Al Nooryani AA, Abdelrahman NA, Helmy HA, Kishk YT, Hassan AKM. The role of optical coherence tomography guidance in scaffold versus stent optimization.
Egypt Heart J 2020;
72:77. [PMID:
33151451 PMCID:
PMC7644726 DOI:
10.1186/s43044-020-00110-z]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 10/14/2020] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND
Optical coherence tomography showed a great ability to identify adverse features during percutaneous coronary intervention with drug-eluting stents and resulted in better clinical outcomes. The study aimed to assess the impact of optical coherence tomography on intraoperative decision-making during implantation of Absorb bioresorbable scaffolds versus everolimus drug-eluting stents.
RESULTS
We performed an observational study that included 223 consecutive patients post optical coherence tomography-guided implantation of either Absorb bioresorbable scaffolds (162 patients) or everolimus drug-eluting stents (61 patients). We studied the influence of optical coherence tomography on intraoperative decision-making during implantation of bioresorbable scaffolds versus drug-eluting stents by analyzing the total rate of optical coherence tomography-dependent modifications in each device. After satisfactory angiographic results, the total rate of required intervention for optical coherence tomography detected complications was significantly higher in the bioresorbable scaffolds arm compared to drug-eluting stents arm (47.8% versus 32.9%, respectively; p = 0.019). The additional modifications encompassed further optimization in the case of device underexpansion or struts malapposition, and even stenting in the case of strut fractures, or significant edge dissection.
CONCLUSIONS
Compared to drug-eluting stents, Absord scaffold was associated with a significantly higher rate of optical coherence tomography-identified intraprocedural complications necessitating further modifications. The study provides some hints on the reasons of scaffolds failure in current PCI practice; it offers a new insight for the enhancement of BRS safety and presents and adds to the growing literature for successful BRS utilization.
Collapse