1
|
Bahrin NWS, Matusin SNI, Mustapa A, Huat LZ, Perera S, Hamid MRWHA. Exploring the effectiveness of molecular subtypes, biomarkers, and genetic variations as first-line treatment predictors in Asian breast cancer patients: a systematic review and meta-analysis. Syst Rev 2024; 13:100. [PMID: 38576013 PMCID: PMC10993489 DOI: 10.1186/s13643-024-02520-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/23/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Breast cancer incidence has been on the rise significantly in the Asian population, occurring at an earlier age and a later stage. The potential predictive value of molecular subtypes, biomarkers, and genetic variations has not been deeply explored in the Asian population. This study evaluated the effect of molecular subtype classification and the presence or absence of biomarkers and genetic variations on pathological complete response (pCR) after neoadjuvant treatment in Asian breast cancer patients. METHODS A systematic search was conducted in MEDLINE (PubMed), Science Direct, Scopus, and Cochrane Library databases. Studies were selected if they included Asian breast cancer patients treated with neoadjuvant chemotherapy and contained data for qualitative or quantitative analyses. The quality of the included studies was assessed using the Newcastle Ottawa Scale. Following the random effects model, pooled odds ratios or hazard ratios with 95% confidence intervals for pCR were analysed using Review Manager Software. Heterogeneity between studies was assessed using Cochran's Q-test and I2 test statistics. RESULTS In total, 19,708 Asian breast cancer patients were pooled from 101 studies. In the neoadjuvant setting, taxane-anthracycline (TA) chemotherapy showed better pCR outcomes in triple-negative breast cancer (TNBC) (p<0.0001) and human epidermal growth factor receptor 2 enriched (HER2E) (p<0.0001) than luminal breast cancer patients. Similarly, taxane-platinum (TP) chemotherapy also showed better pCR outcomes in TNBC (p<0.0001) and HER2E (p<0.0001). Oestrogen receptor (ER)-negative, progesterone receptor (PR)-negative, HER2-positive and high Ki-67 were significantly associated with better pCR outcomes when treated with either TA or TP. Asian breast cancer patients harbouring wildtype PIK3CA were significantly associated with better pCR outcomes when treated with TA in the neoadjuvant setting (p=0.001). CONCLUSIONS In the neoadjuvant setting, molecular subtypes (HER2E and TNBC), biomarkers (ER, PR, HER2, HR, Ki-67, nm23-H1, CK5/6, and Tau), and gene (PIK3CA) are associated with increased pCR rates in Asian breast cancer patients. Hence, they could be further explored for their possible role in first-line treatment response, which can be utilised to treat breast cancer more efficiently in the Asian population. However, it needs to be further validated with additional powered studies. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021246295.
Collapse
Affiliation(s)
- Nurul Wafiqah Saipol Bahrin
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| | - Siti Nur Idayu Matusin
- Halalan Thayyiban Research Centre, Universiti Islam Sultan Sharif Ali, Jalan Tutong, Sinaut, TB1741, Negara Brunei Darussalam
| | - Aklimah Mustapa
- Halalan Thayyiban Research Centre, Universiti Islam Sultan Sharif Ali, Jalan Tutong, Sinaut, TB1741, Negara Brunei Darussalam
| | - Lu Zen Huat
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Negara Brunei Darussalam
| | - Sriyani Perera
- Faculty of Medicine, University of Peradeniya, Peradeniya, Sri Lanka
| | - Mas Rina Wati Haji Abdul Hamid
- Pengiran Anak Puteri Rashidah Sa'adatul Bolkiah (PAPRSB) Institute of Health Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Negara Brunei Darussalam.
| |
Collapse
|
2
|
Qi M, Yi X, Yue B, Huang M, Zhou S, Xiong J. S100A6 inhibits MDM2 to suppress breast cancer growth and enhance sensitivity to chemotherapy. Breast Cancer Res 2023; 25:55. [PMID: 37217945 DOI: 10.1186/s13058-023-01657-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/10/2023] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND S100A6 and murine double minute 2 (MDM2) are important cancer-related molecules. A previous study identified an interaction between S100A6 and MDM2 by size exclusion chromatography and surface plasmon resonance experiments. The present study investigated whether S100A6 could bind to MDM2 in vivo and further explored its functional implication. METHODS Co-immunoprecipitation, glutathione-S-transferase pull-down assay, and immunofluorescence were performed to determine the in vivo interaction between S100A6 and MDM2. Cycloheximide pulse-chase assay and ubiquitination assay were performed to clarify the mechanism by which S100A6 downregulated MDM2. In addition, clonogenic assay, WST-1 assay, and flow cytometry of apoptosis and the cell cycle were performed and a xenograft model was established to evaluate the effects of the S100A6/MDM2 interaction on growth and paclitaxel-induced chemosensitivity of breast cancer. The expressions of S100A6 and MDM2 in patients with invasive breast cancer were analyzed by immunohistochemistry. In addition, the correlation between the expression of S100A6 and the response to neoadjuvant chemotherapy was statistically analyzed. RESULTS S100A6 promoted the MDM2 translocation from nucleus to cytoplasm, in which the S100A6 bound to the binding site of the herpesvirus-associated ubiquitin-specific protease (HAUSP) in MDM2, disrupted the MDM2-HAUSP-DAXX interactions, and induced the MDM2 self-ubiquitination and degradation. Furthermore, the S100A6-mediated MDM2 degradation suppressed the growth of breast cancer and enhanced its sensitivity to paclitaxel both in vitro and in vivo. For patients with invasive breast cancer who received epirubicin and cyclophosphamide followed by docetaxel (EC-T), expressions of S100A6 and MDM2 were negatively correlated, and high expression of S100A6 suggested a higher rate of pathologic complete response (pCR). Univariate and multivariate analyses showed that the high expression of S100A6 was an independent predictor of pCR. CONCLUSION These results reveal a novel function for S100A6 in downregulating MDM2, which directly enhances sensitivity to chemotherapy.
Collapse
Affiliation(s)
- Mengxin Qi
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xianglan Yi
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Baohui Yue
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Mingxiang Huang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Zhou
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jing Xiong
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
3
|
Xu W, Chen X, Deng F, Zhang J, Zhang W, Tang J. Predictors of Neoadjuvant Chemotherapy Response in Breast Cancer: A Review. Onco Targets Ther 2020; 13:5887-5899. [PMID: 32606799 PMCID: PMC7320215 DOI: 10.2147/ott.s253056] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/18/2020] [Indexed: 12/17/2022] Open
Abstract
Neoadjuvant chemotherapy (NAC) largely increases operative chances and improves prognosis of the local advanced breast cancer patients. However, no specific means have been invented to predict the therapy responses of patients receiving NAC. Therefore, we focus on the alterations of tumor tissue-related microenvironments such as stromal tumor-infiltrating lymphocytes status, cyclin-dependent kinase expression, non-coding RNA transcription or other small molecular changes, in order to detect potentially predicted biomarkers which reflect the therapeutic efficacy of NAC in different subtypes of breast cancer. Further, possible mechanisms are also discussed to discover feasible treatment targets. Thus, these findings will be helpful to promote the prognosis of breast cancer patients who received NAC and summarized in this review.
Collapse
Affiliation(s)
- Weilin Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Xiu Chen
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Fei Deng
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Wei Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| | - Jinhai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, People's Republic of China
| |
Collapse
|
4
|
Min L, Zhang C, Ma R, Li X, Yuan H, Li Y, Chen R, Liu C, Guo J, Qu L, Shou C. Overexpression of synuclein-γ predicts lack of benefit from radiotherapy for breast cancer patients. BMC Cancer 2016; 16:717. [PMID: 27595752 PMCID: PMC5011985 DOI: 10.1186/s12885-016-2750-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 08/25/2016] [Indexed: 11/13/2022] Open
Abstract
Background Although radiotherapy following mastectomy was demonstrated to reduce the recurring risk and improve the prognosis of patients with breast cancer, it is also notorious for comprehensive side effects, hence only a selected group of patients can benefit. Therefore, the screening of molecular markers capable of predicting the efficacy of radiotherapy is essential. Methods We have established a cohort of 454 breast cancer cases and selected 238 patients with indications for postoperative radiotherapy. Synuclein-γ (SNCG) protein levels were assessed by immunohistochemistry, and SNCG status was retrospectively correlated with clinical features and survival in patients treated or not treated with radiotherapy. Gene Set Enrichment Analysis (GSEA) and survival analysis for online datasets were also performed for further validation. Results Among patients that received radiotherapy (82/238), those demonstrating positive SNCG expression had a 55.0 month shorter median overall survival (OS) in comparison to those demonstrating negative SNCG expression (78.4 vs. 133.4 months, log rank χ2 = 16.13; p < 0.001). Among the patients that received no radiotherapy (156/238), SNCG status was not correlated with OS (log rank χ2 = 2.40; p = 0.121). A COX proportional hazard analysis confirmed SNCG as an independent predictor of OS, only for patients who have received radiotherapy. Similar results were also obtained for distant metastasis-free survival (DMFS). A GSEA analysis indicated that SNCG was strongly associated with genes related to a radiation stress response. A survival analysis was performed with online databases consisting of breast cancer, lung cancer, and glioblastoma and further confirmed SNCG’s significance in predicting the survival of patients that have received radiotherapy. Conclusion A positive SNCG may serve as a potential marker to identify breast cancer patients who are less likely to benefit from radiotherapy and may also be extended to other types of cancer. However, the role of SNCG in radiotherapy response still needs to be further validated in randomized controlled trials prior to being exploited in clinical practice. Electronic supplementary material The online version of this article (doi:10.1186/s12885-016-2750-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Li Min
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.,Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA, 02115, USA
| | - Cheng Zhang
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Ruolan Ma
- Department of Thoracic Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Xiaofan Li
- Department of Radiotherapy, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Hua Yuan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Breast Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Yihao Li
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA, 02115, USA.,Department of Biostatistics, UCLA School of Public Health, Los Angeles, CA, 90024, USA
| | - Ruxuan Chen
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Caiyun Liu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Jianping Guo
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Like Qu
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Chengchao Shou
- Department of Biochemistry and Molecular Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|