstrated faster scan times (4.8 s versus 21.7 s), potentially reducing patient motion artifacts. Conclusions The FFS technology offers isotropic resolution, improved small detail detectability, and faster scan times in DBT mode compared with the traditional continuous gantry and focus motion approach.
Collapse
Affiliation(s)
- Katrien Houbrechts
- KU Leuven, Department of Imaging and Pathology—Medical Physics and Quality Assessment, Leuven, Belgium
| | - Nicholas Marshall
- KU Leuven, Department of Imaging and Pathology—Medical Physics and Quality Assessment, Leuven, Belgium
- UZ Leuven, Department of Radiology, Leuven, Belgium
| | | | - Hilde Bosmans
- KU Leuven, Department of Imaging and Pathology—Medical Physics and Quality Assessment, Leuven, Belgium
- UZ Leuven, Department of Radiology, Leuven, Belgium
| |
Collapse
|
2
|
Hussain S, Lafarga-Osuna Y, Ali M, Naseem U, Ahmed M, Tamez-Peña JG. Deep learning, radiomics and radiogenomics applications in the digital breast tomosynthesis: a systematic review. BMC Bioinformatics 2023; 24:401. [PMID: 37884877 PMCID: PMC10605943 DOI: 10.1186/s12859-023-05515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Recent advancements in computing power and state-of-the-art algorithms have helped in more accessible and accurate diagnosis of numerous diseases. In addition, the development of de novo areas in imaging science, such as radiomics and radiogenomics, have been adding more to personalize healthcare to stratify patients better. These techniques associate imaging phenotypes with the related disease genes. Various imaging modalities have been used for years to diagnose breast cancer. Nonetheless, digital breast tomosynthesis (DBT), a state-of-the-art technique, has produced promising results comparatively. DBT, a 3D mammography, is replacing conventional 2D mammography rapidly. This technological advancement is key to AI algorithms for accurately interpreting medical images. OBJECTIVE AND METHODS This paper presents a comprehensive review of deep learning (DL), radiomics and radiogenomics in breast image analysis. This review focuses on DBT, its extracted synthetic mammography (SM), and full-field digital mammography (FFDM). Furthermore, this survey provides systematic knowledge about DL, radiomics, and radiogenomics for beginners and advanced-level researchers. RESULTS A total of 500 articles were identified, with 30 studies included as the set criteria. Parallel benchmarking of radiomics, radiogenomics, and DL models applied to the DBT images could allow clinicians and researchers alike to have greater awareness as they consider clinical deployment or development of new models. This review provides a comprehensive guide to understanding the current state of early breast cancer detection using DBT images. CONCLUSION Using this survey, investigators with various backgrounds can easily seek interdisciplinary science and new DL, radiomics, and radiogenomics directions towards DBT.
Collapse
Affiliation(s)
- Sadam Hussain
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Mexico.
| | - Yareth Lafarga-Osuna
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Mexico
| | - Mansoor Ali
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Mexico
| | - Usman Naseem
- College of Science and Engineering, James Cook University, Cairns, Australia
| | - Masroor Ahmed
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Mexico
| | - Jose Gerardo Tamez-Peña
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Mexico
| |
Collapse
|
3
|
Zizaan A, Idri A. Machine learning based Breast Cancer screening: trends, challenges, and opportunities. COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING: IMAGING & VISUALIZATION 2023. [DOI: 10.1080/21681163.2023.2172615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Asma Zizaan
- Mohammed VI Polytechnic University, Benguerir, Morocco
| | - Ali Idri
- Mohammed VI Polytechnic University, Benguerir, Morocco
- Software Project Management Research Team, ENSIAS, Mohammed V University, Rabat, Morocco
| |
Collapse
|
4
|
Konz N, Buda M, Gu H, Saha A, Yang J, Chłędowski J, Park J, Witowski J, Geras KJ, Shoshan Y, Gilboa-Solomon F, Khapun D, Ratner V, Barkan E, Ozery-Flato M, Martí R, Omigbodun A, Marasinou C, Nakhaei N, Hsu W, Sahu P, Hossain MB, Lee J, Santos C, Przelaskowski A, Kalpathy-Cramer J, Bearce B, Cha K, Farahani K, Petrick N, Hadjiiski L, Drukker K, Armato SG, Mazurowski MA. A Competition, Benchmark, Code, and Data for Using Artificial Intelligence to Detect Lesions in Digital Breast Tomosynthesis. JAMA Netw Open 2023; 6:e230524. [PMID: 36821110 PMCID: PMC9951043 DOI: 10.1001/jamanetworkopen.2023.0524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
IMPORTANCE An accurate and robust artificial intelligence (AI) algorithm for detecting cancer in digital breast tomosynthesis (DBT) could significantly improve detection accuracy and reduce health care costs worldwide. OBJECTIVES To make training and evaluation data for the development of AI algorithms for DBT analysis available, to develop well-defined benchmarks, and to create publicly available code for existing methods. DESIGN, SETTING, AND PARTICIPANTS This diagnostic study is based on a multi-institutional international grand challenge in which research teams developed algorithms to detect lesions in DBT. A data set of 22 032 reconstructed DBT volumes was made available to research teams. Phase 1, in which teams were provided 700 scans from the training set, 120 from the validation set, and 180 from the test set, took place from December 2020 to January 2021, and phase 2, in which teams were given the full data set, took place from May to July 2021. MAIN OUTCOMES AND MEASURES The overall performance was evaluated by mean sensitivity for biopsied lesions using only DBT volumes with biopsied lesions; ties were broken by including all DBT volumes. RESULTS A total of 8 teams participated in the challenge. The team with the highest mean sensitivity for biopsied lesions was the NYU B-Team, with 0.957 (95% CI, 0.924-0.984), and the second-place team, ZeDuS, had a mean sensitivity of 0.926 (95% CI, 0.881-0.964). When the results were aggregated, the mean sensitivity for all submitted algorithms was 0.879; for only those who participated in phase 2, it was 0.926. CONCLUSIONS AND RELEVANCE In this diagnostic study, an international competition produced algorithms with high sensitivity for using AI to detect lesions on DBT images. A standardized performance benchmark for the detection task using publicly available clinical imaging data was released, with detailed descriptions and analyses of submitted algorithms accompanied by a public release of their predictions and code for selected methods. These resources will serve as a foundation for future research on computer-assisted diagnosis methods for DBT, significantly lowering the barrier of entry for new researchers.
Collapse
Affiliation(s)
- Nicholas Konz
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
| | - Mateusz Buda
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Hanxue Gu
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
| | - Ashirbani Saha
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
- Department of Oncology, McMaster University, Hamilton, Ontario, Canada
| | | | - Jakub Chłędowski
- Jagiellonian University, Kraków, Poland
- Department of Radiology, NYU Grossman School of Medicine, New York, New York
| | - Jungkyu Park
- Department of Radiology, NYU Grossman School of Medicine, New York, New York
| | - Jan Witowski
- Department of Radiology, NYU Grossman School of Medicine, New York, New York
| | - Krzysztof J. Geras
- Department of Radiology, NYU Grossman School of Medicine, New York, New York
| | - Yoel Shoshan
- Medical Image Analytics, IBM Research, Haifa, Israel
| | | | - Daniel Khapun
- Medical Image Analytics, IBM Research, Haifa, Israel
| | - Vadim Ratner
- Medical Image Analytics, IBM Research, Haifa, Israel
| | - Ella Barkan
- Medical Image Analytics, IBM Research, Haifa, Israel
| | | | - Robert Martí
- Institute of Computer Vision and Robotics, University of Girona, Girona, Spain
| | - Akinyinka Omigbodun
- Medical and Imaging Informatics Group, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles
| | - Chrysostomos Marasinou
- Medical and Imaging Informatics Group, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles
| | - Noor Nakhaei
- Medical and Imaging Informatics Group, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles
| | - William Hsu
- Medical and Imaging Informatics Group, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles
- Department of Bioengineering, University of California Los Angeles Samueli School of Engineering
| | - Pranjal Sahu
- Department of Computer Science, Stony Brook University, Stony Brook, New York
| | - Md Belayat Hossain
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Juhun Lee
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Carlos Santos
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Artur Przelaskowski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Jayashree Kalpathy-Cramer
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown
| | - Benjamin Bearce
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown
| | - Kenny Cha
- US Food and Drug Administration, Silver Spring, Maryland
| | - Keyvan Farahani
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland
| | | | | | - Karen Drukker
- Department of Radiology, University of Chicago, Chicago, Illinois
| | - Samuel G. Armato
- Department of Radiology, University of Chicago, Chicago, Illinois
| | - Maciej A. Mazurowski
- Department of Electrical and Computer Engineering, Duke University, Durham, North Carolina
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
- Department of Computer Science, Duke University, Durham, North Carolina
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
5
|
Wiskin J. Full Wave Inversion and Inverse Scattering in Ultrasound Tomography/Volography. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1403:201-237. [PMID: 37495920 DOI: 10.1007/978-3-031-21987-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Ultrasound breast tomography has been around for more than 40 years. Early approaches to reconstruction focused on simple algebraic reconstructions and bent ray techniques. These approaches were not able to provide high-quality and high spatial-resolution images. The advent of inverse scattering approaches resulted in a shift in image reconstruction approaches for breast tomography and a subsequent improvement in image quality. Full wave inverse solvers were developed to improve the reconstruction times without sacrificing image quality. The development of GPUs has markedly decreased the time for reconstruction using inverse scatting approaches. The development of fully 3D image solvers and hardware capable of capturing out of plane scattering have resulted in further improvement in breast tomography. This chapter discusses the state-of-the-art in ultrasound breast tomography, its history, the theory behind inverse scattering, approximations that are included to improve convergence, 3D image reconstruction, and hardware implementation of the constructions.
Collapse
|
6
|
Automatic Classification of Simulated Breast Tomosynthesis Whole Images for the Presence of Microcalcification Clusters Using Deep CNNs. J Imaging 2022; 8:jimaging8090231. [PMID: 36135397 PMCID: PMC9503015 DOI: 10.3390/jimaging8090231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Microcalcification clusters (MCs) are among the most important biomarkers for breast cancer, especially in cases of nonpalpable lesions. The vast majority of deep learning studies on digital breast tomosynthesis (DBT) are focused on detecting and classifying lesions, especially soft-tissue lesions, in small regions of interest previously selected. Only about 25% of the studies are specific to MCs, and all of them are based on the classification of small preselected regions. Classifying the whole image according to the presence or absence of MCs is a difficult task due to the size of MCs and all the information present in an entire image. A completely automatic and direct classification, which receives the entire image, without prior identification of any regions, is crucial for the usefulness of these techniques in a real clinical and screening environment. The main purpose of this work is to implement and evaluate the performance of convolutional neural networks (CNNs) regarding an automatic classification of a complete DBT image for the presence or absence of MCs (without any prior identification of regions). In this work, four popular deep CNNs are trained and compared with a new architecture proposed by us. The main task of these trainings was the classification of DBT cases by absence or presence of MCs. A public database of realistic simulated data was used, and the whole DBT image was taken into account as input. DBT data were considered without and with preprocessing (to study the impact of noise reduction and contrast enhancement methods on the evaluation of MCs with CNNs). The area under the receiver operating characteristic curve (AUC) was used to evaluate the performance. Very promising results were achieved with a maximum AUC of 94.19% for the GoogLeNet. The second-best AUC value was obtained with a new implemented network, CNN-a, with 91.17%. This CNN had the particularity of also being the fastest, thus becoming a very interesting model to be considered in other studies. With this work, encouraging outcomes were achieved in this regard, obtaining similar results to other studies for the detection of larger lesions such as masses. Moreover, given the difficulty of visualizing the MCs, which are often spread over several slices, this work may have an important impact on the clinical analysis of DBT images.
Collapse
|
7
|
Malliori A, Pallikarakis N. Breast cancer detection using machine learning in digital mammography and breast tomosynthesis: A systematic review. HEALTH AND TECHNOLOGY 2022. [DOI: 10.1007/s12553-022-00693-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Automated Breast Cancer Detection Models Based on Transfer Learning. SENSORS 2022; 22:s22030876. [PMID: 35161622 PMCID: PMC8838322 DOI: 10.3390/s22030876] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/28/2021] [Accepted: 01/19/2022] [Indexed: 02/06/2023]
Abstract
Breast cancer is among the leading causes of mortality for females across the planet. It is essential for the well-being of women to develop early detection and diagnosis techniques. In mammography, focus has contributed to the use of deep learning (DL) models, which have been utilized by radiologists to enhance the needed processes to overcome the shortcomings of human observers. The transfer learning method is being used to distinguish malignant and benign breast cancer by fine-tuning multiple pre-trained models. In this study, we introduce a framework focused on the principle of transfer learning. In addition, a mixture of augmentation strategies were used to prevent overfitting and produce stable outcomes by increasing the number of mammographic images; including several rotation combinations, scaling, and shifting. On the Mammographic Image Analysis Society (MIAS) dataset, the proposed system was evaluated and achieved an accuracy of 89.5% using (residual network-50) ResNet50, and achieved an accuracy of 70% using the Nasnet-Mobile network. The proposed system demonstrated that pre-trained classification networks are significantly more effective and efficient, making them more acceptable for medical imaging, particularly for small training datasets.
Collapse
|
9
|
Chan HP, Helvie MA, Klein KA, McLaughlin C, Neal CH, Oudsema R, Rahman WT, Roubidoux MA, Hadjiiski LM, Zhou C, Samala RK. Effect of Dose Level on Radiologists' Detection of Microcalcifications in Digital Breast Tomosynthesis: An Observer Study with Breast Phantoms. Acad Radiol 2022; 29 Suppl 1:S42-S49. [PMID: 32950384 DOI: 10.1016/j.acra.2020.07.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/30/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
OBJECTIVES To compare radiologists' sensitivity, confidence level, and reading efficiency of detecting microcalcifications in digital breast tomosynthesis (DBT) at two clinically relevant dose levels. MATERIALS AND METHODS Six 5-cm-thick heterogeneous breast phantoms embedded with a total of 144 simulated microcalcification clusters of four speck sizes were imaged at two dose modes by a clinical DBT system. The DBT volumes at the two dose levels were read independently by six MQSA radiologists and one fellow with 1-33 years (median 12 years) of experience in a fully-crossed counter-balanced manner. The radiologist located each potential cluster and rated its conspicuity and his/her confidence that the marked location contained a cluster. The differences in the results between the two dose modes were analyzed by two-tailed paired t-test. RESULTS Compared to the lower-dose mode, the average glandular dose in the higher-dose mode for the 5-cm phantoms increased from 1.34 to 2.07 mGy. The detection sensitivity increased for all speck sizes and significantly for the two smaller sizes (p <0.05). An average of 13.8% fewer false positive clusters was marked. The average conspicuity rating and the radiologists' confidence level were higher for all speck sizes and reached significance (p <0.05) for the three larger sizes. The average reading time per detected cluster reduced significantly (p <0.05) by an average of 13.2%. CONCLUSION For a 5-cm-thick breast, an increase in average glandular dose from 1.34 to 2.07 mGy for DBT imaging increased the conspicuity of microcalcifications, improved the detection sensitivity by radiologists, increased their confidence levels, reduced false positive detections, and increased the reading efficiency.
Collapse
Affiliation(s)
- Heang-Ping Chan
- Department of Radiology, University of Michigan, 1500 E. Medical Center Dr., Med Inn Building C477, Ann Arbor, MI 48109-5842.
| | - Mark A Helvie
- Department of Radiology, University of Michigan, 1500 E. Medical Center Dr., Med Inn Building C477, Ann Arbor, MI 48109-5842
| | - Katherine A Klein
- Department of Radiology, University of Michigan, 1500 E. Medical Center Dr., Med Inn Building C477, Ann Arbor, MI 48109-5842
| | - Carol McLaughlin
- Department of Radiology, University of Michigan, 1500 E. Medical Center Dr., Med Inn Building C477, Ann Arbor, MI 48109-5842
| | - Colleen H Neal
- Department of Radiology, University of Michigan, 1500 E. Medical Center Dr., Med Inn Building C477, Ann Arbor, MI 48109-5842
| | - Rebecca Oudsema
- Department of Radiology, University of Michigan, 1500 E. Medical Center Dr., Med Inn Building C477, Ann Arbor, MI 48109-5842
| | - W Tania Rahman
- Department of Radiology, University of Michigan, 1500 E. Medical Center Dr., Med Inn Building C477, Ann Arbor, MI 48109-5842
| | - Marilyn A Roubidoux
- Department of Radiology, University of Michigan, 1500 E. Medical Center Dr., Med Inn Building C477, Ann Arbor, MI 48109-5842
| | - Lubomir M Hadjiiski
- Department of Radiology, University of Michigan, 1500 E. Medical Center Dr., Med Inn Building C477, Ann Arbor, MI 48109-5842
| | - Chuan Zhou
- Department of Radiology, University of Michigan, 1500 E. Medical Center Dr., Med Inn Building C477, Ann Arbor, MI 48109-5842
| | - Ravi K Samala
- Department of Radiology, University of Michigan, 1500 E. Medical Center Dr., Med Inn Building C477, Ann Arbor, MI 48109-5842
| |
Collapse
|
10
|
Monib S. Artificial Intelligence in Breast Disease Management: No Innovation Without Evaluation. Indian J Surg 2021. [DOI: 10.1007/s12262-020-02682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
11
|
Zackrisson S, Andersson I. The development of breast radiology: the Acta Radiologica perspective. Acta Radiol 2021; 62:1473-1480. [PMID: 34709078 DOI: 10.1177/02841851211050861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The encouraging results of modern breast cancer care builds on tremendous improvements in diagnostics and therapy during the 20th century. Scandinavian countries have made important footprints in the development of breast diagnostics regarding technical development of imaging, cell and tissue sampling methods and, not least, population screening with mammography. The multimodality approach in combination with multidisciplinary clinical work in breast cancer serve as a role model for the management of many cancer types worldwide. The development of breast radiology is well represented in the research published in this journal and this historical review will describe the most important steps.
Collapse
Affiliation(s)
- Sophia Zackrisson
- Department of Translational Medicine, Diagnostic Radiology, Lund University, Skåne University Hospital Malmö, Malmö, Sweden
| | - Ingvar Andersson
- Department of Translational Medicine, Diagnostic Radiology, Lund University, Unilabs Breast Center, Skåne University Hospital Malmö, Malmö, Sweden
| |
Collapse
|
12
|
Geijer M, Thomsen HS. Change and consistency in Acta Radiologica over 100 years. Acta Radiol 2021; 62:1435-1442. [PMID: 34678081 PMCID: PMC8649460 DOI: 10.1177/02841851211054174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/15/2022]
Abstract
Acta Radiologica celebrates its 100th anniversary in 2021. In this article, the foundation of the journal and its editors are described. During 100 years, the manuscript structure changed from single-author verbose monographs to multi-author collaborations on statistically analyzed research subjects. The authorship changed from purely Nordic authors to a truly international cadre of authors, and the size of the journal increased considerably, in issues per year, printed pages, and published articles per year. The Foundation of Acta Radiologica has been able to give out two prizes, the Xenia Forsselliana and the Acta Radiologica International Scientific Prize for the best manuscripts each year. The increasing submissions of manuscripts is an indication that Acta Radiologica will continue to publish important scientific results for many years to come.
Collapse
Affiliation(s)
- Mats Geijer
- Department of Radiology, Institute of Clinical Sciences, 70712Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Radiology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Henrik S Thomsen
- University of Copenhagen, Copenhagen University Hospital, Herlev & Gentofte, Herlev, Denmark
| |
Collapse
|
13
|
van Dijk LV, Fuller CD. Artificial Intelligence and Radiomics in Head and Neck Cancer Care: Opportunities, Mechanics, and Challenges. Am Soc Clin Oncol Educ Book 2021; 41:1-11. [PMID: 33929877 DOI: 10.1200/edbk_320951] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The advent of large-scale high-performance computing has allowed the development of machine-learning techniques in oncologic applications. Among these, there has been substantial growth in radiomics (machine-learning texture analysis of images) and artificial intelligence (which uses deep-learning techniques for "learning algorithms"); however, clinical implementation has yet to be realized at scale. To improve implementation, opportunities, mechanics, and challenges, models of imaging-enabled artificial intelligence approaches need to be understood by clinicians who make the treatment decisions. This article aims to convey the basic conceptual premises of radiomics and artificial intelligence using head and neck cancer as a use case. This educational overview focuses on approaches for head and neck oncology imaging, detailing current research efforts and challenges to implementation.
Collapse
Affiliation(s)
- Lisanne V van Dijk
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX.,Department of Radiation Oncology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Clifton D Fuller
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
14
|
van Winkel SL, Rodríguez-Ruiz A, Appelman L, Gubern-Mérida A, Karssemeijer N, Teuwen J, Wanders AJT, Sechopoulos I, Mann RM. Impact of artificial intelligence support on accuracy and reading time in breast tomosynthesis image interpretation: a multi-reader multi-case study. Eur Radiol 2021; 31:8682-8691. [PMID: 33948701 PMCID: PMC8523448 DOI: 10.1007/s00330-021-07992-w] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 03/16/2021] [Accepted: 04/09/2021] [Indexed: 12/31/2022]
Abstract
Objectives Digital breast tomosynthesis (DBT) increases sensitivity of mammography and is increasingly implemented in breast cancer screening. However, the large volume of images increases the risk of reading errors and reading time. This study aims to investigate whether the accuracy of breast radiologists reading wide-angle DBT increases with the aid of an artificial intelligence (AI) support system. Also, the impact on reading time was assessed and the stand-alone performance of the AI system in the detection of malignancies was compared to the average radiologist. Methods A multi-reader multi-case study was performed with 240 bilateral DBT exams (71 breasts with cancer lesions, 70 breasts with benign findings, 339 normal breasts). Exams were interpreted by 18 radiologists, with and without AI support, providing cancer suspicion scores per breast. Using AI support, radiologists were shown examination-based and region-based cancer likelihood scores. Area under the receiver operating characteristic curve (AUC) and reading time per exam were compared between reading conditions using mixed-models analysis of variance. Results On average, the AUC was higher using AI support (0.863 vs 0.833; p = 0.0025). Using AI support, reading time per DBT exam was reduced (p < 0.001) from 41 (95% CI = 39–42 s) to 36 s (95% CI = 35– 37 s). The AUC of the stand-alone AI system was non-inferior to the AUC of the average radiologist (+0.007, p = 0.8115). Conclusions Radiologists improved their cancer detection and reduced reading time when evaluating DBT examinations using an AI reading support system. Key Points • Radiologists improved their cancer detection accuracy in digital breast tomosynthesis (DBT) when using an AI system for support, while simultaneously reducing reading time. • The stand-alone breast cancer detection performance of an AI system is non-inferior to the average performance of radiologists for reading digital breast tomosynthesis exams. • The use of an AI support system could make advanced and more reliable imaging techniques more accessible and could allow for more cost-effective breast screening programs with DBT.
Collapse
Affiliation(s)
- Suzanne L van Winkel
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, Geert Grooteplein 10, 6525 GA, Post 766, Nijmegen, The Netherlands.
| | | | - Linda Appelman
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, Geert Grooteplein 10, 6525 GA, Post 766, Nijmegen, The Netherlands
| | | | - Nico Karssemeijer
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, Geert Grooteplein 10, 6525 GA, Post 766, Nijmegen, The Netherlands.,ScreenPoint Medical BV, Toernooiveld 300, 6525 EC, Nijmegen, The Netherlands
| | - Jonas Teuwen
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, Geert Grooteplein 10, 6525 GA, Post 766, Nijmegen, The Netherlands.,Department of Radiation Oncology, Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Alexander J T Wanders
- Bevolkingsonderzoek Zuid-West Borstkanker, Laan 20, 2512 GB, Den Haag, The Netherlands
| | - Ioannis Sechopoulos
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, Geert Grooteplein 10, 6525 GA, Post 766, Nijmegen, The Netherlands.,Dutch Expert Centre for Screening (LRCB), Wijchenseweg 101, 6538 SW, Nijmegen, The Netherlands
| | - Ritse M Mann
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, Geert Grooteplein 10, 6525 GA, Post 766, Nijmegen, The Netherlands. .,Department of Radiology, Netherlands Cancer Institute (NKI), Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
Geras KJ, Mann RM, Moy L. Artificial Intelligence for Mammography and Digital Breast Tomosynthesis: Current Concepts and Future Perspectives. Radiology 2019; 293:246-259. [PMID: 31549948 DOI: 10.1148/radiol.2019182627] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Although computer-aided diagnosis (CAD) is widely used in mammography, conventional CAD programs that use prompts to indicate potential cancers on the mammograms have not led to an improvement in diagnostic accuracy. Because of the advances in machine learning, especially with use of deep (multilayered) convolutional neural networks, artificial intelligence has undergone a transformation that has improved the quality of the predictions of the models. Recently, such deep learning algorithms have been applied to mammography and digital breast tomosynthesis (DBT). In this review, the authors explain how deep learning works in the context of mammography and DBT and define the important technical challenges. Subsequently, they discuss the current status and future perspectives of artificial intelligence-based clinical applications for mammography, DBT, and radiomics. Available algorithms are advanced and approach the performance of radiologists-especially for cancer detection and risk prediction at mammography. However, clinical validation is largely lacking, and it is not clear how the power of deep learning should be used to optimize practice. Further development of deep learning models is necessary for DBT, and this requires collection of larger databases. It is expected that deep learning will eventually have an important role in DBT, including the generation of synthetic images.
Collapse
Affiliation(s)
- Krzysztof J Geras
- From the Center for Biomedical Imaging (K.J.G., L.M.), Center for Data Science (K.J.G.), Center for Advanced Imaging Innovation and Research (L.M.), and Laura and Isaac Perlmutter Cancer Center (L.M.), New York University School of Medicine, 160 E 34th St, 3rd Floor, New York, NY 10016; Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands (R.M.M.); and Department of Radiology, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (R.M.M.)
| | - Ritse M Mann
- From the Center for Biomedical Imaging (K.J.G., L.M.), Center for Data Science (K.J.G.), Center for Advanced Imaging Innovation and Research (L.M.), and Laura and Isaac Perlmutter Cancer Center (L.M.), New York University School of Medicine, 160 E 34th St, 3rd Floor, New York, NY 10016; Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands (R.M.M.); and Department of Radiology, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (R.M.M.)
| | - Linda Moy
- From the Center for Biomedical Imaging (K.J.G., L.M.), Center for Data Science (K.J.G.), Center for Advanced Imaging Innovation and Research (L.M.), and Laura and Isaac Perlmutter Cancer Center (L.M.), New York University School of Medicine, 160 E 34th St, 3rd Floor, New York, NY 10016; Department of Radiology and Nuclear Medicine, Radboud University Medical Centre, Nijmegen, the Netherlands (R.M.M.); and Department of Radiology, the Netherlands Cancer Institute-Antoni van Leeuwenhoek Hospital, Amsterdam, the Netherlands (R.M.M.)
| |
Collapse
|
16
|
Synthetic 2-Dimensional Mammography Can Replace Digital Mammography as an Adjunct to Wide-Angle Digital Breast Tomosynthesis. Invest Radiol 2019; 54:83-88. [PMID: 30281557 DOI: 10.1097/rli.0000000000000513] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate the detection rate and diagnostic performance of 2-dimensional synthetic mammography (SM) as an adjunct to wide-angle digital breast tomosynthesis (WA-DBT) compared with digital mammography (DM) alone or to DM in combination with WA-DBT. MATERIALS AND METHODS There were 205 women with 179 lesions included in this retrospective reader study. Patients underwent bilateral, 2-view (2v) DM and WA-DBT between March and June 2015. The standard of reference was histology and/or 1-year stability at follow-up. Four blinded readers randomly evaluated images according to the BI-RADS lexicon from 3 different protocols: 2v DM alone, 2v DM with 2v WA-DBT, and 2v SM with 2v WA-DBT. Detection rate, sensitivity, specificity, and accuracy were calculated and compared using multivariate analysis. Readers' confidence and image quality were evaluated. RESULTS The detection rate ranged from 68.7% to 79.9% for DM, 76.5% to 84.4% for DM with WA-DBT, and 73.2% to 84.9% for SM with WA-DBT. Sensitivity and accuracy were significantly higher when DBT was available (P < 0.001). Specificity did not differ significantly between DM only, DM with WA-DBT, or SM with WA-DBT (P ≥ 0.846). Wide-angle DBT combined readings did not differ between SM and DM in terms of sensitivity, specificity, and accuracy (P ≥ 0.341). Readers' confidence and image quality was rated good to excellent. CONCLUSIONS Wide-angle DBT combined with DM or SM increases sensitivity and accuracy without reducing specificity compared with DM alone. Wide-angle DBT combined readings did not differ between SM and DM; therefore, SM should replace DM for combined readings with WA-DBT.
Collapse
|
17
|
Two-view digital breast tomosynthesis versus digital mammography in a population-based breast cancer screening programme (To-Be): a randomised, controlled trial. Lancet Oncol 2019; 20:795-805. [DOI: 10.1016/s1470-2045(19)30161-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/03/2019] [Accepted: 03/07/2019] [Indexed: 01/25/2023]
|
18
|
Zackrisson S, Lång K, Rosso A, Johnson K, Dustler M, Förnvik D, Förnvik H, Sartor H, Timberg P, Tingberg A, Andersson I. One-view breast tomosynthesis versus two-view mammography in the Malmö Breast Tomosynthesis Screening Trial (MBTST): a prospective, population-based, diagnostic accuracy study. Lancet Oncol 2018; 19:1493-1503. [DOI: 10.1016/s1470-2045(18)30521-7] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
|