1
|
Vasiliev SV, Akselrod AS, Zhelankin AV, Schekochikhin DY, Generozov EV, Sharova EI, Stonogina DA. Circulating miR-21-5p, miR-146a-5p, miR-320a-3p in patients with atrial fibrillation in combination with hypertension and coronary artery disease. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2022. [DOI: 10.15829/1728-8800-2022-2814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Aim. To study the plasma profiles of circulating extracellular microribonucleic acids (miRNAs), potentially including in pathogenesis of cardiovascular diseases, in patients with atrial fibrillation (AF) in combination with hypertension (HTN) or coronary artery disease (CAD).Material and methods. The study included patients with AF in combi nation with HTN (n=21) or CAD (n=10), as well as following control groups: patients with uncomplicated HTN without AF (n=28), patients with stable CAD without AF (n=10) and healthy individuals (n=30). MiRNA samples were isolated from blood plasma of the study participants. MiRNAs were detected by TaqMan quantitative polymerase chain reaction assay. The relative plasma levels of five candidate miRNAs were estimated relative to the reference miR-16-5p.Results. Among the analyzed circulating plasma miRNAs, a higher level of miR-320a-3p was associated with AF, while increased levels of miR 146a-5p and miR-21-5p are potentially associated with presence of both AF and CAD.Conclusion. Differences were found in the plasma miRNA profiles (miR-21-5p, miR-320a-3p, miR-146a-5p) between patients with AF, regardless of concomitant disease (CAD or HTN), and healthy individuals in the control group.
Collapse
Affiliation(s)
| | | | - A. V. Zhelankin
- Federal Research and Clinical Center for Physical and Chemical Medicine of the FMBA of Russia
| | | | - E. V. Generozov
- Federal Research and Clinical Center for Physical and Chemical Medicine of the FMBA of Russia
| | - E. I. Sharova
- Federal Research and Clinical Center for Physical and Chemical Medicine of the FMBA of Russia
| | | |
Collapse
|
2
|
He D, Ruan ZB, Song GX, Chen GC, Wang F, Wang MX, Yuan MK, Zhu L. miR-15a-5p regulates myocardial fibrosis in atrial fibrillation by targeting Smad7. PeerJ 2022; 9:e12686. [PMID: 35036160 PMCID: PMC8697763 DOI: 10.7717/peerj.12686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/03/2021] [Indexed: 01/25/2023] Open
Abstract
Background At present, there is no effective treatment for myocardial fibrosis in atrial fibrillation (AF). It is reported that miR-15a-5p is abnormally expressed in AF patients but its specific role remains unclear. This study aims to investigate the effect of miR-15a-5p in myocardial fibrosis. Methods Left atrial appendage (LAA) tissues were collected from AF and non-AF patients. In lipopolysaccharide (LPS) stimulated H9C2 cells, miR-15a-5p mimic, inhibitor, pcDNA3.1-Smad7 and small interfering RNA-Smad7 (siRNA-Smad7) were respectively transfected to up-regulate or down-regulate the intracellular expression levels of miR-15a-5p and Smad7. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot (WB) were used to determine the expression levels of miR-15a-5p, Smad7, transforming growth factor β1 (TGF-β1) and collagen I. Cell counting kit-8 (CCK-8) and ethylene deoxyuridine (EdU) were used to determine cell viability and proliferation capacity, respectively. Dual-luciferase was used to detect whether miR-15a-5p interacted with Smad7, hydroxyproline (HYP) and Hematoxylin-Eosin (HE) staining were used to detect tissue fibrosis. Results The expression levels of miR-15a-5p, TGF-β1 and collagen I were up-regulated, while Smad7 was down-regulated in AF tissues and LPS-stimulated cells. MiR-15a-5p mimic can inhibit the expression of Smad7, and the dual-luciferase experiment confirmed their interaction. MiR-15a-5p inhibitor or pcDNA3.1-Smad7 can inhibit LPS-induced fibrosis and cell proliferation, while siRNA-Smad7 can reverse the changes caused by miR-15a-5p inhibitor. Conclusion We combined clinical studies with LPS-stimulated H9C2 cell model to validate the role of miR-15a-5p in the regulation of Smad7 and fibrosis. Taken together, the miR-15a-5p/Smad7 pathway might be a potential target for AF therapy.
Collapse
Affiliation(s)
- Dan He
- Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou, China.,Dalian Medical University Graduate School of Medicine, dalian, China
| | - Zhong-Bao Ruan
- Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou, China.,Dalian Medical University Graduate School of Medicine, dalian, China
| | - Gui-Xian Song
- Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Ge-Cai Chen
- Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Fei Wang
- Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Mei-Xiang Wang
- Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Mao-Kun Yuan
- Department of Cardiothoracic Surgery, Jiangsu Taizhou People's Hospital, Taizhou, China
| | - Li Zhu
- Department of Cardiology, Jiangsu Taizhou People's Hospital, Taizhou, China
| |
Collapse
|
3
|
Pan D, Zhou Y, Xiao S, Hu Y, Huan C, Wu Q, Wang X, Pan Q, Liu J, Zhu H. Identification of Differentially Expressed Genes and Pathways in Human Atrial Fibrillation by Bioinformatics Analysis. Int J Gen Med 2022; 15:103-114. [PMID: 35023949 PMCID: PMC8743500 DOI: 10.2147/ijgm.s334122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Atrial fibrillation (AF) is the most prevalent sustained cardiac arrhythmia, but the molecular mechanisms underlying AF are not known. We aimed to identify the pivotal genes and pathways involved in AF pathogenesis because they could become potential biomarkers and therapeutic targets of AF. Methods The microarray datasets of GSE31821 and GSE41177 were downloaded from the Gene Expression Omnibus database. After combining the two datasets, differentially expressed genes (DEGs) were screened by the Limma package. MicroRNAs (miRNAs) confirmed experimentally to have an interaction with AF were screened through the miRTarBase database. Target genes of miRNAs were predicted using the miRNet database, and the intersection between DEGs and target genes of miRNAs, which were defined as common genes (CGs), were analyzed. Functional and pathway-enrichment analyses of DEGs and CGs were performed using the databases DAVID and KOBAS. Protein-protein interaction (PPI) network, miRNA- messenger(m) RNA network, and drug-gene network was visualized. Finally, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) was used to validate the expression of hub genes in the miRNA-mRNA network. Results Thirty-three CGs were acquired from the intersection of 65 DEGs from the integrated dataset and 9777 target genes of miRNAs. Fifteen "hub" genes were selected from the PPI network, and the miRNA-mRNA network, including 82 miRNAs and 9 target mRNAs, was constructed. Furthermore, with the validation by RT-qPCR, macrophage migration inhibitory factor (MIF), MYC proto-oncogene, bHLH transcription factor (MYC), inhibitor of differentiation 1 (ID1), and C-X-C Motif Chemokine Receptor 4 (CXCR4) were upregulated and superoxide Dismutase 2 (SOD2) was downregulated in patients with AF compared with healthy controls. We also found MIF, MYC, and ID1 were enriched in the transforming growth factor (TGF)-β and Hippo signaling pathway. Conclusion We identified several pivotal genes and pathways involved in AF pathogenesis. MIF, MYC, and ID1 might participate in AF progression through the TGF-β and Hippo signaling pathways. Our study provided new insights into the mechanisms of action of AF.
Collapse
Affiliation(s)
- Defeng Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yufei Zhou
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Shengjue Xiao
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Yue Hu
- Department of General Practice, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Chunyan Huan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Qi Wu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Xiaotong Wang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Qinyuan Pan
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Jie Liu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Hong Zhu
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| |
Collapse
|
4
|
Abstract
Objective: We aimed to find crucial microRNAs (miRNAs) associated with the development of atrial fibrillation (AF), and then try to elucidate the possible molecular mechanisms of miRNAs in AF. Methods: The miRNA microarray, GSE68475, which included 10 right atrial appendage samples from patients with persistent AF and 11 samples from patients with normal sinus rhythm, was used for the analysis. After data preprocessing, differentially expressed miRNAs were screened using limma. Target genes of miRNAs were predicted using miRWalk2.0. We then conducted functional enrichment analyses for miRNA and target genes. Protein-protein interaction (PPI) network and module analyses for target genes were performed. Finally, transcription factors (TFs)-target genes regulatory network was predicted and constructed. Results: Seven genes, including CAMK2D, IGF2R, PPP2R2A, PAX6, POU3F2, YWHAE, and AP2A2, were targeted by TFs. Among these seven genes, CAMK2D (targeted by miR-31-5p), IGF2R (targeted by miR-204-5p), PAX6 (targeted by miR-223-3p), POU3F2 (targeted by miR-204-5p), YWHAE (targeted by miR-31-5p), and AP2A2 (targeted by miR-204-5p) belonged to the top 10 degree genes in the PPI network. Notably, MiR-204-5p, miR-31-5p, and miR-223-3p had more target genes. Besides, CAMK2D was enriched in some pathways, such as adrenergic signaling in cardiomyocytes pathway and cAMP signaling pathway. YWHAE was enriched in the Hippo signaling pathway. Conclusion: miR-31-5p played a crucial role in cardiomyocytes by targeting CAMK2D and YWHAE via cAMP and Hippo signaling pathways. miR-204 was involved in the progression of AF by regulating its target genes IGF2R, POU3F2, and AP2A2. On the other hand, miR-223-3p functioned in AF by targeting PAX6, which was associated with the regulation of apoptosis in AF. This study would provide a theoretical basis and potential therapeutic targets for the treatment of AF.
Collapse
|
5
|
Oh Y, Yang S, Liu X, Jana S, Izaddoustdar F, Gao X, Debi R, Kim DK, Kim KH, Yang P, Kassiri Z, Lakin R, Backx PH. Transcriptomic Bioinformatic Analyses of Atria Uncover Involvement of Pathways Related to Strain and Post-translational Modification of Collagen in Increased Atrial Fibrillation Vulnerability in Intensely Exercised Mice. Front Physiol 2020; 11:605671. [PMID: 33424629 PMCID: PMC7793719 DOI: 10.3389/fphys.2020.605671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023] Open
Abstract
Atrial Fibrillation (AF) is the most common supraventricular tachyarrhythmia that is typically associated with cardiovascular disease (CVD) and poor cardiovascular health. Paradoxically, endurance athletes are also at risk for AF. While it is well-established that persistent AF is associated with atrial fibrosis, hypertrophy and inflammation, intensely exercised mice showed similar adverse atrial changes and increased AF vulnerability, which required tumor necrosis factor (TNF) signaling, even though ventricular structure and function improved. To identify some of the molecular factors underlying the chamber-specific and TNF-dependent atrial changes induced by exercise, we performed transcriptome analyses of hearts from wild-type and TNF-knockout mice following exercise for 2 days, 2 or 6 weeks of exercise. Consistent with the central role of atrial stretch arising from elevated venous pressure in AF promotion, all 3 time points were associated with differential regulation of genes in atria linked to mechanosensing (focal adhesion kinase, integrins and cell-cell communications), extracellular matrix (ECM) and TNF pathways, with TNF appearing to play a permissive, rather than causal, role in gene changes. Importantly, mechanosensing/ECM genes were only enriched, along with tubulin- and hypertrophy-related genes after 2 days of exercise while being downregulated at 2 and 6 weeks, suggesting that early reactive strain-dependent remodeling with exercise yields to compensatory adjustments. Moreover, at the later time points, there was also downregulation of both collagen genes and genes involved in collagen turnover, a pattern mirroring aging-related fibrosis. By comparison, twofold fewer genes were differentially regulated in ventricles vs. atria, independently of TNF. Our findings reveal that exercise promotes TNF-dependent atrial transcriptome remodeling of ECM/mechanosensing pathways, consistent with increased preload and atrial stretch seen with exercise. We propose that similar preload-dependent mechanisms are responsible for atrial changes and AF in both CVD patients and athletes.
Collapse
Affiliation(s)
- Yena Oh
- Department of Biology, York University, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Sibao Yang
- Department of Biology, York University, Toronto, ON, Canada.,Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xueyan Liu
- Department of Biology, York University, Toronto, ON, Canada.,Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Sayantan Jana
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada
| | | | - Xiaodong Gao
- Department of Biology, York University, Toronto, ON, Canada
| | - Ryan Debi
- Department of Biology, York University, Toronto, ON, Canada
| | - Dae-Kyum Kim
- Donnelly Centre, University of Toronto, Toronto, ON, Canada.,Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Kyoung-Han Kim
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ping Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zamaneh Kassiri
- Department of Physiology, Cardiovascular Research Center, University of Alberta, Edmonton, AB, Canada
| | - Robert Lakin
- Department of Biology, York University, Toronto, ON, Canada
| | - Peter H Backx
- Department of Biology, York University, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Zhelankin AV, Vasiliev SV, Stonogina DA, Babalyan KA, Sharova EI, Doludin YV, Shchekochikhin DY, Generozov EV, Akselrod AS. Elevated Plasma Levels of Circulating Extracellular miR-320a-3p in Patients with Paroxysmal Atrial Fibrillation. Int J Mol Sci 2020; 21:ijms21103485. [PMID: 32429037 PMCID: PMC7279020 DOI: 10.3390/ijms21103485] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/06/2020] [Accepted: 05/13/2020] [Indexed: 02/07/2023] Open
Abstract
The potential of extracellular circulating microRNAs (miRNAs) as non-invasive biomarkers of atrial fibrillation (AF) has been confirmed by a number of recent studies. However, the current data for some miRNAs are controversial and inconsistent, probably due to pre-analytical and methodological differences. In this work, we attempted to fulfill the basic pre-analytical requirements provided for circulating miRNA studies for application to paroxysmal atrial fibrillation (PAF) research. We used quantitative PCR (qPCR) to determine the relative plasma levels of circulating miRNAs expressed in the heart or associated with atrial remodeling or fibrillation with reported altered plasma/serum levels in AF: miR-146a-5p, miR-150-5p, miR-19a-3p, miR-21-5p, miR-29b-3p, miR-320a-3p, miR-328-3p, miR-375-3p, and miR-409-3p. First, in a cohort of 90 adult outpatient clinic patients, we found that the plasma level of miR-320a-3p was elevated in PAF patients compared to healthy controls and hypertensive patients without AF. We further analyzed the impact of medication therapies on miRNA relative levels and found elevated miR-320a-3p levels in patients receiving angiotensin-converting-enzyme inhibitors (ACEI) therapy. Additionally, we found that miR-320a-3p, miR-21-5p, and miR-146a-5p plasma levels positively correlated with the CHA2DS2-Vasc score and were elevated in subjects with CHA2DS2-Vasc ≥ 2. Our results indicate that, amongst the analyzed miRNAs, miR-320a-3p may be considered as a potential PAF circulating plasma biomarker, leading to speculation as to whether this miRNA is a marker of platelet state change due to ACEI therapy.
Collapse
Affiliation(s)
- Andrey V. Zhelankin
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (K.A.B.); (E.I.S.); (E.V.G.)
- Correspondence: or ; Tel.: +7-910-410-7765
| | - Sergey V. Vasiliev
- Department of Cardiology, Functional and Ultrasound Diagnostics, Faculty of Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119146 Moscow, Russia; (S.V.V.); (D.A.S.); (D.Y.S.); (A.S.A.)
| | - Daria A. Stonogina
- Department of Cardiology, Functional and Ultrasound Diagnostics, Faculty of Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119146 Moscow, Russia; (S.V.V.); (D.A.S.); (D.Y.S.); (A.S.A.)
| | - Konstantin A. Babalyan
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (K.A.B.); (E.I.S.); (E.V.G.)
| | - Elena I. Sharova
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (K.A.B.); (E.I.S.); (E.V.G.)
| | - Yurii V. Doludin
- FSI National Research Center for Preventive Medicine of the Ministry of Health of the Russian Federation, 101990 Moscow, Russia;
| | - Dmitry Y. Shchekochikhin
- Department of Cardiology, Functional and Ultrasound Diagnostics, Faculty of Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119146 Moscow, Russia; (S.V.V.); (D.A.S.); (D.Y.S.); (A.S.A.)
| | - Eduard V. Generozov
- Department of Molecular Biology and Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, 119435 Moscow, Russia; (K.A.B.); (E.I.S.); (E.V.G.)
| | - Anna S. Akselrod
- Department of Cardiology, Functional and Ultrasound Diagnostics, Faculty of Medicine N.V. Sklifosovsky, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119146 Moscow, Russia; (S.V.V.); (D.A.S.); (D.Y.S.); (A.S.A.)
| |
Collapse
|