1
|
Moghbeli M. PI3K/AKT pathway as a pivotal regulator of epithelial-mesenchymal transition in lung tumor cells. Cancer Cell Int 2024; 24:165. [PMID: 38730433 PMCID: PMC11084110 DOI: 10.1186/s12935-024-03357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 05/06/2024] [Indexed: 05/12/2024] Open
Abstract
Lung cancer, as the leading cause of cancer related deaths, is one of the main global health challenges. Despite various progresses in diagnostic and therapeutic methods, there is still a high rate of mortality among lung cancer patients, which can be related to the lack of clinical symptoms to differentiate lung cancer from the other chronic respiratory disorders in the early tumor stages. Most lung cancer patients are identified in advanced and metastatic tumor stages, which is associated with a poor prognosis. Therefore, it is necessary to investigate the molecular mechanisms involved in lung tumor progression and metastasis in order to introduce early diagnostic markers as well as therapeutic targets. Epithelial-mesenchymal transition (EMT) is considered as one of the main cellular mechanisms involved in lung tumor metastasis, during which tumor cells gain the metastatic ability by acquiring mesenchymal characteristics. Since, majority of the oncogenic signaling pathways exert their role in tumor cell invasion by inducing the EMT process, in the present review we discussed the role of PI3K/AKT signaling pathway in regulation of EMT process during lung tumor metastasis. It has been reported that the PI3K/AKT acts as an inducer of EMT process through the activation of EMT-specific transcription factors in lung tumor cells. MicroRNAs also exerted their inhibitory effects during EMT process by inhibition of PI3K/AKT pathway. This review can be an effective step towards introducing the PI3K/AKT pathway as a suitable therapeutic target to inhibit the EMT process and tumor metastasis in lung cancer patients.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Kang J, Guo Z, Zhang H, Guo R, Zhu X, Guo X. Dual Inhibition of EGFR and IGF-1R Signaling Leads to Enhanced Antitumor Efficacy against Esophageal Squamous Cancer. Int J Mol Sci 2022; 23:ijms231810382. [PMID: 36142299 PMCID: PMC9499412 DOI: 10.3390/ijms231810382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 12/02/2022] Open
Abstract
Both the epidermal growth factor receptor (EGFR) and insulin-like growth factor 1 receptor (IGF-1R) have been implicated in the development of cancers, and the increased expression of both receptors has been observed in esophageal cancer. However, the tyrosine kinase inhibitors of both receptors have thus far failed to provide clinical benefits for esophageal cancer patients. Studies have confirmed the complicated crosstalks that exist between the EGFR and IGF-1R pathways. The EGFR and IGF-1R signals act as mutual compensation pathways, thereby conveying resistance to EGFR or IGF-1R inhibitors when used alone. This study evaluated the antitumor efficacy of the EGFR/HER2 inhibitors, gefitinib and lapatinib, in combination with the IGF-1R inhibitor, linsitinib, on the esophageal squamous cell carcinoma (ESCC). Gefitinib or lapatinib, in combination with linsitinib, synergistically inhibited the proliferation, migration, and invasion of ESCC cells, caused significant cell cycle arrest, and induced marked cell apoptosis. Their combination demonstrated stronger inhibition on the activation of EGFR, HER2, and IGF-1R as well as the downstream signaling molecules. In vivo, the addition of linsitinib to gefitinib or lapatinib also potentiated the inhibition effects on the growth of xenografts. Our results suggest the next clinical exploration of the combination of gefitinib or lapatinib with linsitinib in the treatment of ESCC patients.
Collapse
Affiliation(s)
- Jia Kang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Pathogenic Biology, Xinxiang 453003, China
| | - Zanzan Guo
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang 453003, China
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang 453003, China
- Xinxiang Molecular and Immunodiagnostics Research Center for Engineering Technology, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang 453003, China
| | - Haoqi Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Pathogenic Biology, Xinxiang 453003, China
| | - Rongqi Guo
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang 453003, China
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang 453003, China
- Xinxiang Molecular and Immunodiagnostics Research Center for Engineering Technology, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang 453003, China
| | - Xiaofei Zhu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang 453003, China
- Henan Key Laboratory of Immunology and Targeted Drugs, Xinxiang 453003, China
- Xinxiang Molecular and Immunodiagnostics Research Center for Engineering Technology, Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang 453003, China
- Correspondence: (X.Z.); (X.G.)
| | - Xiaofang Guo
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China
- Xinxiang Key Laboratory of Pathogenic Biology, Xinxiang 453003, China
- Xinxiang Key Laboratory of Tumor Microenvironment and Immunotherapy, Xinxiang 453003, China
- Correspondence: (X.Z.); (X.G.)
| |
Collapse
|
3
|
The IGF-1R Inhibitor NVP-AEW541 Causes Insulin-Independent and Reversible Cardiac Contractile Dysfunction. Biomedicines 2022; 10:biomedicines10082022. [PMID: 36009569 PMCID: PMC9406171 DOI: 10.3390/biomedicines10082022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
The antitumor treatment NVP-AEW541 blocks IGF-1R. IGF-1R signaling is crucial for cardiac function, but the cardiac effects of NVP-AEW541 are ill defined. We assessed NVP-AEW541′s effects on cardiac function and insulin response in vivo and in isolated working hearts. We performed a dose–response analysis of NVP-AEW541 in male, 3-week-old rats and assessed the chronic effects of the clinically relevant dose in adult rats. We performed glucose tolerance tests and echocardiography; assessed the expression and phosphorylation of InsR/IGF-1R and Akt in vivo; and measured substrate oxidation, contractile function, and insulin response in the isolated working hearts. NVP-AEW541 caused dose-dependent growth retardation and impaired glucose tolerance in the juvenile rats. In the adults, NVP-AEW541 caused a continuously worsening depression of cardiac contractility, which recovered within 2 weeks after cessation. Cardiac Akt protein and phosphorylation were unchanged and associated with InsR upregulation. An acute application of NVP-AEW541 in the working hearts did not affect cardiac power but eliminated insulin’s effects on glucose and fatty acid oxidation. The systemic administration of NVP-AEW541 caused dose- and time-dependent impairment of glucose tolerance, growth, and cardiac function. Because cardiac insulin signaling was maintained in vivo but absent in vitro and because contractile function was not affected in vitro, a direct link between insulin resistance and contractile dysfunction appears unlikely.
Collapse
|
4
|
He L, Wang GP, Guo JY, Chen ZR, Liu K, Gong SS. Epithelial-Mesenchymal Transition Participates in the Formation of Vestibular Flat Epithelium. Front Mol Neurosci 2022; 14:809878. [PMID: 34975404 PMCID: PMC8719593 DOI: 10.3389/fnmol.2021.809878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/02/2021] [Indexed: 12/03/2022] Open
Abstract
The vestibular sensory epithelium of humans and mice may degenerate into a layer of flat cells, known as flat epithelium (FE), after a severe lesion. However, the pathogenesis of vestibular FE remains unclear. To determine whether the epithelial–mesenchymal transition (EMT) participates in the formation of vestibular FE, we used a well-established mouse model in which FE was induced in the utricle by an injection of streptomycin into the inner ear. The mesenchymal and epithelial cell markers and cell proliferation were examined using immunofluorescence staining and quantitative reverse transcription polymerase chain reaction (qRT-PCR). The function of the EMT was assessed through transcriptome microarray analysis. The results demonstrated that mesenchymal cell markers (α-SMA, S100A4, vimentin, and Fn1) were upregulated in vestibular FE compared with the normal utricle. Robust cell proliferation, which was absent in the normal status, was observed in the formation of FE. Microarray analysis identified 1,227 upregulated and 962 downregulated genes in vestibular FE. Gene Ontology (GO) analysis revealed that differentially expressed genes (DEGs) were highly associated with several EMT-related GO terms, such as cell adhesion, cell migration, and extracellular matrix. Pathway enrichment analysis revealed that DEGs were enriched in the EMT-related signaling pathways, including extracellular matrix (ECM)-receptor interaction, focal adhesion, PI3K/Akt signaling pathway and cell adhesion molecule. Protein–protein interaction networks screened 20 hub genes, which were Akt, Casp3, Col1a1, Col1a2, Fn1, Hgf, Igf1,Il1b, Irs1, Itga2, Itga5, Jun, Mapk1, Myc, Nras, Pdgfrb, Tgfb1, Thbs1, Trp53, and Col2a1. Most of these genes are reportedly involved in the EMT process in various tissues. The mRNA expression level of hub genes was validated using qRT-PCR. In conclusion, the present study indicates that EMT plays a significant role in the formation of vestibular FE and provides an overview of transcriptome characteristics in vestibular FE.
Collapse
Affiliation(s)
- Lu He
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Guo-Peng Wang
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing-Ying Guo
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhong-Rui Chen
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Liu
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shu-Sheng Gong
- Department of Otolaryngology-Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Li B, Qin Y, Yu X, Xu X, Yu W. Lipid raft involvement in signal transduction in cancer cell survival, cell death and metastasis. Cell Prolif 2021; 55:e13167. [PMID: 34939255 PMCID: PMC8780926 DOI: 10.1111/cpr.13167] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022] Open
Abstract
Lipid rafts are cholesterol‐ and sphingolipid‐enriched specialized membrane domains within the plasma membrane. Lipid rafts regulate the density and activity of signal receptors by compartmentalizing them, promoting signalling cascades that play important roles in the survival, death and metastasis of cancer cells. In this review, we emphasize the current concept initially postulated by F. Mollinedo and C. Gajate on the importance of lipid rafts in cancer survival, death and metastasis by describing representative signalling pathways, including the IGF system and the PI3K/AKT, Fas/CD95, VEGF/VEGFR2 and CD44 signalling pathways, and we also discuss the concept of CASMER (cluster of apoptotic signalling molecule‐enriched rafts), coined, originally introduced and further advanced by F. Mollinedo and C. Gajate in the period 2005–2010. Then, we summarize relevant research progress and suggest that lipid rafts play important roles in the survival, death and metastasis of cancer cells, making them promising targets for cancer therapy.
Collapse
Affiliation(s)
- Borui Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wenyan Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Sun R, Zhao Y, Wang Y, Zhang Q, Zhao P. An affibody-conjugated nanoprobe for IGF-1R targeted cancer fluorescent and photoacoustic dual-modality imaging. NANOTECHNOLOGY 2021; 32:205103. [PMID: 33556922 DOI: 10.1088/1361-6528/abe437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Dual-modal molecular imaging that combines photoacoustic imaging with near-infrared fluorescence imaging integrates the benefits of both imaging modalities and may achieve more precise detection of disease. In this study, silver sulfide quantum dots (Ag2S QDs) with superior photoacoustic properties and a strong fluorescent emission in the NIR region were successfully synthesized. They were further modified with the insulin-like growth factor 1 receptor (IGF-1R) targeted small scaffold protein, Affibody (ZIGF-1) to achieved targeted photoacoustic/fluorescent dual-modal imaging of cancer. Our results showed that the prepared nanoprobe had good tumor targeting properties in vivo, and the probe also showed good biocompatibility without any significant toxicity.
Collapse
Affiliation(s)
- Ran Sun
- Center for Reproductive Medicine, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Yuyang Zhao
- Department of Digestive, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Yanan Wang
- Institute of Molecular Medicine, College of Life and Health Sciences, Northeastern University, Shenyang, Liaoning 110000, People's Republic of China
| | - Qian Zhang
- Department of Digestive, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Ping Zhao
- Department of Digestive, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130033, People's Republic of China
| |
Collapse
|
7
|
Pharmacological Inhibition of Insulin Growth Factor-1 Receptor (IGF-1R) Alone or in Combination With Ruxolitinib Shows Therapeutic Efficacy in Preclinical Myeloproliferative Neoplasm Models. Hemasphere 2021; 5:e565. [PMID: 33954282 PMCID: PMC8092367 DOI: 10.1097/hs9.0000000000000565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/22/2021] [Indexed: 11/26/2022] Open
Abstract
Even after development of the JAK1/JAK2 inhibitor ruxolitinib, myeloproliferative neoplasm (MPN) patients require novel therapeutic options. While ruxolitinib can considerably improve quality of life and prolong survival, it does not modify the natural disease course in most patients. Moreover, resistance develops with prolonged use. Therefore, various combination treatments are currently being investigated. Published data provide a compelling rationale for the inhibition of insulin growth factor-1 receptor (IGF-1R) signaling in MPN. Here we report that genetic and pharmacological inhibition of IGF-1R selectively reduced Jak2V617F-driven cytokine-independent proliferation ex vivo. Two different structurally unrelated IGF-1R inhibitors ameliorated disease phenotype in a murine MPN model and significantly prolonged survival. Moreover, in mice, low-dose ruxolitinib synergized with IGF-1R inhibition to increase survival. Our data demonstrate preclinical efficacy of IGF-1R inhibition in a murine MPN model.
Collapse
|
8
|
Identification of a Resistance Mechanism to IGF-IR Targeting in Human Triple Negative MDA-MB-231 Breast Cancer Cells. Biomolecules 2021; 11:biom11040527. [PMID: 33916323 PMCID: PMC8065809 DOI: 10.3390/biom11040527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022] Open
Abstract
Triple negative breast cancer (TNBC) is associated with unfavorable prognosis and high relapse rates following chemotherapy. There is an urgent need to develop effective targeted therapy for this BC subtype. The type I insulin-like growth factor receptor (IGF-IR) was identified as a potential target for BC management. We previously reported on the production of the IGF-Trap, a soluble IGF-1R fusion protein that reduces the bioavailability of circulating IGF-1 and IGF-2 to the cognate receptor, impeding signaling. In nude mice xenotransplanted with the human TNBC MDA-MB-231 cells, we found variable responses to this inhibitor. We used this model to investigate potential resistance mechanisms to IGF-targeted therapy. We show here that prolonged exposure of MDA-MB-231 cells to the IGF-Trap in vitro selected a resistant subpopulation that proliferated unhindered in the presence of the IGF-Trap. We identified in these cells increased fibroblast growth factor receptor 1 (FGFR1) activation levels that sensitized them to the FGFR1-specific tyrosine kinase inhibitor PD166866. Treatment with this inhibitor caused cell cycle arrest in both the parental and resistant cells, markedly increasing cell death in the latter. When combined with the IGF-Trap, an increase in cell cycle arrest was observed in the resistant cells. Moreover, FGFR1 silencing increased the sensitivity of these cells to IGF-Trap treatment in vivo. Our data identify increased FGFR1 signaling as a resistance mechanism to targeted inhibition of the IGF-IR and suggest that dual IGF-1R/FGFR1 blockade may be required to overcome TNBC cell resistance to IGF-axis inhibitors.
Collapse
|
9
|
Xing S, Tian Z, Zheng W, Yang W, Du N, Gu Y, Yin J, Liu H, Jia X, Huang D, Liu W, Deng M. Hypoxia downregulated miR-4521 suppresses gastric carcinoma progression through regulation of IGF2 and FOXM1. Mol Cancer 2021; 20:9. [PMID: 33407516 PMCID: PMC7786912 DOI: 10.1186/s12943-020-01295-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/15/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) show considerable promise as therapeutic agents to improve tumor treatment, as they have been revealed as crucial modulators in tumor progression. However, our understanding of their roles in gastric carcinoma (GC) metastasis is limited. Here, we aimed to identify novel miRNAs involved in GC metastasis and explored their regulatory mechanisms and therapeutic significance in GC. METHODS The microRNA expression profiles of GC tumors at different stages and at different metastasis statuses were compared respectively using the stomach adenocarcinoma (STAD) miRNASeq dataset in TCGA. Using the above method, miR-4521 was picked out for further study. miR-4521 expression in GC tissues was examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and in situ hybridization (ISH). Highly and lowly invasive cell sublines were established using a repetitive transwell assay. Gain-of-function and loss-of-function analyses were performed to investigate the functions of miR-4521 and its upstream and downstream regulatory mechanisms in vitro and in vivo. Moreover, we investigated the therapeutic role of miR-4521 in a mouse xenograft model. RESULTS In this study, we found that miR-4521 expression was downregulated in GC tissues compared with adjacent normal tissues and that its downregulation was positively correlated with advanced clinical stage, metastasis status and poor patient prognosis. Functional experiments revealed that miR-4521 inhibited GC cell invasion and metastasis in vitro and in vivo. Further studies showed that hypoxia repressed miR-4521 expression via inducing ETS1 and miR-4521 mitigated hypoxia-mediated metastasis, while miR-4521 inactivated the AKT/GSK3β/Snai1 pathway by targeting IGF2 and FOXM1, thereby inhibiting the epithelial-mesenchymal transition (EMT) process and metastasis. In addition, we demonstrated that therapeutic delivery of synthetic miR-4521 suppressed gastric carcinoma progression in vivo. CONCLUSIONS Our results suggest an important role for miR-4521 in regulating GC metastasis and hypoxic response of tumor cells as well as the therapeutic significance of this miRNA in GC.
Collapse
Affiliation(s)
- Shan Xing
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhi Tian
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, Tampa, FL, 33612, USA
| | - Wenying Zheng
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Wenjuan Yang
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Nan Du
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yixue Gu
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Jiang Yin
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Hao Liu
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Xiaoting Jia
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China
| | - Donglan Huang
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China.
| | - Wanli Liu
- Department of Clinical Laboratory, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Min Deng
- Affiliated Cancer Hosipital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", No.78, Hengzhigang Road, Guangzhou, 510095, China.
| |
Collapse
|
10
|
Ma X, Cao R, Xiao H, Cao Z. Establishment of a type II insulin-like growth factor receptor gene site-integrated SKBR3 cell line using CRISPR/Cas9. Oncol Lett 2020; 20:354. [PMID: 33123265 PMCID: PMC7586281 DOI: 10.3892/ol.2020.12216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
Human epidermal growth factor receptor 2 (HER-2)+ breast cancer has a high recurrence rate and a poor prognosis, with drug resistance contributing to disease progression. The present study aimed to establish a SKBR3 cell line with type II insulin-like growth factor receptor (IGR-IIR) gene site integration using the CRISPR/Cas9 system, and to provide a cell model for exploring the mechanism responsible for the effect of IGF-IIR on trastuzumab resistance in HER-2+ breast cancer cells. In the present study, six single guide (sg)RNA pairs according to the adeno-associated virus integration site 1 (AAVS1) gene sequence were designed and synthesized, and the Universal CRISPR Activity assay CRISPR/Cas9 rapid construction and activity detection kit was used to connect the annealed oligo with the pCS vector. The sgRNA with the highest efficiency was selected to construct a Cas9/sgRNA expression vector using AsiSI + Bstz17I restriction enzymes to cut IGF-IIR. The fragment was ligated into an human AAVS1-KI vector to construct the IGF-IIR targeting vector. The Cas9/sgRNA and IGF-IIR targeting vectors were electroporated into SKBR3 cells, screened using puromycin and identified via PCR, and the mixed cloned cells generated via IGF-IIR gene targeted integration were obtained. The semi-solid and limited dilution methods were used for monoclonal cell preparation, and the results revealed that a Cas9/sgRNA vector that targeted the AAVS1 was successfully constructed. sgRNA activity detection demonstrated that sgRNA2 had the highest efficiency, while enzyme digestion and sequencing confirmed that the IGF-IIR target vector was successfully constructed. The optimum conditions for electrotransfection were 1,200 V, 20 ms and 2 pulses, and the optimal screening concentration of puromycin was 0.5 µg/ml. Using these conditions, the IGF-IIR targeting vector and pCS-sgRNA2 plasmid were successfully transfected into SKBR3 cells, and PCR identification and sequencing verified the correct genotype of mixed clone fragments. The monoclonal cells proliferate slowly and gradually underwent apoptosis. Overall, the present study successfully obtained a mixed clone cell line with site-specific integration of the IGF-IIR gene at the AAVS1.
Collapse
Affiliation(s)
- Xinyu Ma
- Surgical Department of Thyroid Gland, Mammary Gland and Hernia, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010010, P.R. China
| | - Ru Cao
- Surgical Department of Thyroid Gland, Mammary Gland and Hernia, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010010, P.R. China
| | - Haiyan Xiao
- Surgical Department of Thyroid Gland, Mammary Gland and Hernia, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010010, P.R. China
| | - Zhongwei Cao
- Surgical Department of Thyroid Gland, Mammary Gland and Hernia, Inner Mongolia People's Hospital, Hohhot, Inner Mongolia 010010, P.R. China
| |
Collapse
|
11
|
Lin W, Lin A, Li Z, Zhou C, Chen C, Chen B, Lyu Q, Zhang J, Luo P. Potential predictive value of SCN4A mutation status for immune checkpoint inhibitors in melanoma. Biomed Pharmacother 2020; 131:110633. [PMID: 32892029 DOI: 10.1016/j.biopha.2020.110633] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/17/2020] [Accepted: 08/05/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma refers to a pigmented nevus with malignant changes. The preferred treatment for primary melanoma is surgical excision and postoperative radiotherapy, but the prognosis is poor. Immune checkpoint inhibitors (ICIs) have been remarkably successful in different types of cancers, but not all cancer patients can benefit from it. Therefore, it is essential to find predictable biomarkers and improve the accuracy of treatment. In this study, we used survival analysis, gene panorama analysis, immune cell enrichment analysis, TMB analysis, and GSEA to demonstrate that SCN4A gene mutations may be used as one of the indicators to predict the prognosis of melanoma patients undergoing ICI treatment. The research further indicates that SCN4A gene mutations improve the prognosis of ICI treatment. It is hoped that the effect of SCN4A on immunogenicity and tumor immunity can be demonstrated to further suggest the effect of this gene on the efficacy of ICIs.
Collapse
Affiliation(s)
- Weiyin Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Zhefu Li
- Central Sterile Supply Department, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chaozheng Zhou
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Chufeng Chen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Boliang Chen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qingwen Lyu
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China; Guangdong Fusion Application Engineering Center of Medical Big Data, Guangzhou, Guangdong, People's Republic of China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Christodoulou C, Oikonomopoulos G, Koliou GA, Kostopoulos I, Kotoula V, Bobos M, Pentheroudakis G, Lazaridis G, Skondra M, Chrisafi S, Koutras A, Bafaloukos D, Razis E, Papadopoulou K, Papakostas P, Kalofonos HP, Pectasides D, Skarlos P, Kalogeras KT, Fountzilas G. Evaluation of the Insulin-like Growth Factor Receptor Pathway in Patients with Advanced Breast Cancer Treated with Trastuzumab. Cancer Genomics Proteomics 2018; 15:461-471. [PMID: 30343280 DOI: 10.21873/cgp.20105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/29/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Trastuzumab is a monoclonal antibody against HER2-positive breast cancer. Despite improving the natural history of the disease, there is a number of patients who are resistant to it, whereas all patients will eventually develop resistance and disease will progress. Inconsistent preclinical data show that the IGF-R pathway may contribute to either de novo or acquired resistance to trastuzumab. MATERIALS AND METHODS In total, 227 trastuzumab-treated metastatic breast cancer patients were evaluated for IGF-1, IGF-1R, GLP-1R, Akt1, Akt2 Akt3 mRNA expression, and IGF-1Rα, IGF-1Rβ, IGF-2R protein expression. RESULTS Only 139 patients were truly HER2-positive by central assessment. Among HER2-positive patients, high Akt2 and GLP-1R mRNA expression showed a trend towards higher and lower risk of progression, respectively (HR=1.83, 95%CI=0.90-3.72, p=0.094 and HR=0.62, 95%CI=0.36-1.06, p=0.079), while high Akt1 and GLP-1R mRNA expression presented a trend towards unfavorable survival (HR=1.67, 95%CI=0.93-2.99, p=0.086 and HR=1.67, 95%CI=0.94-2.96, p=0.080). Among HER2-negative patients, high GLP-1R mRNA expression and negative stromal IGF-1Rβ protein expression showed a trend towards worse survival (HR=2.31, 95%CI=0.87-6.13, p=0.094 and HR=2.03, 95%CI=0.94-4.35, p=0.071, respectively). In the multivariate analyses, HER2-positive patients with high Akt1 and GLP-1R mRNA expression had a worse survival (HR=1.86, 95%CI=1.01-3.43, p=0.045 and HR=1.83, 95%CI=0.99-3.41, p=0.055, respectively). CONCLUSION This study revealed a crosstalk between the IGF-R pathway and HER2. There was evidence that high Akt1 and GLP-1R mRNA expression might affect survival among HER2-positive metastatic breast cancer patients treated with trastuzumab.
Collapse
Affiliation(s)
| | | | | | - Ioannis Kostopoulos
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Vassiliki Kotoula
- Department of Pathology, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece.,Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mattheos Bobos
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - George Lazaridis
- Department of Medical Oncology, Papageorgiou Hospital, Aristotle University of Thessaloniki, School of Health Sciences, Faculty of Medicine, Thessaloniki, Greece
| | - Maria Skondra
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, Athens, Greece
| | - Sofia Chrisafi
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Angelos Koutras
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Patras, Greece
| | | | - Evangelia Razis
- Third Department of Medical Oncology, Hygeia Hospital, Athens, Greece
| | - Kyriaki Papadopoulou
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Haralambos P Kalofonos
- Division of Oncology, Department of Medicine, University Hospital, University of Patras Medical School, Patras, Greece
| | - Dimitrios Pectasides
- Oncology Section, Second Department of Internal Medicine, Hippokration Hospital, Athens, Greece
| | - Pantelis Skarlos
- Department of Radiotherapy, Metropolitan Hospital, Piraeus, Greece
| | - Konstantine T Kalogeras
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.,Translational Research Section, Hellenic Cooperative Oncology Group, Athens, Greece
| | - George Fountzilas
- Laboratory of Molecular Oncology, Hellenic Foundation for Cancer Research/Aristotle University of Thessaloniki, Thessaloniki, Greece.,Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Hessel H, Poignée-Heger M, Lohmann S, Hirscher B, Herold A, Assmann G, Budczies J, Sotlar K, Kirchner T. Subtyping Of Triple Negative Breast Carcinoma On The Basis Of RTK Expression. J Cancer 2018; 9:2589-2602. [PMID: 30087699 PMCID: PMC6072816 DOI: 10.7150/jca.23023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/16/2018] [Indexed: 12/13/2022] Open
Abstract
Background: "Triple-negative breast cancers" (TNBC) comprise a heterogeneous group of about 15% of invasive BCs lacking the expression of estrogen and progesterone receptors (ER, PR) and the expression of HER2 (ERBB2) and are therefore no established candidates for targeted treatment options in BC, i.e., endocrine and anti-HER2 therapy. The aim of the present study was to use gene expression profiling and immunohistochemical (IHC) characterization to identify receptor tyrosine kinase (RTK) profiles that would allow patient stratification for the purposes of target-oriented personalized tumor therapy in TNBC. Methods: Twenty-nine cases of TNBC selected according to routine diagnostic IHC/cytogenetic criteria were examined by reverse transcription polymerase chain reaction (RT-PCR). RTK mRNA expression profiles were generated for a total of 31 tumor-relevant biomarkers, mainly belonging to the IGF- and EGF-receptor families but also including biomarkers related to downstream signaling. Protein expression of selected biomarkers was investigated by IHC. Results: Hierarchical cluster analysis revealed a dichotomous differentiation pattern amongst TNBCs. A significant difference in gene expression was observed for 16 of the 31 RTK-associated tumor relevant biomarkers between the two newly identified TNBC subgroups. The findings were verified at the posttranslational level by the IHC data. The RTKs HER4, IGF-1R and IGF-2R and the hormone receptors ER and PR below the IHC detection limit play a central role in the differentiation of the two TNBC subgroups. Observed survival was reported as Kaplan-Meier estimates and point towards an improved survival of patients with RTK-high with superior three-year survival rate of 100% compared to RTK-low gene signatures with superior three-year survival rate of 60% (log-rank test, p-value = 0.022). Conclusion: Gene-expression and IHC analysis of the EGF and IGF receptor families and biomarkers associated with downstream signaling point to the existence of two distinct TNBC subtypes. The RTKs HER4, IGF-1R, IGF-2R and the hormone receptors ER and PR appear to be of particular importance here. Based on survival analysis the differentiation of TNBC with RTK-high and RTK-low gene signatures seems to be of prognostic relevance. Additionally, correlation analysis of the relationship between RTKs and ER suggests co-regulatory mechanisms that may have potential significance in new therapeutic approaches.
Collapse
Affiliation(s)
- Harald Hessel
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| | | | | | | | | | - Gerald Assmann
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
- Pathologiepraxis München, Germany
| | - Jan Budczies
- Institute of Pathology, Charité University Hospital, Berlin, Germany
| | - Karl Sotlar
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
- University Institute of Pathology, University Hospital Salzburg, Paracelsus Medical University, Austria
| | - Thomas Kirchner
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany
| |
Collapse
|
14
|
Reinholz MM, Chen B, Dueck AC, Tenner K, Ballman K, Riehle D, Jenkins RB, Geiger XJ, McCullough AE, Perez EA. IGF1R Protein Expression Is Not Associated with Differential Benefit to Concurrent Trastuzumab in Early-Stage HER2 + Breast Cancer from the North Central Cancer Treatment Group (Alliance) Adjuvant Trastuzumab Trial N9831. Clin Cancer Res 2017; 23:4203-4211. [PMID: 28533226 DOI: 10.1158/1078-0432.ccr-15-0574] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/16/2015] [Accepted: 09/04/2015] [Indexed: 12/13/2022]
Abstract
Background: Preclinical evidence indicates that increased insulin-like growth factor receptor-1 (IGF1R) signaling interferes with the action of trastuzumab suggesting a possible mechanism of trastuzumab resistance. Thus, we evaluated IGF1R prevalence, relationship with demographic data, and association with disease-free survival (DFS) of patients randomized to chemotherapy alone (Arm A) or chemotherapy with sequential (Arm B) or concurrent trastuzumab (Arm C) in the prospective phase III HER2+ adjuvant N9831 trial.Experimental Design: IGF1R protein expression was determined in tissue microarray sections (three cores per block; N = 1,197) or in whole tissue sections (WS; N = 537) using IHC (rabbit polyclonal antibody against IGF1R β-subunit). A tumor was considered positive (IGF1R+) if any core or WS had ≥1+ membrane staining in >0% invasive cells. Median follow-up was 8.5 years.Results: Of 1,734 patients, 708 (41%) had IGF1R+ breast tumors. IGF1R+ was associated with younger age (median 48 vs. 51, P = 0.007), estrogen receptor/progesterone receptor positivity (78% vs. 35%, P < 0.001), nodal positivity (89% vs. 83%, P < 0.001), well/intermediate grade (34% vs. 24%, P < 0.001), tumors ≥2 cm (72% vs. 67%, P = 0.02) but not associated with race or tumor histology. IGF1R did not affect DFS within arms. Between Arms A and C, patients with IGF1R+ and IGF1R- tumors had DFS HRs of 0.48 (P ≤ 0.001) and 0.68 (P = 0.009), respectively (Pinteraction = 0.17). Between Arms A and B, patients with IGF1R+ and IGF1R- tumors had DFS HRs of 0.83 (P = 0.25) and 0.69 (P = 0.01), respectively (Pinteraction = 0.42).Conclusions: In contrast to preclinical studies that suggest a decrease in trastuzumab sensitivity in IGF1R+ tumors, our adjuvant data show benefit of adding trastuzumab for patients with either IGF1R+ and IGF1R- breast tumors. Clin Cancer Res; 23(15); 4203-11. ©2016 AACR.
Collapse
Affiliation(s)
- Monica M Reinholz
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Beiyun Chen
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Amylou C Dueck
- Section of Biostatistics, Mayo Clinic, Scottsdale, Arizona
| | - Kathleen Tenner
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Karla Ballman
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota
| | - Darren Riehle
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Robert B Jenkins
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | | | | | - Edith A Perez
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida.
| |
Collapse
|
15
|
Basu R, Wu S, Kopchick JJ. Targeting growth hormone receptor in human melanoma cells attenuates tumor progression and epithelial mesenchymal transition via suppression of multiple oncogenic pathways. Oncotarget 2017; 8:21579-21598. [PMID: 28223541 PMCID: PMC5400608 DOI: 10.18632/oncotarget.15375] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/24/2017] [Indexed: 12/12/2022] Open
Abstract
Recent reports have confirmed highest levels of growth hormone (GH) receptor (GHR) transcripts in melanoma, one of the most aggressive forms of human cancer. Yet the mechanism of GH action in melanoma remains mostly unknown. Here, using human malignant melanoma cells, we examined the effects of GH excess or siRNA mediated GHR knock-down (GHRKD) on tumor proliferation, migration and invasion. GH promoted melanoma progression while GHRKD attenuated the same. Western blot analysis revealed drastic modulation of multiple oncogenic signaling pathways (JAK2, STAT1, STAT3, STAT5, AKT, mTOR, SRC and ERK1/2) following addition of GH or GHRKD. Further, we show that GH excess upregulates expression of markers of epithelial mesenchymal transition in human melanoma, while the effects were reversed by GHRKD. Interestingly, we observed consistent expression of GH transcript in the melanoma cells as well as marked modulation of the IGF receptors and binding proteins (IGF1R, IGF2R, IR, IGFBP2, IGFBP3) and the oncogenic HGF-MET mRNA, in response to excess GH or GHRKD. Our study thus identifies the mechanistic model of GH-GHR action in human melanoma and validates it as an important pharmacological target of intervention.
Collapse
Affiliation(s)
- Reetobrata Basu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Molecular and Cell Biology Program, Ohio University, Athens, Ohio, USA
| | - Shiyong Wu
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Molecular and Cell Biology Program, Ohio University, Athens, Ohio, USA
| | - John J. Kopchick
- Edison Biotechnology Institute, Ohio University, Athens, Ohio, USA
- Molecular and Cell Biology Program, Ohio University, Athens, Ohio, USA
- Ohio University Heritage College of Osteopathic Medicine, Athens, Ohio, USA
| |
Collapse
|
16
|
Zhou X, Zhao X, Li X, Ping G, Pei S, Chen M, Wang Z, Zhou W, Jin B. PQ401, an IGF-1R inhibitor, induces apoptosis and inhibits growth, proliferation and migration of glioma cells. J Chemother 2017; 28:44-9. [PMID: 25971682 DOI: 10.1179/1973947815y.0000000026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Growth factor signalling pathways transduce extra-cellular physiological cues to guide cells to maintain critical cellular functions, including cell proliferation, survival and metabolism. Dysregulation of certain growth factor signalling pathways has been shown as a major route to promote tumourigenesis. Glioma is a type of aggressive malignant tumour with no effective systematic therapy so far. Overexpression or hyperactivation of IGF-1R has been observed to be tightly associated with glioma progression and poor prognosis. Here, we examined the biological effects of a specific IGF-1R inhibitor, PQ401, on suppressing U87MG glioma cell growth and migration. Specifically, we observed that PQ401 not only induced cellular apoptosis in U87MG cells and subsequently reduced cell viability and proliferation but also attenuated cell mobility in vitro. More importantly, through a mouse xenograft model, we observed that administration of PQ401 on mice led to suppression of glioma tumour growth in vivo. In summary, our study suggests that PQ401 may serve as a promising leading drug for treating glioma patients with elevated IGF-1R signalling.
Collapse
Affiliation(s)
- Xiang Zhou
- a Department of Neurosurgery , First Affiliated Hospital of Xinxiang Medical College , Weihui , Henan , P. R. China
| | - Xinli Zhao
- a Department of Neurosurgery , First Affiliated Hospital of Xinxiang Medical College , Weihui , Henan , P. R. China
| | - Xiangsheng Li
- a Department of Neurosurgery , First Affiliated Hospital of Xinxiang Medical College , Weihui , Henan , P. R. China
| | - Guanfang Ping
- b Department of Pharmacy , First Affiliated Hospital of Xinxiang Medical College , Weihui , Henan , P. R. China
| | - Sujuan Pei
- b Department of Pharmacy , First Affiliated Hospital of Xinxiang Medical College , Weihui , Henan , P. R. China
| | - Ming Chen
- b Department of Pharmacy , First Affiliated Hospital of Xinxiang Medical College , Weihui , Henan , P. R. China
| | - Zhongwei Wang
- a Department of Neurosurgery , First Affiliated Hospital of Xinxiang Medical College , Weihui , Henan , P. R. China
| | - Wenke Zhou
- a Department of Neurosurgery , First Affiliated Hospital of Xinxiang Medical College , Weihui , Henan , P. R. China
| | - Baozhe Jin
- a Department of Neurosurgery , First Affiliated Hospital of Xinxiang Medical College , Weihui , Henan , P. R. China
| |
Collapse
|
17
|
Nurwidya F, Andarini S, Takahashi F, Syahruddin E, Takahashi K. Implications of Insulin-like Growth Factor 1 Receptor Activation in Lung Cancer. Malays J Med Sci 2016; 23:9-21. [PMID: 27418865 PMCID: PMC4934714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/14/2016] [Indexed: 06/06/2023] Open
Abstract
Insulin-like growth factor 1 receptor (IGF1R) has been intensively investigated in many preclinical studies using cell lines and animal models, and the results have provided important knowledge to help improve the understanding of cancer biology. IGF1R is highly expressed in patients with lung cancer, and high levels of circulating insulin-like growth factor 1 (IGF1), the main ligand for IGF1R, increases the risk of developing lung malignancy in the future. Several phase I clinical trials have supported the potential use of an IGF1R-targeted strategy for cancer, including lung cancer. However, the negative results from phase III studies need further attention, especially in selecting patients with specific molecular signatures, who will gain benefits from IGF1R inhibitors with minimal side effects. This review will discuss the basic concept of IGF1R in lung cancer biology, such as epithelial-mesenchymal transition (EMT) induction and cancer stem cell (CSC) maintenance, and also the clinical implications of IGF1R for lung cancer patients, such as prognostic value and cancer therapy resistance.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Sita Andarini
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Elisna Syahruddin
- Department of Pulmonology and Respiratory Medicine, University of Indonesia Faculty of Medicine, Persahabatan Hospital, Jalan Persahabatan Raya No.1, Jakarta 13230, Indonesia
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
18
|
Druley TE, Wang L, Lin SJ, Lee JH, Zhang Q, Daw EW, Abel HJ, Chasnoff SE, Ramos EI, Levinson BT, Thyagarajan B, Newman AB, Christensen K, Mayeux R, Province MA. Candidate gene resequencing to identify rare, pedigree-specific variants influencing healthy aging phenotypes in the long life family study. BMC Geriatr 2016; 16:80. [PMID: 27060904 PMCID: PMC4826550 DOI: 10.1186/s12877-016-0253-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 04/04/2016] [Indexed: 11/22/2022] Open
Abstract
Background The Long Life Family Study (LLFS) is an international study to identify the genetic components of various healthy aging phenotypes. We hypothesized that pedigree-specific rare variants at longevity-associated genes could have a similar functional impact on healthy phenotypes. Methods We performed custom hybridization capture sequencing to identify the functional variants in 464 candidate genes for longevity or the major diseases of aging in 615 pedigrees (4,953 individuals) from the LLFS, using a multiplexed, custom hybridization capture. Variants were analyzed individually or as a group across an entire gene for association to aging phenotypes using family based tests. Results We found significant associations to three genes and nine single variants. Most notably, we found a novel variant significantly associated with exceptional survival in the 3’ UTR OBFC1 in 13 individuals from six pedigrees. OBFC1 (chromosome 10) is involved in telomere maintenance, and falls within a linkage peak recently reported from an analysis of telomere length in LLFS families. Two different algorithms for single gene associations identified three genes with an enrichment of variation that was significantly associated with three phenotypes (GSK3B with the Healthy Aging Index, NOTCH1 with diastolic blood pressure and TP53 with serum HDL). Conclusions Sequencing analysis of family-based associations for age-related phenotypes can identify rare or novel variants. Electronic supplementary material The online version of this article (doi:10.1186/s12877-016-0253-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Todd E Druley
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63108, USA.,Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63108, USA
| | - Lihua Wang
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63108, USA.,Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Shiow J Lin
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63108, USA.,Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Joseph H Lee
- Sergievsky Center, College of Physicians and Surgeons, Columbia University New York, New York, NY, USA.,Taub Institute, College of Physicians and Surgeons, Columbia University New York, New York, NY, USA.,Department of Epidemiology, School of Public Health, Columbia University New York, New York, NY, USA
| | - Qunyuan Zhang
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63108, USA.,Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - E Warwick Daw
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63108, USA.,Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Haley J Abel
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63108, USA.,Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sara E Chasnoff
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63108, USA.,Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63108, USA
| | - Enrique I Ramos
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63108, USA.,Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63108, USA
| | - Benjamin T Levinson
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63108, USA.,Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63108, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Anne B Newman
- Department of Epidemiology, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Kaare Christensen
- The Danish Aging Research Center, Epidemiology, University of Southern Denmark, Odense, Denmark
| | - Richard Mayeux
- Gertrude H. Sergievsky Center and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York City, NY, USA
| | - Michael A Province
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, 660 South Euclid Avenue, Campus Box 8116, St. Louis, MO, 63108, USA. .,Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
19
|
Kong YL, Shen Y, Ni J, Shao DC, Miao NJ, Xu JL, Zhou L, Xue H, Zhang W, Wang XX, Lu LM. Insulin deficiency induces rat renal mesangial cell dysfunction via activation of IGF-1/IGF-1R pathway. Acta Pharmacol Sin 2016; 37:217-27. [PMID: 26775660 DOI: 10.1038/aps.2015.128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 11/02/2015] [Indexed: 12/17/2022] Open
Abstract
AIM Diabetic nephropathy is one of the major complications of diabetes and the major cause of end-stage renal disease. In this study we investigated the insulin deficiency (ID) induced changes in renal mesangial cells (MCs) and in the kidney of STZ-induced diabetic rats. METHODS Cultured rat renal MCs were incubated in ID media. Cell proliferation was analyzed using BrdU incorporation assay. The expression of insulin receptor (IR), insulin-like growth factor-1 receptor (IGF-1R), phosphorylated IGF-1R, fibronectin, and collagen IV was determined with Western blot analysis. STZ-induced diabetic rats were treated with an IGF-1R antagonist picropodophyllin (PPP, 20 mg·kg(-1)·d(-1), po) for 8 weeks. After the rats were euthanized, plasma and kidneys were collected. IGF-1 levels in renal cortex were measured with RT-PCR or ELISA. The morphological changes in the kidneys were also examined. RESULTS Incubation in ID media significantly increased cell proliferation, the synthesis of fibronectin and collagen IV, and the expression of IGF-1 and IGF-1R and phosphorylated IGF-1R in renal MCs. Pretreatment of the cells with PPP (50 nmol/L) blocked ID-induced increases in cell proliferation and the synthesis of fibronectin and collagen IV; knockdown of IGF-1R showed a similar effect as PPP did. In contrast, treatment of the cells with IGF-1 (50 ng/mL) exacerbated ID-induced increases in cell proliferation. In the kidneys of diabetic rats, the expression of IGF-1, IGF-1R and phosphorylated IGF-1R were significantly elevated. Treatment of diabetic rats with PPP did not lower the blood glucose levels, but significantly suppressed the expression of TGF-β, fibronectin and collagen IV in the kidneys, the plasma levels of urinary nitrogen and creatinine, and the urinary protein excretion. CONCLUSION Insulin deficiency increases the expression of IGF-1 and IGF-1R in renal MCs and the kidney of diabetic rats, which contributes to the development of diabetic nephropathy.
Collapse
|
20
|
Devin JL, Bolam KA, Jenkins DG, Skinner TL. The Influence of Exercise on the Insulin-like Growth Factor Axis in Oncology: Physiological Basis, Current, and Future Perspectives. Cancer Epidemiol Biomarkers Prev 2015; 25:239-49. [PMID: 26677213 DOI: 10.1158/1055-9965.epi-15-0406] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 11/24/2015] [Indexed: 01/02/2023] Open
Abstract
Exercise and physical activity have been shown to reduce the risk of many common cancers and strongly influence tumor biology. A cause-effect mechanism explaining this relationship is dependent on cellular pathways that can influence tumor growth and are exercise responsive. The insulin-like growth factor (IGF) axis is reported to promote the development and progression of carcinomas through cellular signaling in cancerous tissues. This review summarizes the physiologic basis of the role of the IGF axis in oncology and the influence of exercise on this process. We examined the effects of exercise prescription on the IGF axis in cancer survivors by evaluating the current scope of the literature. The current research demonstrates a remarkable heterogeneity and inconsistency in the responses of the IGF axis to exercise in breast, prostate, and colorectal cancer survivors. Finally, this review presents an in-depth exploration of the physiologic basis and mechanistic underpinnings of the seemingly disparate relationship between exercise and the IGF axis in oncology. Although there is currently insufficient evidence to categorize the effects of exercise prescription on the IGF axis in cancer survivors, the inconsistency of results suggests a multifaceted relationship, the complexities of which are considered in this review.
Collapse
Affiliation(s)
- James L Devin
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia.
| | - Kate A Bolam
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia. The Swedish School of Sport and Health Sciences, Åstrand Laboratory of Work Physiology, Stockholm, Sweden
| | - David G Jenkins
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Tina L Skinner
- School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Zhang QY, Wang L, Song ZY, Qu XJ. Knockdown of type I insulin-like growth factor receptor inhibits human colorectal cancer cell growth and downstream PI3K/Akt, WNT/β-catenin signal pathways. Biomed Pharmacother 2015. [PMID: 26211576 DOI: 10.1016/j.biopha.2015.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Type I insulin-like growth factor receptor (IGF1R) signal is involved in normal physiology and many disease progressions. In this study, we presented the role of IGF1R in colorectal cancer cell lines. Results showed that knockdown of IGF1R using small interfering RNA in HT-29, SW620 cells strongly inhibited cell proliferation, arrested cell cycle and also promoted cell apoptosis. Western blotting results indicated that the downstream PI3K/Akt and canonical WNT signal pathways were blocked. In addition, we observed that reduction of IGF1R suppressed the expression of many inflammatory factors, such as NF-κB, p-NF-κB, COX-2 and iNOS. Together, this study demonstrate that knockdown of IGF1R inhibits CRC cells growth and provides an additional evidence for further clarifying the mechanism of IGF1R involved in CRC and inflammation-induced tumorigenesis.
Collapse
Affiliation(s)
- Qian-yun Zhang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Lu Wang
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Zhi-yu Song
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China
| | - Xian-jun Qu
- School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, China.
| |
Collapse
|
22
|
PET imaging of insulin-like growth factor type 1 receptor expression with a 64Cu-labeled Affibody molecule. Amino Acids 2015; 47:1409-19. [PMID: 25854877 DOI: 10.1007/s00726-015-1975-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 03/29/2015] [Indexed: 12/16/2022]
Abstract
The insulin-like growth factor 1 receptor (IGF-1R) serves as an attractive target for cancer molecular imaging and therapy. Previous single photon emission computerized tomography (SPECT) studies showed that the IGF-1R-targeting Affibody molecules (99m)Tc-ZIGF1R:4551-GGGC, [(99m)Tc(CO)3](+)-(HE)3-ZIGF1R:4551 and (111)In-DOTA-ZIGF1R:4551 can discriminate between high and low IGF-1R-expression tumors and have the potential for patient selection for IGF-1R-targeted therapy. Compared with SPECT, positron emission tomography (PET) may improve imaging of IGF-1R-expression, because of its high sensitivity, high spatial resolution, strong quantification ability. The aim of the present study was to develop the (64)Cu-labeled NOTA-conjugated Affibody molecule ZIGF-1R:4:40 as a PET probe for imaging of IGF-1R-positive tumor. An Affibody analogue (Ac-Cys-ZIGF-1R:4:40) binding to IGF-1R was site-specifically conjugated with NOTA and labeled with (64)Cu. Binding affinity and specificity of (64)Cu-NOTA-ZIGF-1R:4:40 to IGF-1R were evaluated using human glioblastoma U87MG cells. Small-animal PET, biodistribution, and metabolic stability studies were conducted on mice bearing U87MG xenografts after the injection of (64)Cu-NOTA-ZIGF-1R:4:40 with or without co-injection of unlabeled Affibody proteins. The radiosynthesis of (64)Cu-NOTA-ZIGF-1R:4:40 was completed successfully within 60 min with a decay-corrected yield of 75 %. (64)Cu-NOTA-ZIGF-1R:4:40 bound to IGF-1R with low nanomolar affinity (K D = 28.55 ± 3.95 nM) in U87MG cells. (64)Cu-NOTA-ZIGF-1R:4:40 also displayed excellent in vitro and in vivo stability. In vivo biodistribution and PET studies demonstrated targeting of U87MG gliomas xenografts was IGF-1R specific. The tumor uptake was 5.08 ± 1.07 %ID/g, and the tumor to muscle ratio was 11.89 ± 2.16 at 24 h after injection. Small animal PET imaging studies revealed that (64)Cu-NOTA-ZIGF-1R:4:40 could clearly identify U87MG tumors with good contrast at 1-24 h after injection. This study demonstrates that (64)Cu-NOTA-ZIGF-1R:4:40 is a promising PET probe for imaging IGF-1R positive tumor.
Collapse
|
23
|
Park JT, Hong KS. Effect of light-emitting-diode irradiation on the proliferation and migration in human gingival fibroblasts. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-9061-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
24
|
Mitran B, Altai M, Hofström C, Honarvar H, Sandström M, Orlova A, Tolmachev V, Gräslund T. Evaluation of 99mTc-Z IGF1R:4551-GGGC affibody molecule, a new probe for imaging of insulin-like growth factor type 1 receptor expression. Amino Acids 2014; 47:303-15. [PMID: 25425114 PMCID: PMC4302241 DOI: 10.1007/s00726-014-1859-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/18/2014] [Indexed: 11/30/2022]
Abstract
Overexpression of insulin-like growth factor-1 receptor (IGF-1R) in several cancers is associated with resistance to therapy. Radionuclide molecular imaging of IGF-1R expression in tumors may help in selecting the patients that will potentially respond to IGF-1R-targeted therapy. Affibody molecules are small (7 kDa) non-immunoglobulin-based scaffold proteins that are well-suited probes for radionuclide imaging. The aim of this study was the evaluation of an anti-IGF-1R affibody molecule labeled with technetium-99m using cysteine-containing peptide-based chelator GGGC at C-terminus. ZIGF1R:4551-GGGC was efficiently and stably labeled with technetium-99m (radiochemical yield 97 ± 3 %). 99mTc-ZIGF1R:4551-GGGC demonstrated specific binding to IGF-1R-expressing DU-145 (prostate cancer) and MCF-7 (breast cancer) cell lines and slow internalization in vitro. The tumor-targeting properties were studied in BALB/c nu/nu mice bearing DU-145 and MCF-7 xenografts. [99mTc(CO)3]+-(HE)3-ZIGF1R:4551 was used for comparison. The biodistribution study demonstrated high tumor-to-blood ratios (6.2 ± 0.9 and 6.9 ± 1.0, for DU-145 and MCF-7, respectively, at 4 h after injection). Renal radioactivity concentration was 16-fold lower for 99mTc-ZIGF1R:4551-GGGC than for [99mTc(CO)3]+-(HE)3-ZIGF1R:4551 at 4 h after injection. However, the liver uptake of 99mTc-ZIGF1R:4551-GGGC was 1.2- to 2-fold higher in comparison with [99mTc(CO)3]+-(HE)3-ZIGF1R:4551. A possible reason for the elevated hepatic uptake of 99mTc-ZIGF1R:4551-GGGC is a high lipophilicity of amino acids in the binding site of ZIGF1R:4551, which is not compensated in 99mTc-ZIGF1R:4551-GGGC. In conclusion, 99mTc-ZIGF1R:4551-GGGC can visualize the IGF-1R expression in human tumor xenografts and provides low retention of radioactivity in kidneys. Further development of this imaging agent should include molecular design aimed at reducing the hepatic uptake.
Collapse
Affiliation(s)
- Bogdan Mitran
- Preclinical PET Platform, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Wen Y, Li J, Tan Y, Qin J, Xie X, Wang L, Mei Q, Wang H, Magdalou J, Chen L. Angelica Sinensis polysaccharides stimulated UDP-sugar synthase genes through promoting gene expression of IGF-1 and IGF1R in chondrocytes: promoting anti-osteoarthritic activity. PLoS One 2014; 9:e107024. [PMID: 25202993 PMCID: PMC4159308 DOI: 10.1371/journal.pone.0107024] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 08/06/2014] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Osteoarthritis (OA) is a chronic joints disease characterized by progressive degeneration of articular cartilage due to the loss of cartilage matrix. Previously, we found, for the first time, that an acidic glycan from Angelica Sinensis Polysaccharides (APSs), namely the APS-3c, could protect rat cartilage from OA due to promoting glycosaminoglycan (GAG) synthesis in chondrocytes. In the present work, we tried to further the understanding of ASP-3c's anti-OA activity. METHODOLOGY/PRINCIPAL FINDINGS Human primary chondrocytes were treated with APS-3c or/and recombinant human interleukin 1β (IL-1β). It turned out that APS-3c promoted synthesis of UDP-xylose and GAG, as well as the gene expression of UDP-sugar synthases (USSs), insulin like growth factor 1 (IGF1) and IGF1 receptor (IGF1R), and attenuated the degenerative phenotypes, suppressed biosynthesis of UDP-sugars and GAG, and inhibited the gene expression of USSs, IGF1 and IGF1R induced by IL-1β. Then, we induced a rat OA model with papain, and found that APS-3c also stimulated GAG synthesis and gene expression of USSs, IGF1 and IGF1R in vivo. Additionally, recombinant human IGF1 and IGF1R inhibitor NP-AEW541 were applied to figure out the correlation between stimulated gene expression of USSs, IGF1 and IGF1R induced by APS-3c. It tuned out that the promoted GAG synthesis and USSs gene expression induced by APS-3c was mediated by the stimulated IGF1 and IGF1R gene expression, but not through directly activation of IGF1R signaling pathway. CONCLUSIONS/SIGNIFICANCES We demonstrated for the first time that APS-3c presented anti-OA activity through stimulating IGF-1 and IGF1R gene expression, but not directly activating the IGF1R signaling pathway, which consequently promoted UDP-sugars and GAG synthesis due to up-regulating gene expression of USSs. Our findings presented a better understanding of APS-3c's anti-OA activity and suggested that APS-3c could potentially be a novel therapeutic agent for OA.
Collapse
Affiliation(s)
- Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Li
- Department of pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Yang Tan
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jun Qin
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xianfei Xie
- Department of pharmacology, Basic Medical School of Wuhan University, Wuhan, China
| | - Linlong Wang
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qibing Mei
- Department of Pharmacology, School of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Hui Wang
- Department of pharmacology, Basic Medical School of Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| | - Jacques Magdalou
- UMR 7365 CNRS-Université de Lorraine, Faculté de Médecine, Vandœuvre-lès-Nancy, France
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China
| |
Collapse
|
26
|
Tran TN, Selinger CI, Yu B, Ng CC, Kohonen-Corish MRJ, McCaughan B, Kennedy C, O'Toole SA, Cooper WA. Alterations of insulin-like growth factor-1 receptor gene copy number and protein expression are common in non-small cell lung cancer. J Clin Pathol 2014; 67:985-91. [DOI: 10.1136/jclinpath-2014-202347] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AimsInsulin-like growth factor-1 receptor (IGF1R) is a tyrosine kinase membrane receptor involved in tumourigenesis that may be a potential therapeutic target. We aimed to investigate the incidence and prognostic significance of alterations in IGF1R copy number, and IGF1R protein expression in resected primary non-small cell lung cancer (NSCLC), and lymph node metastases.MethodsIGF1R gene copy number status was evaluated by chromogenic silver in situ hybridisation and IGF1R protein expression was evaluated by immunohistochemistry in tissue microarray sections from a retrospective cohort of 309 surgically resected NSCLCs and results were compared with clinicopathological features, including EGFR and KRAS mutational status and patient survival.ResultsIGF1R gene copy number status was positive (high polysomy or amplification) in 29.2% of NSCLC, and 12.1% exhibited IGF1R gene amplification. High IGF1R expression was found in 28.3%. There was a modest correlation between IGF1R gene copy number and protein expression (r=0.2, p<0.05). Alterations of IGF1R gene copy number and protein expression in primary tumours were significantly associated with alterations in lymph node metastases (p<0.01). High IGF1R gene copy number and protein expression was significantly higher in squamous cell carcinomas (SCC) compared with other subtypes of NSCLC (p<0.05). There were no other associations between IGF1R status and other clinicopathological features including patient age, gender, smoking status, tumour size, stage, grade, EGFR or KRAS mutational status or overall survival.ConclusionsHigh IGF1R gene copy number and protein overexpression are frequent in NSCLC, particularly in SCCs, but they are not prognostically relevant.
Collapse
|
27
|
Zaafar DK, Zaitone SA, Moustafa YM. Role of Metformin in Suppressing 1,2-Dimethylhydrazine-Induced Colon Cancer in Diabetic and Non-Diabetic Mice: Effect on Tumor Angiogenesis and Cell Proliferation. PLoS One 2014; 9:e100562. [DOI: https:/doi.org/10.1371/journal.pone.0100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
|
28
|
Zaafar DK, Zaitone SA, Moustafa YM. Role of metformin in suppressing 1,2-dimethylhydrazine-induced colon cancer in diabetic and non-diabetic mice: effect on tumor angiogenesis and cell proliferation. PLoS One 2014; 9:e100562. [PMID: 24971882 PMCID: PMC4074064 DOI: 10.1371/journal.pone.0100562] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/29/2014] [Indexed: 12/18/2022] Open
Abstract
Several studies indicated that type 2 diabetes mellitus and insulin resistance are associated with increased colon cancer risk. Recently, studies suggest that metformin can reduce cancer risk in diabetic or non-diabetic patients with unclear mechanisms. This work aimed to determine the effect of metformin on chemically-induced colon cancer in mice. Colon cancer was induced using 1,2-dimethylhydrazine (DMH, 20 mg/kg/week, s.c.) for fifteen weeks. Experiment I: healthy mice were fed with basal diet for four weeks and then allocated into seven groups, (i) saline, (ii) DMH, (iii) oxaliplatin, (iv–v): metformin (100 or 200 mg/kg) and (vi–vii): oxaliplatin+metformin (100 or 200 mg/kg), respectively. Experiment II: type 2 diabetes mellitus was induced by injection of STZ (30 mg/kg) after four weeks of high-fat feeding and then mice were allocated into seven groups similar to those reported in experiment I. Examination of the colonic tissue at the end of the experiment highlighted an increase in angiogenic markers and cell proliferation and showed a greater immunostaining for insulin growth factor I receptors and CD34 in the colon of diabetic mice compared to non-diabetics. In general, metformin downregulated tumor angiogenesis and augmented the antitumor effect of oxaliplatin. Overall, the current results showed that metformin protected against DMH-induced colon cancer in non-diabetic and diabetic mice. This therapeutic effect was, at least in part, attributed to its anti-angiogenic and anti-proliferative mechanisms.
Collapse
MESH Headings
- 1,2-Dimethylhydrazine/toxicity
- Animals
- Antigens, CD34/metabolism
- Antineoplastic Agents/therapeutic use
- Antineoplastic Agents/toxicity
- Cell Proliferation/drug effects
- Colon/drug effects
- Colon/metabolism
- Colon/pathology
- Colonic Neoplasms/chemically induced
- Colonic Neoplasms/drug therapy
- Colonic Neoplasms/mortality
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diet, High-Fat
- Drug Therapy, Combination
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin-Like Growth Factor I/analysis
- Male
- Metformin/pharmacology
- Metformin/therapeutic use
- Mice
- Neovascularization, Pathologic/metabolism
- Neovascularization, Pathologic/pathology
- Organoplatinum Compounds/therapeutic use
- Organoplatinum Compounds/toxicity
- Oxaliplatin
- Receptor, IGF Type 1/metabolism
- Survival Rate
- Vascular Endothelial Growth Factor A/blood
Collapse
Affiliation(s)
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- * E-mail:
| | - Yasser M. Moustafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
29
|
Zaafar DK, Zaitone SA, Moustafa YM. Role of Metformin in Suppressing 1,2-Dimethylhydrazine-Induced Colon Cancer in Diabetic and Non-Diabetic Mice: Effect on Tumor Angiogenesis and Cell Proliferation. PLoS One 2014. [DOI: https://doi.org/10.1371/journal.pone.0100562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
30
|
Rubinfeld H, Kammer A, Cohen O, Gorshtein A, Cohen ZR, Hadani M, Werner H, Shimon I. IGF1 induces cell proliferation in human pituitary tumors - functional blockade of IGF1 receptor as a novel therapeutic approach in non-functioning tumors. Mol Cell Endocrinol 2014; 390:93-101. [PMID: 24769281 DOI: 10.1016/j.mce.2014.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/20/2014] [Accepted: 04/13/2014] [Indexed: 01/08/2023]
Abstract
Insulin-like growth factor (IGF1) and its receptor display potent proliferative and antiapoptotic activities and are considered key players in malignancy. The objective of the study was to explore the role of IGF1 and its downstream pathways in the proliferation of non-functioning pituitary tumor cells and to develop a targeted therapeutic approach for the treatment of these tumors. Cultures of human non-functioning pituitary adenomas and the non-secreting immortalized rat pituitary tumor cell line MtT/E were incubated with IGF1, IGF1 receptor inhibitor or both, and cell viability, proliferation and signaling were examined. Our results show that IGF1 elevated cell proliferation and enhanced cell cycle progression as well as the expression of cyclins D1 and D3. IGF1 also induced the phosphorylation of ERK, Akt and p70S6K. On the other hand, the selective IGF1R inhibitor NVP-AEW541 abrogated IGF1-induced cell proliferation as well as IGF1 receptor phosphorylation and downstream signaling.
Collapse
Affiliation(s)
- Hadara Rubinfeld
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva 49100, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel.
| | - Adi Kammer
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva 49100, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Ortal Cohen
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva 49100, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Alexander Gorshtein
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva 49100, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Zvi R Cohen
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; Department of Neurosurgery, Sheba Medical Center, Tel-Hashomer, Israel
| | - Moshe Hadani
- Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel; Department of Neurosurgery, Sheba Medical Center, Tel-Hashomer, Israel
| | - Haim Werner
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Israel
| | - Ilan Shimon
- Institute of Endocrinology and Felsenstein Medical Research Center, Rabin Medical Center, Petach Tikva 49100, Israel; Sackler School of Medicine, Tel-Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|