1
|
Dey M, Skipar P, Bartnik E, Piątkowski J, Sulejczak D, Czarnecka AM. MicroRNA signatures in osteosarcoma: diagnostic insights and therapeutic prospects. Mol Cell Biochem 2024:10.1007/s11010-024-05135-5. [PMID: 39419925 DOI: 10.1007/s11010-024-05135-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Osteosarcoma (OSa) is the most prevalent primary malignant bone tumor in children and adolescents, characterized by complex genetic and epigenetic alterations. Traditional treatments face significant challenges due to high rates of drug resistance and lack of targeted therapies. Recent advances in microRNA (miRNA) research have opened new avenues for understanding and treating osteosarcoma. This review explores the many critical functions of miRNAs in osteosarcoma, particularly their potential for clinical use. The review highlights two key areas where miRNAs could be beneficial. Firstly, miRNAs can act as biomarkers for diagnosing osteosarcoma and predicting patient prognosis. Secondly, specific miRNAs can regulate cellular processes like proliferation, cell death, migration, and even resistance to chemotherapy drugs in osteosarcoma. This ability to target multiple pathways within cancer cells makes miRNA-based therapies highly promising. Additionally, though the interaction between miRNAs and circular RNAs (circRNAs) falls outside the scope of the paper, it has also been discussed briefly. While miRNA-based therapies offer exciting possibilities for targeting multiple pathways in osteosarcoma, challenges remain. Efficient delivery, potential off-target effects, tumor complexity, and rigorous testing are hurdles to overcome before these therapies can reach patients. Despite these challenges, continued research and collaboration among scientists, clinicians, and regulatory bodies hold the promise of overcoming them. This collaborative effort can pave the way for the development of safe and effective miRNA-based treatments for osteosarcoma.
Collapse
Affiliation(s)
- Mritunjoy Dey
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Cancer Research Institute in Warsaw, 02-781, Warsaw, Poland.
| | - Palina Skipar
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Cancer Research Institute in Warsaw, 02-781, Warsaw, Poland
- Faculty of Medicine, Warsaw Medical University, 02-091, Warsaw, Poland
| | - Ewa Bartnik
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Jakub Piątkowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-106, Warsaw, Poland
| | - Dorota Sulejczak
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Anna M Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Cancer Research Institute in Warsaw, 02-781, Warsaw, Poland
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Fathima JHS, Jayaraman S, Sekar R, Syed NH. The role of MicroRNAs in the diagnosis and treatment of oral premalignant disorders. Odontology 2024; 112:1023-1032. [PMID: 38619695 DOI: 10.1007/s10266-024-00934-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/24/2024] [Indexed: 04/16/2024]
Abstract
Oral premalignant disorders (OPMDs) are a group of potentially malignant conditions that pose a significant health burden globally. MicroRNAs (miRNAs), small non-coding RNA molecules, have emerged as crucial regulators of gene expression and have been implicated in various biological processes, including carcinogenesis. This review synthesizes existing knowledge to provide a comprehensive understanding of the molecular mechanisms underlying OPMDs and to highlight the potential of miRNAs as promising biomarkers and therapeutic targets. Additionally, this review seeks to explore the potential of miRNA-based diagnostic biomarkers for early detection of OPMDs in the current literature on miRNAs in OPMDs, examining their involvement in disease pathogenesis, diagnostic potential, and therapeutic implications. Dysregulated miRNAs can target genes involved in critical cellular processes, such as cell cycle regulation, apoptosis, and DNA repair, leading to disease progression. Notably, miR-21, miR-31, miR-135b, and miR-486-5p have shown promise as potential biomarkers for early detection of oral premalignant lesions. Furthermore, the paper discusses the therapeutic implications of miRNAs in OPMDs. Preclinical studies have demonstrated the efficacy of miRNA-targeted therapies, such as miRNA mimics and inhibitors, in suppressing the growth of oral premalignant lesions. Early-phase clinical trials have shown promising results, indicating the potential for personalized treatment approaches. The findings underscore the importance of understanding the molecular mechanisms underlying these disorders and provide insights for the development of improved diagnostic and therapeutic strategies. However, they pose certain limitations given their intrinsic variability in expression profiles, the need for optimized isolation and detection methods, and potential hurdles in transitioning from preclinical success to clinical applications. Thus, future clinical studies are warranted to fully exploit the potential of miRNAs in the management of OPMDs.
Collapse
Affiliation(s)
- J H Shazia Fathima
- Department of Oral and Maxillofacial Pathology, Ragas Dental College and Hospital, Chennai, India
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Selvaraj Jayaraman
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
| | - Ramya Sekar
- Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Velappanchavadi, Chennai, 600077, Tamil Nadu, India
- Department of Oral Pathology and Microbiology, Meenakshi Ammal Dental College and Hospitals, MAHER, Alapakkam Main Road, Maduravoyal, Chennai, 600095, Tamil Nadu, India
| | - Nazmul Huda Syed
- School of Health Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
3
|
Janssen FW, Lak NSM, Janda CY, Kester LA, Meister MT, Merks JHM, van den Heuvel-Eibrink MM, van Noesel MM, Zsiros J, Tytgat GAM, Looijenga LHJ. A comprehensive overview of liquid biopsy applications in pediatric solid tumors. NPJ Precis Oncol 2024; 8:172. [PMID: 39097671 PMCID: PMC11297996 DOI: 10.1038/s41698-024-00657-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 07/15/2024] [Indexed: 08/05/2024] Open
Abstract
Liquid biopsies are emerging as an alternative source for pediatric cancer biomarkers with potential applications during all stages of patient care, from diagnosis to long-term follow-up. While developments within this field are reported, these mainly focus on dedicated items such as a specific liquid biopsy matrix, analyte, and/or single tumor type. To the best of our knowledge, a comprehensive overview is lacking. Here, we review the current state of liquid biopsy research for the most common non-central nervous system pediatric solid tumors. These include neuroblastoma, renal tumors, germ cell tumors, osteosarcoma, Ewing sarcoma, rhabdomyosarcoma and other soft tissue sarcomas, and liver tumors. Within this selection, we discuss the most important or recent studies involving liquid biopsy-based biomarkers, anticipated clinical applications, and the current challenges for success. Furthermore, we provide an overview of liquid biopsy-based biomarker publication output for each tumor type based on a comprehensive literature search between 1989 and 2023. Per study identified, we list the relevant liquid biopsy-based biomarkers, matrices (e.g., peripheral blood, bone marrow, or cerebrospinal fluid), analytes (e.g., circulating cell-free and tumor DNA, microRNAs, and circulating tumor cells), methods (e.g., digital droplet PCR and next-generation sequencing), the involved pediatric patient cohort, and proposed applications. As such, we identified 344 unique publications. Taken together, while the liquid biopsy field in pediatric oncology is still behind adult oncology, potentially relevant publications have increased over the last decade. Importantly, steps towards clinical implementation are rapidly gaining ground, notably through validation of liquid biopsy-based biomarkers in pediatric clinical trials.
Collapse
Affiliation(s)
| | | | | | | | - Michael T Meister
- Princess Máxima Center, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Johannes H M Merks
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Marry M van den Heuvel-Eibrink
- Princess Máxima Center, Utrecht, the Netherlands
- Wilhelmina Children's Hospital-Division of CHILDHEALTH, University Medical Center Utrech, University of Utrecht, Utrecht, the Netherlands
| | - Max M van Noesel
- Princess Máxima Center, Utrecht, the Netherlands
- Division of Imaging and Oncology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | | | - Godelieve A M Tytgat
- Princess Máxima Center, Utrecht, the Netherlands
- Department of Genetics, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands
| | - Leendert H J Looijenga
- Princess Máxima Center, Utrecht, the Netherlands.
- Department of Pathology, University Medical Center Utrecht, University of Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
4
|
Sangali P, Abdullahi S, Nosrati M, Khosravi-Asrami OF, Mahrooz A, Bagheri A. Altered expression of miR-375 and miR-541 in type 2 diabetes patients with and without coronary artery disease (CAD): the potential of miR-375 as a CAD biomarker. J Diabetes Metab Disord 2024; 23:1101-1106. [PMID: 38932834 PMCID: PMC11196532 DOI: 10.1007/s40200-024-01391-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 01/13/2024] [Indexed: 06/28/2024]
Abstract
Background MicroRNAs (miRNAs, miRs) have been linked to beta-cell pathologies and have also shown potential as biomarkers for cardiovascular disease. This study aimed to evaluate the expression of miR-375 and miR-541 in T2D patients with and without CAD, in order to determine the potential of these miRNAs as biomarkers for assessing CAD risk. Methods This study was conducted on 106 patients with T2D who underwent coronary angiographic examination. Reverse transcription was performed using the cDNA synthesis kit. Real-time PCR was performed using the SYBR Green method and specific primers. The ability to predict which person had developed CAD was evaluated by calculating the area under the receiver-operating characteristic (ROC) curve (AUC). Results The expression of miR-375 was significantly higher in samples from CAD patients compared to those without CAD (p = 0.009). While the expression of miR-541 was also higher in CAD patients, the difference was not statistically significant. In terms of predicting CAD, miR-375 was found to be a suitable predictor with an AUC of 0.74 (p = 0.01), while miR-541 was not. With a cut-off value of 0.016 for miR-375, the sensitivity was 67% and the specificity was 80%. Conclusion Our results indicated that circulating levels of miR-375 and miR-541 were elevated in T2D patients with CAD compared to those without CAD. This suggests that miR-375 could potentially be used as a non-invasive biomarker for the diagnosis of CAD in T2D patients.
Collapse
Affiliation(s)
- Parisa Sangali
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Km 17 Khazarabad Road, Sari, Iran
| | - Sara Abdullahi
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Km 17 Khazarabad Road, Sari, Iran
| | - Mani Nosrati
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Km 17 Khazarabad Road, Sari, Iran
| | - Omeh Farveh Khosravi-Asrami
- Department of Clinical Biochemistry and Medical Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Km 17 Khazarabad Road, Sari, Iran
| | - Abdolkarim Mahrooz
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Molecular and Cell Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
5
|
Mavrogenis AF, Altsitzioglou P, Tsukamoto S, Errani C. Biopsy Techniques for Musculoskeletal Tumors: Basic Principles and Specialized Techniques. Curr Oncol 2024; 31:900-917. [PMID: 38392061 PMCID: PMC10888002 DOI: 10.3390/curroncol31020067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Biopsy is a pivotal component in the diagnostic process of bone and soft tissue tumors. The objective is to obtain adequate tissue without compromising local tumor dissemination and the patient's survival. This review explores contemporary principles and practices in musculoskeletal biopsies, emphasizing the critical role of diagnostic accuracy while also delving into the evolving landscape of liquid biopsies as a promising alternative in the field. A thorough literature search was done in PubMed and Google Scholar as well as in physical books in libraries to summarize the available biopsy techniques for musculoskeletal tumors, discuss the available methods, risk factors, and complications, and to emphasize the challenges related to biopsies in oncology. Research articles that studied the basic principles and specialized techniques of biopsy techniques in tumor patients were deemed eligible. Their advantages and disadvantages, technical and pathophysiological mechanisms, and possible risks and complications were reviewed, summarized, and discussed. An inadequately executed biopsy may hinder diagnosis and subsequently impact treatment outcomes. All lesions should be approached with a presumption of malignancy until proven otherwise. Liquid biopsies have emerged as a potent non-invasive tool for analyzing tumor phenotype, progression, and drug resistance and guiding treatment decisions in bone sarcomas and metastases. Despite advancements, several barriers remain in biopsies, including challenges related to costs, scalability, reproducibility, and isolation methods. It is paramount that orthopedic oncologists work together with radiologists and pathologists to enhance diagnosis, patient outcomes, and healthcare costs.
Collapse
Affiliation(s)
- Andreas F. Mavrogenis
- First Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, 1 Rimini, 157 72 Athens, Greece;
| | - Pavlos Altsitzioglou
- First Department of Orthopaedics, School of Medicine, National and Kapodistrian University of Athens, 1 Rimini, 157 72 Athens, Greece;
| | - Shinji Tsukamoto
- Department of Orthopaedic Surgery, Nara Medical University, 840 Shijo-cho, Kashihara 634-8521, Japan;
| | - Costantino Errani
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, Via Pupilli 1, 40136 Bologna, Italy;
| |
Collapse
|
6
|
Raoufinia R, Afrasiabi P, Dehghanpour A, Memarpour S, Hosseinian SHS, Saburi E, Naghipoor K, Rezaei S, Haghmoradi M, Keyhanvar N, Rostami M, Fakoor F, Kazemi MI, Moghbeli M, Rahimi HR. The Landscape of microRNAs in Bone Tumor: A Comprehensive Review in Recent Studies. Microrna 2024; 13:175-201. [PMID: 39005129 DOI: 10.2174/0122115366298799240625115843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/11/2024] [Accepted: 05/23/2024] [Indexed: 07/16/2024]
Abstract
Cancer, the second greatest cause of mortality worldwide, frequently causes bone metastases in patients with advanced-stage carcinomas such as prostate, breast, and lung cancer. The existence of these metastases contributes to the occurrence of skeletal-related events (SREs), which are defined by excessive pain, pathological fractures, hypercalcemia, and spinal cord compression. These injurious incidents leave uncomfortably in each of the cancer patient's life quality. Primary bone cancers, including osteosarcoma (OS), chondrosarcoma (CS), and Ewing's sarcoma (ES), have unclear origins. MicroRNA (miRNA) expression patterns have been changed in primary bone cancers such as OS, CS, and ES, indicating a role in tumor development, invasion, metastasis, and treatment response. These miRNAs are persistent in circulation and exhibit distinct patterns in many forms of bone tumors, making them potential biomarkers for early detection and treatment of such diseases. Given their crucial regulatory functions in various biological processes and conditions, including cancer, this study aims to look at miRNAs' activities and possible contributions to bone malignancies, focusing on OS, CS, and ES. In conclusion, miRNAs are valuable tools for diagnosing, monitoring, and predicting OS, CS, and ES outcomes. Further research is required to fully comprehend the intricate involvement of miRNAs in these bone cancers and to develop effective miRNA-based treatments.
Collapse
Affiliation(s)
- Ramin Raoufinia
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parisa Afrasiabi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Dehghanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Memarpour
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Ehsan Saburi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naghipoor
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Rezaei
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meisam Haghmoradi
- Orthopedic Research Center, Shahid Kamyab Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Keyhanvar
- Department of Biochemistry & Biophysics, University of California San Francisco, San Francisco, CA, 94107, USA
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farhad Fakoor
- Department of Paramedical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammadali Izadpanah Kazemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Rahimi
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Vascular and Endovascular Surgery Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Huber J, Longaker MT, Quarto N. Circulating and extracellular vesicle-derived microRNAs as biomarkers in bone-related diseases. Front Endocrinol (Lausanne) 2023; 14:1168898. [PMID: 37293498 PMCID: PMC10244776 DOI: 10.3389/fendo.2023.1168898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 03/31/2023] [Indexed: 06/10/2023] Open
Abstract
MicroRNAs (miRNA) are small non-coding RNA molecules that regulate posttranscriptional gene expression by repressing messengerRNA-targets. MiRNAs are abundant in many cell types and are secreted into extracellular fluids, protected from degradation by packaging in extracellular vesicles. These circulating miRNAs are easily accessible, disease-specific and sensitive to small changes, which makes them ideal biomarkers for diagnostic, prognostic, predictive or monitoring purposes. Specific miRNA signatures can be reflective of disease status and development or indicators of poor treatment response. This is especially important in malignant diseases, as the ease of accessibility of circulating miRNAs circumvents the need for invasive tissue biopsy. In osteogenesis, miRNAs can act either osteo-enhancing or osteo-repressing by targeting key transcription factors and signaling pathways. This review highlights the role of circulating and extracellular vesicle-derived miRNAs as biomarkers in bone-related diseases, with a specific focus on osteoporosis and osteosarcoma. To this end, a comprehensive literature search has been performed. The first part of the review discusses the history and biology of miRNAs, followed by a description of different types of biomarkers and an update of the current knowledge of miRNAs as biomarkers in bone related diseases. Finally, limitations of miRNAs biomarker research and future perspectives will be presented.
Collapse
Affiliation(s)
- Julika Huber
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Plastic Surgery, University Hospital Bergmannsheil Bochum, Bochum, Germany
| | - Michael T. Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Natalina Quarto
- Hagey Laboratory for Pediatric Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Division of Plastic and Reconstructive Surgery, Stanford University School of Medicine, Stanford, CA, United States
- Department of Surgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
8
|
Kjær EKR, Vase CB, Rossing M, Ahlborn LB, Hjalgrim LL. Detection of circulating tumor-derived material in peripheral blood of pediatric sarcoma patients: A systematic review. Transl Oncol 2023; 34:101690. [PMID: 37201250 DOI: 10.1016/j.tranon.2023.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 04/18/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Detection of circulating tumor-derived material (cTM) in the peripheral blood (PB) of cancer patients has been shown to be useful in early diagnosis, prediction of prognosis, and disease monitoring. However, it has not yet been thoroughly evaluated for pediatric sarcoma patients. METHODS We searched the PubMed and EMBASE databases for studies reporting the detection of circulating tumor cells, circulating tumor DNA, and circulating RNA in PB of pediatric sarcoma patients. Data on performance in identifying cTM and its applicability in diagnosis, and evaluation of tumor characteristics, prognostic factors, and treatment response was extracted from publications. RESULTS A total of 79 studies were assigned for the present systematic review, including detection of circulating tumor cells (116 patients), circulating tumor DNA (716 patients), and circulating RNA (2887 patients). Circulating tumor cells were detected in 76% of patients. Circulating DNA was detected in 63% by targeted NGS, 66% by shallow WGS, and 79% by digital droplet PCR. Circulating RNA was detected in 37% of patients. CONCLUSION Of the cTM from Ewing's sarcoma and rhabdomyosarcoma ctDNA proved to be the best target for clinical application including diagnosis, tumor characterization, prognosis, and monitoring of disease progression and treatment response. For osteosarcoma the most promising targets are copy number alterations or patient specific micro RNAs, however, further investigations are needed to obtain consensus on clinical utility.
Collapse
Affiliation(s)
- Eva Kristine Ruud Kjær
- Department of Paediatrics and Adolescent Medicine, Paediatric Oncology Research Laboratory (Bonkolab), Copenhagen University Hospital Rigshospitalet, 5704, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Christian Bach Vase
- Department of Paediatrics and Adolescent Medicine, Paediatric Oncology Research Laboratory (Bonkolab), Copenhagen University Hospital Rigshospitalet, 5704, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | - Maria Rossing
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Center for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lise Barlebo Ahlborn
- Center for Genomic Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lisa Lyngsie Hjalgrim
- Department of Paediatrics and Adolescent Medicine, Paediatric Oncology Research Laboratory (Bonkolab), Copenhagen University Hospital Rigshospitalet, 5704, Blegdamsvej 9, Copenhagen DK-2100, Denmark.
| |
Collapse
|
9
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Shahin RK, Midan HM, Sallam AAM, Elbadry AM, Mohamed AK, Ishak NW, Hassan KA, Ayoub AM, Shalaby RE, Elrebehy MA. miRNAs as potential game-changers in bone diseases: Future medicinal and clinical uses. Pathol Res Pract 2023; 245:154440. [PMID: 37031531 DOI: 10.1016/j.prp.2023.154440] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/30/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
MicroRNAs (miRNAs), short, highly conserved non-coding RNA, influence gene expression by sequential mechanisms such as mRNA breakdown or translational repression. Many biological processes depend on these regulating substances, thus changes in their expression have an impact on the maintenance of cellular homeostasis and result in the emergence of a variety of diseases. Relevant studies have shown in recent years that miRNAs are involved in many stages of bone development and growth. Additionally, abnormal production of miRNA in bone tissues has been closely associated with the development of numerous bone disorders, such as osteonecrosis, bone cancer, and bone metastases. Many pathological processes, including bone loss, metastasis, the proliferation of osteosarcoma cells, and differentiation of osteoblasts and osteoclasts, are under the control of miRNAs. By bringing together the most up-to-date information on the clinical relevance of miRNAs in such diseases, this study hopes to further the study of the biological features of miRNAs in bone disorders and explore their potential as a therapeutic target.
Collapse
|
10
|
Chellini L, Palombo R, Riccioni V, Paronetto MP. Oncogenic Dysregulation of Circulating Noncoding RNAs: Novel Challenges and Opportunities in Sarcoma Diagnosis and Treatment. Cancers (Basel) 2022; 14:cancers14194677. [PMID: 36230599 PMCID: PMC9562196 DOI: 10.3390/cancers14194677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/07/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary Body fluids contain different classes of RNA molecules such as protein-coding messenger RNAs (mRNA) and noncoding RNAs, including microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). These circulating RNAs can travel naked or packed into extracellular vesicles and display valuable potential as non-invasive biomarkers of sarcoma malignancy. In this review, we summarize current knowledge on the possible functions of these circulating RNAs and discuss their possible exploitation as novel markers to improve sarcoma diagnosis and prognosis. Despite the recent advance in technological tools have improved protocols for the extraction and detection of circulating RNA, many aspects related to the biology of these molecules remain to be elucidated. In particular, the lack of standardization in the assessment of these markers makes difficult their adoption into clinical practice. Abstract Sarcomas comprise a heterogeneous group of rare mesenchymal malignancies. Sarcomas can be grouped into two categories characterized by different prognosis and treatment approaches: soft tissue sarcoma and primary bone sarcoma. In the last years, research on novel diagnostic, prognostic or predictive biomarkers in sarcoma management has been focused on circulating tumor-derived molecules as valuable tools. Liquid biopsies that measure various tumor components, including circulating cell-free DNA and RNA, circulating tumor cells, tumor extracellular vesicles and exosomes, are gaining attention as methods for molecular screening and early diagnosis. Compared with traditional tissue biopsies, liquid biopsies are minimally invasive and blood samples can be collected serially over time to monitor cancer progression. This review will focus on circulating noncoding RNA molecules from liquid biopsies that are dysregulated in sarcoma malignancies and discuss advantages and current limitations of their employment as biomarkers in the management of sarcomas. It will also explore their utility in the evaluation of the clinical response to treatments and of disease relapse. Moreover, it will explore state-of-the-art techniques that allow for the early detection of these circulating biomarkers. Despite the huge potential, current reports highlight poor sensitivity, specificity, and survival benefit of these methods, that are therefore still insufficient for routine screening purposes.
Collapse
Affiliation(s)
- Lidia Chellini
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Ramona Palombo
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
| | - Veronica Riccioni
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
| | - Maria Paola Paronetto
- Laboratory of Molecular and Cellular Neurobiology, IRCCS Fondazione Santa Lucia, 00143 Rome, Italy
- Department of Movement, Human and Health Sciences, Università degli Studi di Roma “Foro Italico”, Piazza Lauro de Bosis, 15, 00135 Rome, Italy
- Correspondence:
| |
Collapse
|
11
|
Gurunathan S, Kang MH, Song H, Kim NH, Kim JH. The role of extracellular vesicles in animal reproduction and diseases. J Anim Sci Biotechnol 2022; 13:62. [PMID: 35681164 PMCID: PMC9185900 DOI: 10.1186/s40104-022-00715-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 04/05/2022] [Indexed: 02/08/2023] Open
Abstract
Extracellular vesicles (EVs) are nanosized membrane-enclosed compartments that serve as messengers in cell-to-cell communication, both in normal physiology and in pathological conditions. EVs can transfer functional proteins and genetic information to alter the phenotype and function of recipient cells, which undergo different changes that positively affect their structural and functional integrity. Biological fluids are enriched with several subpopulations of EVs, including exosomes, microvesicles (MVs), and apoptotic bodies carrying several cargoes, such as lipids, proteins, and nucleic acids. EVs associated with the reproductive system are actively involved in the regulation of different physiological events, including gamete maturation, fertilization, and embryo and fetal development. EVs can influence follicle development, oocyte maturation, embryo production, and endometrial-conceptus communication. EVs loaded with cargoes are used to diagnose various diseases, including pregnancy disorders; however, these are dependent on the type of cell of origin and pathological characteristics. EV-derived microRNAs (miRNAs) and proteins in the placenta regulate inflammatory responses and trophoblast invasion through intercellular delivery in the placental microenvironment. This review presents evidence regarding the types of extracellular vesicles, and general aspects of isolation, purification, and characterization of EVs, particularly from various types of embryos. Further, we discuss EVs as mediators and messengers in reproductive biology, the effects of EVs on placentation and pregnancy disorders, the role of EVs in animal reproduction, in the male reproductive system, and mother and embryo cross-communication. In addition, we emphasize the role of microRNAs in embryo implantation and the role of EVs in reproductive and therapeutic medicine. Finally, we discuss the future perspectives of EVs in reproductive biology.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Min-Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea
| | - Nam Hyung Kim
- Guangdong Provincial Key Laboratory of Large Animal models for Biomedicine, Wuyi University, Jiangmen, 529020, China
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Korea.
| |
Collapse
|
12
|
Dong Z, Liao Z, He Y, Wu C, Meng Z, Qin B, Xu G, Li Z, Sun T, Wen Y, Li G. Advances in the Biological Functions and Mechanisms of miRNAs in the Development of Osteosarcoma. Technol Cancer Res Treat 2022; 21:15330338221117386. [PMID: 35950243 PMCID: PMC9379803 DOI: 10.1177/15330338221117386] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Osteosarcoma is one of the most common primary malignant bone tumors, mainly
occurring in children and adolescents, and is characterized by high morbidity
and poor prognosis. MicroRNAs, a class of noncoding RNAs consisting of 19 to 25
nucleotides, are involved in cell proliferation, invasion, metastasis, and
apoptosis to regulate the development and progression of osteosarcoma. Studies
have found that microRNAs are closely related to the diagnosis, treatment, and
prognosis of osteosarcoma patients and have an important role in improving drug
resistance in osteosarcoma. This paper reviews the role of microRNAs in the
pathogenesis of osteosarcoma and their clinical value, aiming to provide a new
research direction for diagnosing and treating osteosarcoma and achieving a
better prognosis.
Collapse
Affiliation(s)
- Zihe Dong
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zhipeng Liao
- The Second School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yonglin He
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Chengye Wu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zixiang Meng
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Baolong Qin
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Ge Xu
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Zeyang Li
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Tianxin Sun
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Yuyan Wen
- The First School of Clinical Medicine, 12426Lanzhou University, Lanzhou, Gansu, China
| | - Guangjie Li
- The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
13
|
Gao SS, Zhang GX, Zhang WT. MicroRNAs as prognostic biomarkers for survival outcome in osteosarcoma: A meta-analysis. World J Meta-Anal 2021; 9:568-584. [DOI: 10.13105/wjma.v9.i6.568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/08/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Osteosarcoma was considered to be one of the most prevalent malignant bone tumors in adolescents.
AIM To explore the prognostic significance of microRNA (miRNA) in osteosarcoma.
METHODS The literature was selected by searching online in PubMed, Embase, Web of Science, Cochrane Library, China National Knowledge Infrastructure, and Wanfang Database until July 1, 2021. The pooled hazard ratio (HR) with corresponding 95% confidence interval (CI) for the outcomes of overall survival (OS), disease-free survival (DFS), progression-free survival (PFS) and recurrence-free survival were calculated. Subgroup analyses were carried out to identify potential sources of heterogeneity. Publication bias was assessed by Egger’s bias indicator test.
RESULTS A total of 60 studies from 54 articles with 5824 osteosarcoma patients were included for this meta-analysis. The pooled HR for OS, DFS, PFS were 2.92 (95%CI: 2.43-3.41, P = 0.000), 3.70 (95%CI: 2.80-4.61, P = 0.000), and 3.57 (95%CI: 1.60-5.54, P = 0.000), respectively. The high miR-21 expression levels were related to poor OS in osteosarcoma (HR = 2.86, 95%CI: 1.20-4.53, P = 0.001). Subgroup analysis demonstrated that a high expression level of miRNA correlated with worse OS (HR: 3.56, 95%CI: 2.59-4.54, P = 0.000). In addition, miRNA from tissue (HR: 3.20, 95%CI: 2.16-4.23, P = 0.000) may be a stronger prognostic biomarker in comparison with that from serum and plasma.
CONCLUSION miRNA (especially miR-21) could be served as a potential prognostic biomarker for osteosarcoma. A high expression level of miRNA in tumor tissue correlated with worse OS of osteosarcoma.
Collapse
Affiliation(s)
- Shuai-Shuai Gao
- International Doctoral School, University of Seville, Seville 41004, Spain
- Department of Traumatology and Orthopedic Surgery, Xi'an Daxing Hospital, Xi'an 710016, Shaanxi Province, China
| | - Guo-Xun Zhang
- International Doctoral School, University of Seville, Seville 41004, Spain
| | - Wen-Ting Zhang
- International Doctoral School, University of Seville, Seville 41004, Spain
| |
Collapse
|
14
|
Gally TB, Aleluia MM, Borges GF, Kaneto CM. Circulating MicroRNAs as Novel Potential Diagnostic Biomarkers for Osteosarcoma: A Systematic Review. Biomolecules 2021; 11:biom11101432. [PMID: 34680065 PMCID: PMC8533382 DOI: 10.3390/biom11101432] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/12/2023] Open
Abstract
Osteosarcoma (OS) is a fast-progressing bone tumor with high incidence in children and adolescents. The main diagnostic methods for OS are imaging exams and biopsies. In spite of the several resources available for detecting the disease, establishing an early diagnosis is still difficult, resulting in worse prognosis and lower survival rates for patients with OS. The identification of novel biomarkers would be helpful, and recently, circulating microRNAs (miRNAs) have been pointed to as possible non-invasive biomarkers. In order to assess the effectiveness of miRNA research, we performed a systematic review to assess the potential role of circulating miRNAs as biomarkers for OS diagnosis. We performed a search in various databases—PubMed, LILACS (Literatura Latino-americana e do Caribe em Ciências da Saúde), VHL (Virtual Health Library), Elsevier, Web of Science, Gale Academic One File—using the terms: “Circulating microRNAs” OR “plasma microRNAs” OR “serum microRNAs” OR “blood microRNAs” OR “cell-free microRNAs” OR “exosome microRNAs” OR “extracellular vesicles microRNAs” OR “liquid biopsy” AND “osteosarcoma” AND “diagnostic”. We found 35 eligible studies that were independently identified and had had their quality assessed according to Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) guidelines. Despite the useful number of publications on this subject and the fact that several microRNAs showed excellent diagnostic performance for OS, the lack of consistency in results suggests that additional prospective studies are needed to confirm the role of circulating miRNAs as non-invasive biomarkers in OS.
Collapse
Affiliation(s)
- Thaís Borges Gally
- Department of Health Sciences, Universidade Estadual de Santa Cruz, llhéus 45662-900, BA, Brazil;
| | - Milena Magalhães Aleluia
- Department of Biological Sciences, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil;
| | - Grasiely Faccin Borges
- Public Policies and Social Technologies Center, Federal University of Southern Bahia, Itabuna 45613-204, BA, Brazil;
| | - Carla Martins Kaneto
- Department of Biological Sciences, Universidade Estadual de Santa Cruz, Ilhéus 45662-900, BA, Brazil;
- Correspondence:
| |
Collapse
|
15
|
Diao ZB, Sun TX, Zong Y, Lin BC, Xia YS. Identification of plasma microRNA-22 as a marker for the diagnosis, prognosis, and chemosensitivity prediction of osteosarcoma. J Int Med Res 2021; 48:300060520967818. [PMID: 33284712 PMCID: PMC7724422 DOI: 10.1177/0300060520967818] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Objective MicroRNA (miR)-22 plays crucial roles in malignant tumors and is involved in
regulation of chemosensitivity. Additionally, altered expression of
circulating miR-22 has been reported in various cancers. This study was
designed to investigate plasma miR-22 expression in patients with
osteosarcoma (OS) and determine its diagnostic, prognostic, and
chemosensitivity prediction value. Methods Plasma miR-22 levels in 120 patients with OS and 120 healthy controls were
detected by real-time quantitative reverse transcription PCR. Associations
of plasma miR-22 expression with the patients’ clinicopathological features
and prognosis were then assessed. Results Plasma miR-22 levels in patients with OS were significantly lower than those
in healthy controls. Low plasma miR-22 levels were correlated with large
tumor size, advanced clinical stages, positive distant metastasis, and poor
tumor response to preoperative chemotherapy. Plasma miR-22 could
discriminate OS patients from controls and distinguish patients with a good
response to therapy from those with a poor response to therapy. Multivariate
analysis revealed that low plasma miR-22 expression was a significant
independent predictor of unfavorable prognosis. Conclusions Altered plasma levels of miR-22 might serve as a novel, noninvasive biomarker
for OS diagnosis, prognosis, and chemosensitivity prediction.
Collapse
Affiliation(s)
- Zhen-Bin Diao
- Department of Orthopaedics, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China
| | - Tian-Xiao Sun
- Department of Anesthesiology, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China
| | - Yi Zong
- Department of Orthopaedics, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China
| | - Bo-Chuan Lin
- Department of Orthopaedics, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China
| | - Yuan-Sheng Xia
- Department of Orthopaedics, Daqing Oilfield General Hospital, Daqing, Heilongjiang Province, China
| |
Collapse
|
16
|
Janpipatkul K, Trachu N, Watcharenwong P, Panvongsa W, Worakitchanon W, Metheetrairut C, Oranratnachai S, Reungwetwattana T, Chairoungdua A. Exosomal microRNAs as potential biomarkers for osimertinib resistance of non-small cell lung cancer patients. Cancer Biomark 2021; 31:281-294. [PMID: 33896827 DOI: 10.3233/cbm-203075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Osimertinib is an epidermal growth factor receptor-tyrosine kinase inhibitor that specifically targets the T790M mutation in cancer.Unfortunately, most non-small cell lung cancer (NSCLC) patients develop osimertinib resistance. Currently, the molecular biomarkers for monitoring osimertinib resistance are not available. OBJECTIVE This study aimed to examine the profile of exosomal miRNA in the plasma of osimertinib-resistant NSCLC patients. METHODS Plasma exosomal miRNA profiles of 8 NSCLC patients were analyzed by next-generation sequencing at osimertinib-sensitive and osimertinib-resistance stage.The expression of dysregulated exosomal miRNAs was validated and confirmed in another cohort of 19 NSCLC patients by qPCR. The relationship between exosomal miRNA upregulation and clinical prognosis, survival analysis was evaluated by Kaplan-Meier curves. RESULTS In osimertinib-resistant NSCLC patients, 10 exosomal miRNAs were significantly dysregulated compared to baseline. Upregulation of all 10 candidate exosomal miRNAs tended to correlate with increased latency to treatment failure and improved overall survival. Among them, 4 exosomal miRNAs, miR-323-3p, miR-1468-3p, miR-5189-5p and miR-6513-5p were essentially upregulated and show the potential to be markers for the discrimination of osimertinib-resistance from osimertinib-sensitive NSCLC patients with high accuracy (p< 0.0001). CONCLUSIONS Our results highlight the potential role of these exosomal miRNAs as molecular biomarkers for the detection of osimertinib resistance.
Collapse
Affiliation(s)
- Keatdamrong Janpipatkul
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand.,Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand
| | - Narumol Trachu
- Research Center, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piyakarn Watcharenwong
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wittaya Panvongsa
- Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand.,Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wittawin Worakitchanon
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand
| | - Chanatip Metheetrairut
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Songporn Oranratnachai
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Oncology Clinic, Sriphat Medical Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Thanyanan Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Excellent Center for Drug Discovery, Mahidol University, Bangkok, Thailand.,Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
17
|
Liu L, Zhang J, Liu Y. MicroRNA-1323 serves as a biomarker in gestational diabetes mellitus and aggravates high glucose-induced inhibition of trophoblast cell viability by suppressing TP53INP1. Exp Ther Med 2021; 21:230. [PMID: 33603839 PMCID: PMC7851622 DOI: 10.3892/etm.2021.9661] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Gestational diabetes mellitus (GDM) leads to poor pregnancy outcomes, and microRNAs (miRNAs/miRs) have been suggested to be associated with GDM, but the pathological mechanisms remain unclear. The present study aimed to investigate the diagnostic value of miR-1323 in GDM patients and its effects on trophoblast cell viability. Additionally, the present study investigated the correlation between miR-1323 and TP53INP1 to understand the pathological mechanism of GDM progression. Reverse transcription-quantitative polymerase chain reaction was used to detect the miR-1323 expression and TP53INP1 mRNA expression. The diagnostic value of serum miR-1323 was evaluated by receiver operating characteristic analysis. HTR-8/SVneo and BeWo cells were treated with high glucose (HG) to construct cell models of GDM, and trophoblast cell viability was assessed using an MTT assay. The protein expression of TP53INP1 was detected by western blot analysis. The correlation between miR-1323 and TP53INP1 was investigated by luciferase reporter assay. The miR-1323 expression was increased in patients with GDM, which had relatively high diagnostic accuracy for GDM screening and was positively correlated with fasting blood glucose in patients GDM. HG upregulated the miR-1323 expression and inhibited trophoblast cell viability. Overexpression of miR-1323 significantly inhibited the viability of HG-induced trophoblast cells. TP53INP1, a target gene of miR-1323, was negatively correlated with miR-1323. TP53INP1 overexpression reversed the inhibitory effect of miR-1323 overexpression on the viability of HG-treated trophoblast cells. Increased levels of serum miR-1323 may be a diagnostic biomarker for GDM. Additionally, miR-1323 may inhibit trophoblast cell viability by inhibiting TP53INP1, suggesting that it may be a potential therapeutic target for GDM.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Gynecology, Weifang Maternal and Child Health Hospital, Weifang, Shandong 261011, P.R. China
| | - Jun Zhang
- Department of Pharmacy, Weifang Maternal and Child Health Hospital, Weifang, Shandong 261011, P.R. China
| | - Yujuan Liu
- Department of Central Supply Room, Weifang Maternal and Child Health Hospital, Weifang, Shandong 261011, P.R. China
| |
Collapse
|
18
|
Wu X, Li Y, Man B, Li D. Assessing MicroRNA-375 Levels in Type 2 Diabetes Mellitus (T2DM) Patients and Their First-Degree Relatives with T2DM. Diabetes Metab Syndr Obes 2021; 14:1445-1451. [PMID: 33824598 PMCID: PMC8018570 DOI: 10.2147/dmso.s298735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/04/2021] [Indexed: 12/20/2022] Open
Abstract
PURPOSE The pancreatic islet specific microRNA-375 (miR-375) is overexpressed in type 2 diabetes mellitus (T2DM) patients suppressing the glucose-induced insulin secretion. Thus, miR-375 may serve as a biomarker for the early prediction of T2DM among high-risk individuals. We conducted this clinical study to assess the significance of miR-375 among type 2 diabetes mellitus (T2DM) patients and their first-degree relatives. PATIENTS AND METHODS We included 56 Han Chinese individuals (N: NGT = 21, T2DM = 10, FD-NGT =13 and FD-T2DM = 12) who received medical health check-ups from January 2018 to September 2018 at The Third Hospital of Yunnan Province, China. They were categorized as normal glucose tolerance (NGT), T2DM, first-degree relatives with normal glucose tolerance (FD-NGT) and first-degree relatives with T2DM (FD-T2DM). OGTT, C-peptide and Insulin tests were performed to confirm the diagnosis. The miR-375 levels were determined by Quantitative real-time RT-PCR (qRT-PCR). RESULTS The OGTT test showed a significant difference in T2DM and FD-T2DM groups compared with NGT and FD-NGT (p< 0.05). Similar results were observed during C-peptide and insulin tests. Interestingly, the 2-hour insulin test showed FD-NGT group having a significantly higher mean ± standard error of (64.240 ± 12.775) compared to NGT (28.836 ± 10.875). Assessment of miR-375 expression levels in 4 groups showed a significant up-regulation in T2DM and FD-T2DM compared with NGT and FD-NGT groups. A slight increase in miRNA expression was observed in FD-NGT compared with NGT group but was not statistically significant. CONCLUSION The OGTT, C-peptide and insulin tests revealed a statistically significant difference in T2DM and FD-T2DM compared with NGT and FD-NGT groups. A significantly higher miR-375 expression was also observed in T2DM and FD-T2DM groups compared with NGT and FD-NGT and thus, miR-375 may serve as a stable biomarker for the early prediction of T2DM among high-risk individuals.
Collapse
Affiliation(s)
- Xu Wu
- The Third People’s Hospital of Yunnan Province, Department of Clinical Laboratory, Kunming, 650200, People’s Republic of China
| | - Yashan Li
- The Third People’s Hospital of Yunnan Province, Department of Clinical Laboratory, Kunming, 650200, People’s Republic of China
| | - Baohua Man
- The Third People’s Hospital of Yunnan Province, Department of Clinical Laboratory, Kunming, 650200, People’s Republic of China
| | - Dexuan Li
- The Third People’s Hospital of Yunnan Province, Department of Clinical Laboratory, Kunming, 650200, People’s Republic of China
- Correspondence: Dexuan Li Department of Clinical Laboratory, The Third People’s Hospital of Yunnan Province, No. 292 Beijing Road, Kunming, 650200, People’s Republic of China Email
| |
Collapse
|
19
|
Lei Y, Junxin C, Yongcan H, Xiaoguang L, Binsheng Y. Role of microRNAs in the crosstalk between osteosarcoma cells and the tumour microenvironment. J Bone Oncol 2020; 25:100322. [PMID: 33083216 PMCID: PMC7554654 DOI: 10.1016/j.jbo.2020.100322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary bone tumour, with a peak incidence in adolescents, and the five-year survival rate of patients with metastasis or recurrence is much lower than that of patients without metastasis and recurrence. OS is initiated and develops in a complex tumour microenvironment (TME) that contains many different components, such as osteoblasts, osteoclasts, mesenchymal stem cells, fibroblasts, immune cells, extracellular matrix (ECM), extracellular vesicles, and cytokines. The extensive interaction between OS and the TME underlies OS progression. Therefore, rather than targeting OS cells, targeting the key factors in the TME may yield novel therapeutic approaches. MicroRNAs (miRNAs) play multiple roles in the biological behaviours of OS, and recent studies have implied that miRNAs are involved in mediating the communication between OS cells and the surrounding TME. Here, we review the TME landscape and the miRNA dysregulation of OS, describe the role of the altered TME in OS development and highlight the role of miRNA in the crosstalk between OS cells and the TME.
Collapse
Affiliation(s)
- Yong Lei
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Chen Junxin
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Huang Yongcan
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
- Shenzhen Engineering Laboratory of Orthopaedic Regenerative Technologies, National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Liu Xiaoguang
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China
| | - Yu Binsheng
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| |
Collapse
|
20
|
Zhang G, Li Y, Xu J, Xiong Z. Advances in the role of miRNAs in the occurrence and development of osteosarcoma. Open Med (Wars) 2020; 15:1003-1011. [PMID: 33336056 PMCID: PMC7718646 DOI: 10.1515/med-2020-0205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 05/22/2020] [Accepted: 06/07/2020] [Indexed: 12/13/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant tumor of the skeletal system in the clinic. It mainly occurs in adolescent patients and the pathogenesis of the disease is very complicated. The distant metastasis may occur in the early stage, and the prognosis is poor. MicroRNAs (miRNAs) are non-coding RNAs of about 18–25 nt in length that are involved in post-transcriptional regulation of genes. miRNAs can regulate target gene expression by promoting the degradation of target mRNAs or inhibiting the translation process, thereby the proliferation of OS cells can be inhibited and the apoptosis can be promoted; in this way, miRNAs can affect the metabolism of OS cells and can also participate in the occurrence, invasion, metastasis, and recurrence of OS. Some miRNAs have already been found to be closely related to the prognosis of patients with OS. Unlike other reviews, this review summarizes the miRNA molecules closely related to the development, diagnosis, prognosis, and treatment of OS in recent years. The expression and influence of miRNA molecule on OS were discussed in detail, and the related research progress was summarized to provide a new research direction for early diagnosis and treatment of OS.
Collapse
Affiliation(s)
- Guanyu Zhang
- Queen Mary college of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Yiran Li
- Queen Mary college of Nanchang University, Xuefu Road, Nanchang, Jiangxi 330001, China
| | - Jiasheng Xu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenfang Xiong
- Department of Pathology, The First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng Street, Nanchang, Jiangxi 330006, China
| |
Collapse
|
21
|
Gong G, Han Z, Wang W, Xu Q, Zhang J. Silencing hsa_circRNA_0008035 exerted repressive function on osteosarcoma cell growth and migration by upregulating microRNA-375. Cell Cycle 2020; 19:2139-2147. [PMID: 32779548 DOI: 10.1080/15384101.2020.1792636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Traditionally, circular RAN hsa_circ_0008035 was proven to function as a tumor inhibitor in gastric cancer. Nevertheless, much less was known about hsa_circ_0008035 in osteosarcoma (OSA). This project was undertaken to assess the role of hsa_circ_0008035 in OSA. Hsa_circ_0008035 level in serum of OSA patients, OSA tissues and cell lines were measured by reverse transcription-quantitative PCR. After downregulation or overexpression of hsa_circ_0008035, cell proliferation, apoptosis and migration were tested in MG63, SAOS-2 or hFOB1.19 cells. Meanwhile, the expression level of miR-375 was analyzed. The binding between hsa_circ_0008035 and miR-375 was confirmed using bioinformatics and luciferase assay. Subsequently, the effects of miR-375 inhibition on MG63 cell growth and migratory potential were reevaluated. Eventually, the activating status of Notch pathway was assessed by Western blot. Our results demonstrated that hsa_circ_0008035 was overexpressed in serum of OSA patients, OSA tissues and cells. Silencing hsa_circRNA_0008035 impeded OSA cell growth and migration, while hsa_circ_0008035 facilitated cell behaviors of hFOB1.19 cells. Additionally, hsa_circ_0008035 negatively modulated miR-375 expression. Meanwhile, miR-375 inhibition overturned the suppressive effects of silencing hsa_circRNA_0008035 on OSA cell behaviors. Furthermore, silencing hsa_circ_0008035 perturbed Notch pathway by adjusting miR-375 expression. In conclusion, silencing hsa_circRNA_0008035 exerted repressive function on OSA cell growth and migration and Notch pathway by accelerating miR-375.
Collapse
Affiliation(s)
- Gu Gong
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University , Changchun, Jilin, China
| | - Zhifeng Han
- Department of Thoracic Surgery, China-Japan Union Hospital of Jilin University , Changchun, Jilin, China
| | - Wenjun Wang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University , Changchun, Jilin, China
| | - Qinli Xu
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University , Changchun, Jilin, China
| | - Jingzhe Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University , Changchun, Jilin, China
| |
Collapse
|
22
|
Gao SS, Wang YJ, Zhang GX, Zhang WT. Potential diagnostic value of miRNAs in peripheral blood for osteosarcoma: A meta-analysis. J Bone Oncol 2020; 23:100307. [PMID: 32742918 PMCID: PMC7385506 DOI: 10.1016/j.jbo.2020.100307] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/11/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022] Open
Abstract
Osteosarcoma (OS) is one of the most common primary malignant tumors in adolescents. In recent years, multiple studies have reported the value of miRNAs in the diagnosis of OS, but the results were very different from each other. Therefore, we conducted this meta-analysis to determine the accuracy of miRNAs in the diagnosis of OS. The meta-analysis searched for relevant researches including PubMed, EMBASE, Web of Science, Wanfang database and China National Knowledge Infrastructure (CNKI) as of June 1, 2020. We used the quality assessment of Diagnostic Accuracy Study 2 (QUADAS-2) to score the quality of each study. A random effects model was used to pool the sensitivity and specificity. We measured the diagnostic value using positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve (AUC). Subgroup and meta-regression analysis were used to find potential sources of heterogeneity. The meta-analysis finally included 31 articles about 2634 OS patients and 1715 healthy controls. The pooled estimations showed that the circulating miRNAs has a high accuracy in diagnosing OS, with a sensitivity of 0.79, specificity of 0.89, PLR of 7.3, NLR of 0.23, DOR of 31, and AUC of 0.90. In addition, subgroup and meta-regression analysis showed that miRNA clusters have higher diagnostic accuracy than single miRNA, and miRNAs in plasma were more reliable than those in serum. In conclusion, peripheral blood miRNA is a potential noninvasive biomarker to assist in the early diagnosis of OS, especially young patients with bone pain and/or indeterminate radiology findings.
Collapse
Affiliation(s)
- Shuai-Shuai Gao
- Department of Traumatology and Orthopedic Surgery, Xi'an Daxing Hospital, Shaanxi, China
- International Doctoral School, University of Seville, Spain
| | - Yan-Jun Wang
- Department of Traumatology and Orthopedic Surgery, Xi'an Daxing Hospital, Shaanxi, China
| | - Guo-Xun Zhang
- International Doctoral School, University of Seville, Spain
| | - Wen-Ting Zhang
- International Doctoral School, University of Seville, Spain
| |
Collapse
|
23
|
Wei J, Liu X, Li T, Xing P, Zhang C, Yang J. The new horizon of liquid biopsy in sarcoma: the potential utility of circulating tumor nucleic acids. J Cancer 2020; 11:5293-5308. [PMID: 32742476 PMCID: PMC7391194 DOI: 10.7150/jca.42816] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
The diagnosis, treatment and prognosis of sarcoma are mainly dependent on tissue biopsy, which is limited in its ability to provide a panoramic view into the dynamics of tumor progression. In addition, effective biomarkers to monitor the progression and therapeutic response of sarcoma are lacking. Liquid biopsy, a recent technological breakthrough, has gained great attention in the last few decades. Nucleic acids (such as DNA, mRNAs, microRNAs, and long non-coding RNAs) that are released from tumors circulate in the blood of cancer patients and can be evaluated through liquid biopsy. Circulating tumor nucleic acids reflect the intertumoral and intratumoral heterogeneity, and thus liquid biopsy provides a noninvasive strategy to examine these molecules compared with traditional tissue biopsy. Over the past decade, a great deal of information on the potential utilization of circulating tumor nucleic acids in sarcoma screening, prognosis and therapy efficacy monitoring has emerged. Several specific gene mutations in sarcoma can be detected in peripheral blood samples from patients and can be found in circulating tumor DNA to monitor sarcoma. In addition, circulating tumor non-coding RNA may also be a promising biomarker in sarcoma. In this review, we discuss the clinical application of circulating tumor nucleic acids as blood-borne biomarkers in sarcoma.
Collapse
Affiliation(s)
- Junqiang Wei
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- Department of Orthopedics, Affiliated Hospital of Chengde Medical College, Chengde, Hebei, 067000, China
| | - Xinyue Liu
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Ting Li
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Peipei Xing
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Chao Zhang
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Jilong Yang
- Department of bone and soft tissue tumor, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
- National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin's Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| |
Collapse
|
24
|
Otoukesh B, Abbasi M, Gorgani HOL, Farahini H, Moghtadaei M, Boddouhi B, Kaghazian P, Hosseinzadeh S, Alaee A. MicroRNAs signatures, bioinformatics analysis of miRNAs, miRNA mimics and antagonists, and miRNA therapeutics in osteosarcoma. Cancer Cell Int 2020; 20:254. [PMID: 32565738 PMCID: PMC7302353 DOI: 10.1186/s12935-020-01342-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) involved in key signaling pathways and aggressive phenotypes of osteosarcoma (OS) was discussed, including PI3K/AKT/MTOR, MTOR AND RAF-1 signaling, tumor suppressor P53- linked miRNAs, NOTCH- related miRNAs, miRNA -15/16 cluster, apoptosis related miRNAs, invasion-metastasis-related miRNAs, and 14Q32-associated miRNAs cluster. Herrin, we discussed insights into the targeted therapies including miRNAs (i.e., tumor-suppressive miRNAs and oncomiRNAs). Using bioinformatics tools, the interaction network of all OS-associated miRNAs and their targets was also depicted.
Collapse
Affiliation(s)
- Babak Otoukesh
- Orthopedic Surgery Fellowship in Département Hospitalo-Universitaire MAMUTH « Maladies musculo-squelettiques et innovations thérapeutiques » , Université Pierre et Marie-Curie, Sorbonne Université, Paris, France.,Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Abbasi
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Habib-O-Lah Gorgani
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Hossein Farahini
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Mehdi Moghtadaei
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Bahram Boddouhi
- Department of Orthopedic Surgery, Bone and Joint Reconstruction Research Center, Iran University of Medical Science, Postal code : 1445613131 Tehran, Iran
| | - Peyman Kaghazian
- Department of Orthopedic and Traumatology, Universitätsklinikum Bonn, Bonn, Germany
| | - Shayan Hosseinzadeh
- Department of Orthopedic Surgery, Boston Children's Hospital, Harvard Medical School, Boston, MA USA
| | - Atefe Alaee
- Department of Information Sciences, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Belge G, Grobelny F, Matthies C, Radtke A, Dieckmann KP. Serum Level of microRNA-375-3p Is Not a Reliable Biomarker of Teratoma. In Vivo 2020; 34:163-168. [PMID: 31882475 DOI: 10.21873/invivo.11757] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/05/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND/AIM Clinical management of testicular germ cell tumours (GCT) is based upon the measurement of serum tumour markers. Recent studies have shown that the microRNA-371a-3p is a sensitive and specific serum biomarker for all subgroups of GCT, except teratoma. To close the diagnostic gap relating to teratoma, serum levels of microRNA-375-3p have recently been suggested to represent a specific serum marker of this histological subgroup. In the present study, we tested this hypothesis. MATERIALS AND METHODS miRNA expression was analysed in serum of 21 GCT patients with teratoma, twelve patients with other GCT, and twelve male controls using the qPCR method. RESULTS The serum miR-375-3p levels of teratoma patients were not different from other GCT patients or controls. The ROC analysis revealed an AUC of 0.524 for the discrimination between teratoma and other pathologies. CONCLUSION The miR-375-3p does probably not qualify for a useful serum biomarker to distinguish teratoma from other GCTs and from controls.
Collapse
Affiliation(s)
- Gazanfer Belge
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | | | - Cord Matthies
- Department of Urology, Bundeswehrkrankenhaus Hamburg, Hamburg, Germany
| | - Arlo Radtke
- Faculty of Biology and Chemistry, University of Bremen, Bremen, Germany
| | | |
Collapse
|
26
|
Jamali Z, Taheri-Anganeh M, Shabaninejad Z, Keshavarzi A, Taghizadeh H, Razavi ZS, Mottaghi R, Abolhassan M, Movahedpour A, Mirzaei H. Autophagy regulation by microRNAs: Novel insights into osteosarcoma therapy. IUBMB Life 2020; 72:1306-1321. [PMID: 32233112 DOI: 10.1002/iub.2277] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/04/2020] [Accepted: 03/14/2020] [Indexed: 12/16/2022]
Abstract
Osteosarcoma (OS) is a kind of primary bone cancer that is considered as the leading cause of children death. Surgery and chemotherapy are considered as common treatment approaches for OS; the rate of survival for patients is almost 60-70%. Besides the used therapeutic approaches, it seems that there is a crucial need to launch new treatments for OS. In this regard, more understanding about cellular and molecular pathways involved in OS can contribute to recovery and develop new therapeutic platforms. Autophagy is a cellular machinery that digests and degrades dysfunctional proteins and organelles, so it can regulate the cell proliferation and survival. Most of the time, OS cells use autophagy to increase their survival and proliferation and to gain the ability to resist chemotherapy. Although, there are several controversial evidences on how OS cells use autophagy. A variety of cellular and molecular pathways, that is, microRNAs (miRNAs) can modulate autophagy. MiRNAs are some endogenous, approximately 22 nucleotide RNAs that have an important role in posttranscriptional regulation of mRNAs by targeting them. There are many evidences that the various miRNA expressions in OS cells are dysregulated, so it can propel a normal cell to cancerous one by influencing the cell survival, apoptosis, and autophagy, and eventually increased chemoresitance. Hence, miRNAs can be considered as new biomarkers for OS diagnosis, and according to the role of autophagy in OS progression, miRNAs can use inhibiting or promoting autophagy agents. The present review summarizes the effects of aberrant expression of miRNAs in OS diagnosis and treatment with focus on their roles in autophagy.
Collapse
Affiliation(s)
- Zeinab Jamali
- Cardiovascular Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Shabaninejad
- Department of Biological Sciences, Faculty of Nanotechnology, Tarbiat Modares University, Tehran, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkhalegh Keshavarzi
- Burn and Wound Healing Research Center, Surgical Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Taghizadeh
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Reza Mottaghi
- Department of Oral and Maxillofacial Surgery, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohammadreza Abolhassan
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Movahedpour
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
27
|
Liu AS, Yu HY, Yang YL, Xue FY, Chen X, Zhang Y, Zhou ZY, Zhang B, Li L, Sun CZ, Huang P, Huang JF. A Chemotherapy-Driven Increase in Mcl-1 Mediates the Effect of miR-375 on Cisplatin Resistance in Osteosarcoma Cells. Onco Targets Ther 2019; 12:11667-11677. [PMID: 32021245 PMCID: PMC6942534 DOI: 10.2147/ott.s231125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background Osteosarcoma (OS) is one of the most difficult cancers to treat due to its resistance to chemotherapy. The essential role played by Mcl-1 in promoting chemoresistance has been observed in a variety of cancers, including OS, while the underlying mechanism remains unclear. Methods We investigated the expression of Mcl-1 in 42 paired OS specimens obtained before and after adjuvant chemotherapy, and its correlation with clinicopathological characteristics. Loss and gain of function studies were performed to analyze the effects of Mcl-1 modulations on the chemosensitivity, and the mechanism involved in the deregulation of Mcl-1 in OS cells. Results In OS specimens, the expression of Mcl-1 was significantly upregulated after chemotherapy, and high Mcl-1 expression was associated with poorer overall survival and an increased recurrence rate. Furthermore, we demonstrated that chemotherapy-driven increased Mcl-1 decreased chemosensitivity by promoting tumour proliferation and inhibiting DNA damage. Moreover, Mcl-1 was found to be a direct target of miR-375 in OS cells. The knockdown of Mcl-1 phenocopied miR-375 downregulation, and the overexpression of miR-375 rescued the effects of cisplatin-induced DNA damage mediated by Mcl-1. Conclusion Our data indicated that chemotherapy-driven increase in the expression of Mcl-1 plays a critical role in chemoresistance, and the intervention of the miR-375/Mcl-1 axis may offer a novel strategy to enhance chemosensitivity in OS treatment.
Collapse
Affiliation(s)
- An-Song Liu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Hai-Yang Yu
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Yan-Lin Yang
- Department of Oncology, Affiliated Nanhua Hospital, University of South China, Hengyang, People's Republic of China
| | - Fu-Yao Xue
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Xia Chen
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Yun Zhang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Zi-Yu Zhou
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Bin Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| | - Lan Li
- Department of Pathology, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Chuan-Zheng Sun
- Emergency Department, The Third Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Peng Huang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Ju-Fang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, People's Republic of China
| |
Collapse
|
28
|
Wang J, Liu S, Shi J, Li J, Wang S, Liu H, Zhao S, Duan K, Pan X, Yi Z. The Role of miRNA in the Diagnosis, Prognosis, and Treatment of Osteosarcoma. Cancer Biother Radiopharm 2019; 34:605-613. [PMID: 31674804 DOI: 10.1089/cbr.2019.2939] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Osteosarcoma (OS) is one of the most common malignant tumors derived from mesenchymal tissue and is highly invasive, mainly in children and adolescents. Treatment of OS is mostly based on standard treatment options, including aggressive surgical resection, systemic chemotherapy, and targeted radiation therapy, but the 5-year survival rate is still low. MicroRNA (miRNA) is a highly conserved type of endogenous nonprotein-encoding RNA, about 19-25 nucleotides in length, whose transcription process is independent of other genes. Generally, miRNAs play a role in regulating cell proliferation, differentiation, apoptosis, and development by binding to the 3' untranslated region of target mRNAs, whereby they can degrade or induce translational silencing. Although miRNAs play a regulatory role in various metabolic processes, they are not translated into proteins. Several studies have shown that miRNAs play an important role in the diagnosis, treatment, and prognosis of OS. Herein, the authors describe new advances in the diagnosis, prognosis, and treatment of miRNAs in OS.
Collapse
Affiliation(s)
- Jicheng Wang
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Department of Orthopedics, Xi'an Medical University, Xi'an, China
| | - Shizhang Liu
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jiyuan Shi
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Jingyuan Li
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Songbo Wang
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Department of Orthopedics, Xi'an Medical University, Xi'an, China
| | - Huitong Liu
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Song Zhao
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Department of Orthopedics, Xi'an Medical University, Xi'an, China
| | - Keke Duan
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Department of Orthopedics, Xi'an Medical University, Xi'an, China
| | - Xuezhen Pan
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China.,Department of Orthopedics, Xi'an Medical University, Xi'an, China
| | - Zhi Yi
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
29
|
Zhou X, Xiang C, Zheng X. miR-132 serves as a diagnostic biomarker in gestational diabetes mellitus and its regulatory effect on trophoblast cell viability. Diagn Pathol 2019; 14:119. [PMID: 31653266 PMCID: PMC6814988 DOI: 10.1186/s13000-019-0899-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) leads to poor pregnancy outcomes. Strategies that improve trophoblast cell function are important methods for GDM treatment. This study aimed to investigate the expression and diagnostic potential of microRNA-132 (miR-132) in GDM patients, and further analyzed the effects of miR-132 on HTR-8/SVneo cell proliferation. METHODS Quantitative real-time PCR was applied to estimate the expression of miR-132. A receiver operating characteristics curve (ROC) analysis was performed to evaluate the diagnostic value of serum miR-132 in GDM patients. In vitro regulation of miR-132 in trophoblast cell HTR-8/SVneo was achieved by cell transfection, and the effects of miR-132 on cell proliferation were assessed using CCK-8 assay. RESULTS Expression of miR-132 was decreased in serum and placenta tissues in GDM patients compared with the healthy women. A negative correlation was found between the serum miR-132 levels and fasting blood glucose of the GDM patients. A ROC curve shown the serum miR-132 had considerable diagnostic accuracy with an area under the curve (AUC) of 0.898. High glucose (HG) treatment induced an inhibition in HTR-8/SVneo cell proliferation and the expression of miR-132. The overexpression of miR-132 in HTR-8/SVneo cells could markedly rescued the HG - induced suppressed cell proliferation. CONCLUSION All the data of this study revealed the reduced expression of miR-132 in serum and placenta tissues of GDM, and serum miR-132 serves a candidate biomarker in the diagnosis of GDM. miR-132 may act a protective role against GDM via enhancing the trophoblast cell proliferation.
Collapse
Affiliation(s)
- Xuegui Zhou
- Department of Obstetrics, Binzhou People's Hospital, No. 515, Huanghe 7 Road, Binzhou, Shandong, 256610, People's Republic of China.
| | - Cuiping Xiang
- Department of Obstetrics, Binzhou People's Hospital, No. 515, Huanghe 7 Road, Binzhou, Shandong, 256610, People's Republic of China
| | - Xiaoxia Zheng
- Department of Obstetrics, Binzhou Center Hospital, Binzhou, Shandong, 251700, People's Republic of China
| |
Collapse
|
30
|
Bottani M, Banfi G, Lombardi G. Circulating miRNAs as Diagnostic and Prognostic Biomarkers in Common Solid Tumors: Focus on Lung, Breast, Prostate Cancers, and Osteosarcoma. J Clin Med 2019; 8:E1661. [PMID: 31614612 PMCID: PMC6833074 DOI: 10.3390/jcm8101661] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/04/2019] [Accepted: 10/06/2019] [Indexed: 12/22/2022] Open
Abstract
An early cancer diagnosis is essential to treat and manage patients, but it is difficult to achieve this goal due to the still too low specificity and sensitivity of classical methods (imaging, actual biomarkers), together with the high invasiveness of tissue biopsies. The discovery of novel, reliable, and easily collectable cancer markers is a topic of interest, with human biofluids, especially blood, as important sources of minimal invasive biomarkers such as circulating microRNAs (miRNAs), the most promising. MiRNAs are small non-coding RNAs and known epigenetic modulators of gene expression, with specific roles in cancer development/progression, which are next to be implemented in the clinical routine as biomarkers for early diagnosis and the efficient monitoring of tumor progression and treatment response. Unfortunately, several issues regarding their validation process are still to be resolved. In this review, updated findings specifically focused on the clinical relevance of circulating miRNAs as prognostic and diagnostic biomarkers for the most prevalent cancer types (breast, lung, and prostate cancers in adults, and osteosarcoma in children) are described. In addition, deep analysis of pre-analytical, analytical, and post-analytical issues still affecting the circulation of miRNAs' validation process and routine implementation is included.
Collapse
Affiliation(s)
- Michela Bottani
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
| | - Giuseppe Banfi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
- Vita-Salute San Raffaele University, 20132 Milano, Italy.
| | - Giovanni Lombardi
- IRCCS Istituto Ortopedico Galeazzi, Laboratory of Experimental Biochemistry and Molecular Biology, Via Riccardo Galeazzi 4, 20161 Milano, Italy.
- Dept. of Physiology and Pharmacology, Gdańsk University of Physical Education and Sport, Gdańsk, ul. Kazimierza Górskiego 1, 80-336 Pomorskie, Poland.
| |
Collapse
|
31
|
Pardini B, Sabo AA, Birolo G, Calin GA. Noncoding RNAs in Extracellular Fluids as Cancer Biomarkers: The New Frontier of Liquid Biopsies. Cancers (Basel) 2019; 11:E1170. [PMID: 31416190 PMCID: PMC6721601 DOI: 10.3390/cancers11081170] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/04/2019] [Accepted: 08/10/2019] [Indexed: 02/06/2023] Open
Abstract
The last two decades of cancer research have been devoted in two directions: (1) understanding the mechanism of carcinogenesis for an effective treatment, and (2) improving cancer prevention and screening for early detection of the disease. This last aspect has been developed, especially for certain types of cancers, thanks also to the introduction of new concepts such as liquid biopsies and precision medicine. In this context, there is a growing interest in the application of alternative and noninvasive methodologies to search for cancer biomarkers. The new frontiers of the research lead to a search for RNA molecules circulating in body fluids. Searching for biomarkers in extracellular body fluids represents a better option for patients because they are easier to access, less painful, and potentially more economical. Moreover, the possibility for these types of samples to be taken repeatedly, allows a better monitoring of the disease progression or treatment efficacy for a better intervention and dynamic treatment of the patient, which is the fundamental basis of personalized medicine. RNA molecules, freely circulating in body fluids or packed in microvesicles, have all the characteristics of the ideal biomarkers owing to their high stability under storage and handling conditions and being able to be sampled several times for monitoring. Moreover, as demonstrated for many cancers, their plasma/serum levels mirror those in the primary tumor. There are a large variety of RNA species noncoding for proteins that could be used as cancer biomarkers in liquid biopsies. Among them, the most studied are microRNAs, but recently the attention of the researcher has been also directed towards Piwi-interacting RNAs, circular RNAs, and other small noncoding RNAs. Another class of RNA species, the long noncoding RNAs, is larger than microRNAs and represents a very versatile and promising group of molecules which, apart from their use as biomarkers, have also a possible therapeutic role. In this review, we will give an overview of the most common noncoding RNA species detectable in extracellular fluids and will provide an update concerning the situation of the research on these molecules as cancer biomarkers.
Collapse
Affiliation(s)
- Barbara Pardini
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy.
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy.
| | - Alexandru Anton Sabo
- Department of Pediatrics, Marie Curie Emergency Clinical Hospital for Children, 077120 Bucharest, Romania
| | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, 10124 Turin, Italy
- Unit of Molecular Epidemiology and Exposome, Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy
| | - George Adrian Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
32
|
Zhang J. Effect of adriamycin combined with metformin on biological function of human tongue cancer SSC-15 cells. Oncol Lett 2019; 17:5674-5680. [PMID: 31186791 PMCID: PMC6507480 DOI: 10.3892/ol.2019.10237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 03/28/2019] [Indexed: 12/04/2022] Open
Abstract
The effect of adriamycin (ADM) combined with metformin (MET) on the biological function of human tongue cancer SSC-15 cells was investigated. SCC-15 cells (ATCC® CRL-1623) were cultured in vitro. The close concentration of the median lethal dose (LD50) of ADM was 0.05 mg/l and the LD50 of MET was 10 mmol/l after 48 h of intervention. They were used for drug combination experiments. Cells without drug treatment were used as the control group, cells treated with ADM alone, MET alone and their drug combination (ADM+MET) as the experimental groups. CCK-8 was used to detect the cell survival rate, and flow cytometry to detect the apoptosis rate in each group, Transwell chamber to detect the invasion ability in vitro of cells and scratch-healing experiment to observe the migration ability of the cells. The survival rate of tongue cancer SCC-15 cells gradually decreased with the increase in ADM and MET concentrations and in intervention time (P<0.05). The apoptosis rate in the ADM, MET and ADM+MET groups was significantly higher than that in the control group (P<0.05). The apoptosis rate in the ADM+MET group was higher than that in the ADM and MET groups (P<0.05). The invasion and migration ability of cells in the ADM and MET groups were higher than those in the ADM+MET group (P<0.05). The cell membrane number and the migration rate of cells in the ADM+MET group were significantly lower than those in the ADM and MET groups (P<0.05). Both MET and ADM inhibit the growth, invasion and migration of tongue cancer SSC-15 cells, and induce their apoptosis. Thus, ADM and MET in combination is more effective than ADM alone and MET alone in inhibiting the growth, invasion and migration of tongue cancer cells as well as in inducing their apoptosis.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Stomatology, Qianfoshan Hospital of Shandong Province, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
33
|
Huang C, Sun Y, Ma S, Vadamootoo AS, Wang L, Jin C. Identification of circulating miR-663a as a potential biomarker for diagnosing osteosarcoma. Pathol Res Pract 2019; 215:152411. [DOI: 10.1016/j.prp.2019.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/19/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022]
|
34
|
Sun X, Wei B, Peng ZH, Fu QL, Wang CJ, Zheng JC, Sun JC. Knockdown of lncRNA XIST suppresses osteosarcoma progression by inactivating AKT/mTOR signaling pathway by sponging miR-375-3p. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1507-1517. [PMID: 31933968 PMCID: PMC6947095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 02/22/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Osteosarcoma (OS) is one of the most common bone tumors in adolescents and young adults. Emerging evidence suggested ncRNA (lncRNA and miRNA) are closely associated with cell progression, apoptosis and autophagy. However, the role of regulatory network between ncRNA and mRNA in OS has not been fully verified. METHODS lncRNA XIST, miRNA expression were detected by qRT-PCR. The protein expression of LC3, p62, AKT, p-AKT, mTOR and p-mTOR was measured by western blot. MTT assay and flow cytometry were applied to measure cell proliferation and apoptosis. Luciferase assay was used to ensure the relationship between lncRNA, miRNA and mRNA. GFP-LC3 cells were observed using fluorescence microscope. RESULTS XIST expression was up-regulated but miR-375-3p was down-regulated in OS tissues and cells. Luciferase assay results demonstrated that miR-375-3p was a target of XIST and mTOR was a target mRNA of miR-375-3p. In addition, knockdown of XIST and mTOR inhibited OS cell proliferation and autophagy, but induced apoptosis. Knockdown of XIST could reverse the effect of miR-375-3p inhibitor on OS cells. The effects of si-mTOR of OS cells could be reversed by silencing miR-375-3p. Moreover, knockdown of XIST inhibited AKT/mTOR signaling pathway via sponging miR-375-3p. CONCLUSION Knockdown of XIST inhibited cell growth and autophagy but induced cell apoptosis by suppressing the AKT/mTOR signaling pathway by sponging miR-375-3p.
Collapse
Affiliation(s)
- Xin Sun
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University Xiashan District, Zhanjiang, Guangdong Province, China
| | - Bo Wei
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University Xiashan District, Zhanjiang, Guangdong Province, China
| | - Zhi-Heng Peng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University Xiashan District, Zhanjiang, Guangdong Province, China
| | - Qing-Long Fu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University Xiashan District, Zhanjiang, Guangdong Province, China
| | - Chao-Jun Wang
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University Xiashan District, Zhanjiang, Guangdong Province, China
| | - Jin-Chang Zheng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University Xiashan District, Zhanjiang, Guangdong Province, China
| | - Jie-Cong Sun
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University Xiashan District, Zhanjiang, Guangdong Province, China
| |
Collapse
|
35
|
Botti G, Giordano A, Feroce F, De Chiara AR, Cantile M. Noncoding RNAs as circulating biomarkers in osteosarcoma patients. J Cell Physiol 2019; 234:19249-19255. [PMID: 31032924 DOI: 10.1002/jcp.28744] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 03/08/2019] [Accepted: 03/19/2019] [Indexed: 12/14/2022]
Abstract
Noncoding RNAs (ncRNAs) identify a large family of RNAs that do not encode proteins and represent an important group of tumor biomarkers, directly involved in the process of tumor pathogenesis and progression. Many of them have also been identified in biological fluids of patients with cancer, especially blood, suggesting their role as an emerging class of circulating biomarkers. Many ncRNAs, both miRNAs and lncRNAs, are deregulated in sarcoma tissues, with the most consistent data in osteosarcomas. In patients with osteosarcoma, the role of ncRNAs as circulating biomarkers is taking enormous value, above all for their ability to vary expression levels during disease progression and in response to therapy. In this mini-review, we summarize the main studies supporting the role of circulating ncRNAs in monitoring disease status in patients with osteosarcoma.
Collapse
Affiliation(s)
- Gerardo Botti
- Scientific Direction, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, Naples, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Florinda Feroce
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, Naples, Italy
| | | | - Monica Cantile
- Pathology Unit, Istituto Nazionale Tumori-Irccs-Fondazione G.Pascale, Naples, Italy
| |
Collapse
|
36
|
MicroRNA-Based Diagnosis and Treatment of Metastatic Human Osteosarcoma. Cancers (Basel) 2019; 11:cancers11040553. [PMID: 31003401 PMCID: PMC6521107 DOI: 10.3390/cancers11040553] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 04/15/2019] [Accepted: 04/16/2019] [Indexed: 12/24/2022] Open
Abstract
Osteosarcoma is a malignant tumor of the bones that commonly occurs in young individuals. The 5-year survival rate of osteosarcoma patients is 60-70%. Metastasis to the lungs leads to death in 30-40% of osteosarcoma patients. Therefore, the development of effective strategies for early detection and treatment of this disease are important to improve the survival of osteosarcoma patients. However, metastatic markers for osteosarcoma and molecules that might be targeted for the treatment of metastatic osteosarcoma have not been identified yet. Therefore, the mechanism of metastasis to the lungs needs to be explored from a novel viewpoint. Recently, the aberrant expression of microRNAs (miRNAs) has been reported to be involved in the carcinogenesis and cancer progression of many cancers. Furthermore, miRNAs in the blood have been reported to show an aberrant expression unique to several cancers. Therefore, miRNAs are gaining attention as potential diagnostic markers for cancers. On the other hand, normalizing the dysregulated expression of miRNAs in cancer cells has been shown to alter the phenotype of cancer cells, and thus treatment strategies targeting miRNAs are also being considered. This review summarizes the abnormality of miRNA expression associated with the metastasis of osteosarcoma and describes the present situation and issues regarding the early diagnosis and development of treatment strategies for metastatic osteosarcoma based on the current understanding of this disease.
Collapse
|
37
|
Su YY, Sun L, Guo ZR, Li JC, Bai TT, Cai XX, Li WH, Zhu YF. Upregulated expression of serum exosomal miR-375 and miR-1307 enhance the diagnostic power of CA125 for ovarian cancer. J Ovarian Res 2019; 12:6. [PMID: 30670062 PMCID: PMC6341583 DOI: 10.1186/s13048-018-0477-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 12/14/2018] [Indexed: 12/13/2022] Open
Abstract
Background Ovarian cancer (OC) is associated with high mortality in gynecological oncology; this is mainly due to the low diagnosis rate. Exosomal miRNA has demonstrated potential as a tumor biomarker. We aimed to explore the diagnostic potential of serum exosomal miR-1307 and miR-375 for OC. Methods The first six candidate miRNAs were selected from the previous literature. The relative quantification of qRT-PCR was used to screen for the stability of exosomal miRNAs, followed by validation of the cohort. ROC analysis was employed to analyze the specificity and sensitivity of exosomal miRNA. Results MiR-1307 and miR-375 were confirmed stably existing in serum exosomes of OC. Moreover, miR-1307 and miR-375 were both significantly up-regulated in serum exosomes of OC compared to ovarian benign and healthy groups. The overexpressed miRNAs showed independent diagnostic power and enhanced the diagnostic accuracy of traditional biomarkers when combined with CA-125 and HE4. MiR-1307 was associated with tumor staging, and miR-375 was associated with lymph node metastasis of OC. Conclusion Our results suggest that serum exosomal miR-1307 and miR-375 could serve as potential tumor biomarkers to improve diagnostic efficiency for OC.
Collapse
Affiliation(s)
- Ying Ying Su
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Li Sun
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Zhi Rui Guo
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Jin Chang Li
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Ting Ting Bai
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Xiao Xiao Cai
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Wen Han Li
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, Jiangsu, China
| | - Ye Fei Zhu
- The Second Affiliated Hospital, Nanjing Medical University, Nanjing, 210011, Jiangsu, China.
| |
Collapse
|
38
|
Li C, Ma D, Yang J, Lin X, Chen B. miR-202-5p inhibits the migration and invasion of osteosarcoma cells by targeting ROCK1. Oncol Lett 2018; 16:829-834. [PMID: 29963151 PMCID: PMC6019893 DOI: 10.3892/ol.2018.8694] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022] Open
Abstract
Many studies have shown that microRNA regulates the development and treatment of osteosarcoma (OS). In many human cancer studies, the expression of microRNA-202 has been shown to be abnormal. The aim of the study was to examine the role of miR-202-5p in the occurrence and formation of OS. miR-202-5p and Rho-associated coiled-coil containing protein kinase 1 (ROCK1) levels were assessed using RT-qPCR in OS tissues and cell lines. The cell migrating and invasive abilities were detected by the Transwell assay in OS. Moreover, the relationship between miR-202-5p and ROCK1 was verified via luciferase reporter assay. The protein level of ROCK1 was identified by western blot analysis. Downregulation of miR-202-5p was identified in OS tissues and cell lines. In addition, the miR-202-5p overexpression had inhibitory action for cell migration and invasion in OS. Moreover, miR-202-5p directly targeted ROCK1 and negatively regulated its expression. Upregulation of ROCK1 had a carcinogenic effect in OS. Furthermore, the upregulation of ROCK1 restored the suppressive effect of miR-202-5p. miR-202-5p, in turn, weakened the abilities of cell migration and invasion in OS by inhibiting ROCK1 expression. As a result, miR-202-5p may be developed as a potential pathway in the reatment of OS.
Collapse
Affiliation(s)
- Congda Li
- Department of Orthopedic, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Deying Ma
- Department of Orthopedic, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Jinhu Yang
- Department of Orthopedic, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Xiangbo Lin
- Department of Orthopedic, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Bo Chen
- Department of Orthopedic, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| |
Collapse
|