1
|
Hassan AF, Hussein O, Al-Barazenji T, Allouch A, Kamareddine L, Malki A, Moustafa AA, Khalil A. The effect of novel nitrogen-based chalcone analogs on colorectal cancer cells: Insight into the molecular pathways. Heliyon 2024; 10:e27002. [PMID: 38463818 PMCID: PMC10923686 DOI: 10.1016/j.heliyon.2024.e27002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
In colorectal cancer (CRC), aberrations in KRAS are associated with aggressive tumorigenesis and an overall low survival rate because of chemoresistance and adverse effects. Ergo, complementary, and integrative medicines are being considered for CRC treatment. Among which is the use of natural chalcones that are known to exhibit anti-tumor activities in KRAS mutant CRC subtypes treatment regimens. Consequently, we examine the effect of two novel compounds (DK13 and DK14) having chalcones with nitrogen mustard moiety on CRC cell lines (HCT-116 and LoVo) with KRAS mutation. These compounds were synthesized in our lab and previously reported to exhibit potent activity against breast cancer cells. Our data revealed that DK13 and DK14 treatment suppress cell growth, disturb the progression of cell cycle, and trigger apoptosis in CRC cell lines. Besides, treatment with both compounds impedes cell invasion and colony formation in both cell lines as compared to 5-FU; this is accompanied by up and down regulations of E-cadherin and Vimentin, respectively. At the molecular level, both compounds deregulate the expression and phosphorylation of β-catenin, Akt and mTOR, which are the main likely molecular mechanisms underlying these biological occurrences. Our findings present DK13 and DK14 as novel chemotherapies against CRC, through β-catenin/Akt/mTOR signaling pathways.
Collapse
Affiliation(s)
- Arij Fouzat Hassan
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Ola Hussein
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| | - Tara Al-Barazenji
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Asma Allouch
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Layla Kamareddine
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Ahmed Malki
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Ala‐Eddin Al Moustafa
- Biomedical Research Centre, Qatar University, Doha, Qatar
- College of Medicine, QU Health, Qatar University, Doha, Qatar
- Oncology Department, McGill University, Montreal, QC, Canada
| | - Ashraf Khalil
- Department of Pharmaceutical Sciences, College of Pharmacy, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Tayeb BA, Mohamed-Sharif YH, Choli FR, Haji SS, Ibrahim MM, Haji SK, Rasheed MJ, Mustafa NA. Antimicrobial Susceptibility Profile of Listeria monocytogenes Isolated from Meat Products: A Systematic Review and Meta-Analysis. Foodborne Pathog Dis 2023; 20:315-333. [PMID: 37389828 DOI: 10.1089/fpd.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023] Open
Abstract
The objective of this study was to conduct a systematic review to comprehensively understand antimicrobial resistance (AMR) in Listeria monocytogenes (LM) isolated from meat and meat products. The study was performed following the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Published articles from 2000 to 2022 were collected from six widely used online databases, including AGRICOLA, PubMed, Web of Science (WoS), Scopus, Cochrane Library, and CINAHL-EBSCO. Prevalence rates and AMR of pathogen isolates were analyzed using MedCalc software, including the I2 statistic and Cochrane Q test for heterogeneity. Sensitivity analysis, subgroup analysis, and meta-regression were conducted to analyze potential sources of heterogeneity at a 95% significance level. The distribution and prevalence of multidrug resistance (MDR) were examined using a random-effect model. The pooled frequency of bacterial MDR was 22.97% (95% confidence interval [CI] = 14.95-32.13). The studies exhibited high heterogeneity (I2 = 94.82%, 95% CI = 93.74-95.71, p < 0.0001). Furthermore, the most prevalent antibiotics resistance found in the majority of included studies were tetracycline, clindamycin, penicillin, ampicillin, and oxacillin (I2 = 86.66%, 95% CI = 73.20-93.36, p < 0.0001). This meta-analysis provides a comprehensive understanding of AMR in LM isolates, and the results indicate that none of the variable factors, including sampling location, sampling size, or methodology, significantly influenced the outcome of LM isolates resistant to multidrug.
Collapse
Affiliation(s)
- Bizhar Ahmed Tayeb
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Department of Laboratory, Directorate of Veterinary in Duhok, Duhok, Iraq
| | - Yousif Hamed Mohamed-Sharif
- Department of Food Microbiology, Ibrahim Khlail-Habur International Border, New-Standard Company, Zakho, Iraq
| | - Farhad Ramadhan Choli
- Food Safety and Animal Health Department, Veterinary Directorate in Duhok, Duhok, Iraq
| | - Shamal Subhi Haji
- Department of Food Microbiology, Ibrahim Khlail-Habur International Border, New-Standard Company, Zakho, Iraq
| | - Mohammed Mahmood Ibrahim
- Food Industry Department, Standardization and Quality Control Authority, Directorate of Quality Control, Zakho, Iraq
| | - Shana Khalid Haji
- Department of Food Microbiology, Ibrahim Khlail-Habur International Border, New-Standard Company, Zakho, Iraq
| | - Mohammed Jomaa Rasheed
- Food Industry Department, Standardization and Quality Control Authority, Directorate of Quality Control, Zakho, Iraq
| | | |
Collapse
|
3
|
Wang S, Zhang X, Lei H, Song L, Huang Y, Kang T, Zhang M, Wang N, Yang P, Feng S, Wang J, Bai R, Wang N, Wang W, Zheng Y. Proline-rich 11 (PRR11) promotes the progression of cutaneous squamous cell carcinoma by activating the EGFR signaling pathway. Mol Carcinog 2023; 62:613-627. [PMID: 36727626 DOI: 10.1002/mc.23510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/31/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin malignancies, and its incidence rate is increasing worldwide. Proline-rich 11 (PRR11) has been reported to be involved in the occurrence and development of various tumors. However, the role of PRR11 in cSCC remains unknown. In the present study, we observed upregulated expression of PRR11 in cSCC tissues and cell lines. Knockdown of PRR11 in the cSCC cell lines A431 and SCL-1 inhibited cell proliferation by inducing cell cycle arrest during the G1/S phase transition, promoted cell apoptosis, and reduced cell migration and invasion in vitro. Conversely, overexpression of PRR11 promoted cell proliferation, decreased cell apoptosis, and enhanced cell migration and invasion. PRR11 knockdown also inhibited cSCC tumor growth in a mouse xenograft model. Mechanistic investigations by RNA sequencing revealed that 891 genes were differentially expressed genes between cells with PRR11 knockdown and control cells. Enrichment analysis of different genes showed that the epidermal growth factor receptor (EGFR) signaling pathway was the top enriched pathway. We further validated that PRR11 induced EGFR pathway activity, which contributed to cSCC progression. These data suggest that PRR11 may serve as a novel therapeutic target in cSCC.
Collapse
Affiliation(s)
- Shengbang Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiu Zhang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Lei
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Liumei Song
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yingjian Huang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Tong Kang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengdi Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ning Wang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Pengju Yang
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shuo Feng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jingping Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruimin Bai
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Nan Wang
- Department of Emergency, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yan Zheng
- Department of Dermatology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
4
|
Chalcones: Promising therapeutic agents targeting key players and signaling pathways regulating the hallmarks of cancer. Chem Biol Interact 2023; 369:110297. [PMID: 36496109 DOI: 10.1016/j.cbi.2022.110297] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022]
Abstract
The need for innovative anticancer treatments with high effectiveness and low toxicity is urgent due to the development of malignancies that are resistant to chemotherapeutic agents and the poor specificity of existing anticancer treatments. Chalcones are 1,3-diaryl-2-propen-1-ones, which are the precursors for flavonoids and isoflavonoids. Chalcones are readily available from a wide range of natural resources and consist of very basic chemical scaffolds. Because the ease with which the synthesis it allows for the production of several chalcone derivatives. Various in-vitro and in-vivo studies indicate that naturally occurring and synthetic chalcone derivatives exhibit promising biological activities against cancer hallmarks such as proliferation, angiogenesis, invasion, metastasis, inflammation, stemness, and regulation of cancer epigenetics. According to their structure and functional groups, chalcones derivatives and their hybrid compounds exert a broad range of biological activities through targeting key elements and signaling molecules relevant to cancer progression. This review will provide valuable insights into the latest updates of chalcone groups as anticancer agents and extensively discuss their underlying molecular mechanisms of action.
Collapse
|
5
|
Chalcone 9X Contributed to Repressing Glioma Cell Growth and Migration and Inducing Cell Apoptosis by Reducing FOXM1 Expression In Vitro and Repressing Tumor Growth In Vivo. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8638085. [PMID: 35978634 PMCID: PMC9377910 DOI: 10.1155/2022/8638085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/30/2022] [Accepted: 07/15/2022] [Indexed: 11/17/2022]
Abstract
Objective. Natural and synthetic chalcones played roles in inflammation and cancers. Chalcone 9X was an aromatic ketone that was found to inhibit cell growth of hepatic cancer and lung cancer cells. In this study, we wanted to investigate the functions of Chalcone 9X in glioma. Materials and Methods. Chemical Chalcone 9X was added in human glioma cell lines (U87 and T98G cells) and normal astrocyte cell lines (HA1800) with various concentrations (0 μmol/L, 20 μmol/L, 50 μmol/L, and 100 μmol/L). CCK-8 assay was used to measure cell viability. Flow cytometric assay was used to measure cell apoptotic rates. Wound healing assay and transwell assay were used to measure cell invasion. RT-PCR was used to detect relative mRNA expressions, and the protein expressions were detected by western blot (WB) and immunohistochemical staining (IHC). Finally, nude mouse xenograft assay was performed to prove the effects of Chalcone 9X in vivo. Results. Results revealed that Chalcone 9X treatment suppressed cell viability and cell migration capacity; it could also induce cell apoptosis in U87 and T98G cells with dose dependence. However, it had little cytotoxicity to normal astrocyte HA1800 cells. Moreover, Chalcone 9X treatment could repress the mRNA and protein expressions of FOXM1 in human glioma cell lines, which was an oncogene that could promote the progression and malignancy of glioma. In addition, FOXM1 overexpression dismissed the Chalcone 9X effects on cell proliferation, apoptosis, and migration in human glioma cell lines. Finally, in vivo assay showed that Chalcone 9X treatment repressed the expression of FOXM1, which inhibited the tumor growth of a xenograft model injected with U87 in nude mice. Conclusions. In all, we found that Chalcone 9X could suppress cell proliferation and migration and induce cell apoptosis in human glioma cells, while it has little cytotoxicity to normal astrocyte cells. Therefore, we uncovered a novel way that Chalcone 9X could inhibit FOXM1 expression and repress the progression and biofunctions of glioma cells, which might be a potential therapeutic drug for treating human glioma.
Collapse
|
6
|
Novel Nitrogen-Based Chalcone Analogs Provoke Substantial Apoptosis in HER2-Positive Human Breast Cancer Cells via JNK and ERK1/ERK2 Signaling Pathways. Int J Mol Sci 2021; 22:ijms22179621. [PMID: 34502529 PMCID: PMC8431802 DOI: 10.3390/ijms22179621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022] Open
Abstract
Natural chalcones possess antitumor properties and play a role as inducers of apoptosis, antioxidants and cytotoxic compounds. We recently reported that novel nitrogen chalcone-based compounds, which were generated in our lab, have specific effects on triple-negative breast cancer cells. However, the outcome of these two new compounds on human epidermal growth factor receptor 2 (HER2)-positive breast cancer remains nascent. Thus, we herein investigated the effects of these compounds (DK-13 and DK-14) on two HER2-positive breast cancer cell lines, SKBR3 and ZR75. Our data revealed that these compounds inhibit cell proliferation, deregulate cell-cycle progression and significantly induce cell apoptosis in both cell lines. Furthermore, the two chalcone compounds cause a significant reduction in the cell invasion ability of SKBR3 and ZR75 cancer cells. In parallel, we found that DK-13 and DK-14 inhibit colony formation of both cell lines in comparison to their matched controls. On the other hand, we noticed that these two compounds can inhibit angiogenesis in the chorioallantoic membrane model. The molecular pathway analysis of chalcone compounds exposed cells revealed that these compounds inhibit the expression of both JNK1/2/3 and ERK1/2, the major plausible molecular pathways behind these events. Our findings implicate that DK-13 and DK-14 possess effective chemotherapeutic outcomes against HER2-positive breast cancer via the ERK1/2 and JNK1/2/3 signaling pathways.
Collapse
|
7
|
The Newly Synthetized Chalcone L1 Is Involved in the Cell Growth Inhibition, Induction of Apoptosis and Suppression of Epithelial-to-Mesenchymal Transition of HeLa Cells. Molecules 2021; 26:molecules26051356. [PMID: 33802621 PMCID: PMC7961543 DOI: 10.3390/molecules26051356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/24/2022] Open
Abstract
Over the past decades, natural products have emerged as promising agents with multiple biological activities. Many studies suggest the antioxidant, antiangiogenic, antiproliferative and anticancer effects of chalcones and their derivatives. Based on these findings, we decided to evaluate the effects of the newly synthetized chalcone L1 in a human cervical carcinoma cell (HeLa) model. Presented results were obtained by western blot and flow cytometric analyses, live cell imaging and antimigratory potential of L1 in HeLa cells was demonstrated by scratch assay. In the present study, we proved the role of L1 as an effective agent with antiproliferative activity supported by G2/M cell cycle arrest and apoptosis. Moreover, we proved that L1 is involved in modulating Transforming Growth Factor-β1 (TGF-β) signal transduction through Smad proteins and it also modulates other signalling pathways including Akt, JNK, p38 MAPK, and Erk1/2. The involvement of L1 in epithelial-to-mesenchymal transition was demonstrated by the regulation of N-cadherin, E-cadherin, and MMP-9 levels. Here, we also evaluated the effect of conditioned medium from BJ-5ta human foreskin fibroblasts in HeLa cell cultures with subsequent L1 treatment. Taken together, these data suggest the potential role of newly synthesized chalcone L1 as an anticancer-tumour microenvironment modulating agent.
Collapse
|