1
|
Karatopuk DU, Özkula S, Aydoğdu E, Büyükbayram Hİ, Milletsever A, Aksoy F. Irbesartan ameliorates inflammation via transendothelial leukocyte migration due to VCAM-1/NOX-1 signaling in cisplatin-induced cardiotoxicity. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2023; 26:1298-1304. [PMID: 37885998 PMCID: PMC10598814 DOI: 10.22038/ijbms.2023.70997.15422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/20/2023] [Indexed: 10/28/2023]
Abstract
Objectives Cisplatin (CP) is frequently used in various types of cancers. The cardiotoxic effects of this agent limit its usage. Our study seeks to investigate the protective effects of Irbesartan (IRB) on CP-induced cardiotoxicity. Materials and Methods The following four groups comprised thirty-two rats: control, CP, CP+IRB, and IRB. On the fourth day of the experiment, 5 mg/kg of CP was given to CP and CP+IRB groups intraperitoneally, and for seven days, water or IRB 50 mg/kg (orally) was administered. Vascular endothelial growth factor (VEGF), caspase-3 (Cas-3), vascular cell adhesion molecule-1 (VCAM-1), NADPH oxidase-1 (NOX-1), creatine kinase MB (CK-MB), and lactate dehydrogenase (LDH) were measured. Results The levels of VCAM-1, NOX-1, VEGF, Cas-3, and LDH were increased in the CP group. The treatment with IRB decreased VCAM-1, NOX-1, VEGF, Cas-3, and LDH levels significantly (P<0.05). Histopathological examination revealed normal heart architecture in Control and IRB groups. While marked hyperemia and myocardial cell degeneration were noticed in the CP group, significant amelioration was observed in the CP+IRB group. Aortas in the CP group showed endothelial damage and desquamation. IRB treatment markedly ameliorated histopathological findings in the CP+IRB group. Cardiac and aortic damage caused by CP was attenuated by IRB treatment owing to the anti-inflammatory and antiapoptotic effects of IRB. Conclusion IRB may help reduce the severity of CP-induced cardiac injury by limiting leukocyte migration and reducing inflammation and apoptosis.
Collapse
Affiliation(s)
- Dilek Ulusoy Karatopuk
- Department of Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Songül Özkula
- Department of Pharmacology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Esra Aydoğdu
- Department of Pharmaceutical Research and Development, Health Science Institute, Süleyman Demirel University, Isparta, Turkey
| | | | - Adem Milletsever
- Department of Pathology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Fatih Aksoy
- Department of Cardiology and Department of Pharmacology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| |
Collapse
|
2
|
Zhuang C, Yi G, Wang W, Sun R, Qi M, Yu J. Sacubitril/Valsartan Improves Sexual Function and Fibrosis of the Clitoral and Vaginal Tissues in Female Spontaneously Hypertensive Rats. J Cardiovasc Pharmacol 2022; 79:858-872. [PMID: 35266909 PMCID: PMC9162275 DOI: 10.1097/fjc.0000000000001251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/22/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT Female sexual dysfunction is common in hypertension. The effects of sacubitril/valsartan (SAC/VAL) as a potential therapy for hypertension and heart failure have not been studied in relation to sexual function and genital fibrosis in female spontaneously hypertensive rats (SHRs). Thirty female SHRs were administered VAL, SAC/VAL, or saline. Ten normotensive female Wistar-Kyoto (WKY) rats were included in the control group. We assessed estrous cyclicity and sexual behavior in the female rats. In addition, the morphology of clitoral and vaginal tissues was evaluated by histological analyses. Western blotting and enzyme-linked immunosorbent assays were used to assess the levels of fibrotic markers in vaginal and clitoral tissues. Furthermore, the protein levels of phosphatase and tensin homolog deleted from chromosome 10 (PTEN), phosphoinositide-3-kinase (PI3K), and AKT expression were measured by Western blotting. SAC/VAL treatment improved hypertension-induced sexual dysfunction, exhibited as a prolonged estrus phase, increased receptivity and proceptive events, and decreased aggressive events, compared with those of VAL treatment and control SHRs without treatments. In addition, SAC/VAL-treated SHRs had lower levels of fibrotic markers, estradiol, and estrogen receptor α/β than the levels of VAL-treated SHRs or SHRs without treatment. Moreover, SAC/VAL decreased p-PTEN expression and increased p-PI3K and p-AKT expression at the protein level compared with those in VAL treatment alone. VAL and SAC/VAL treatments have significantly increased sexual receptivity and proceptivity, decreased aggressiveness, and improved the fibrosis of vaginal and clitoral tissues in female SHRs. However, SAC/VAL treatment shows more effective results compared with VAL treatment, which may be related to the PTEN/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Chenchen Zhuang
- Hypertension Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China; and
| | - Guozi Yi
- School of Chemical Engineering, the University of New South Wales, Sydney, Australia.
| | - Wenjuan Wang
- Hypertension Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China; and
| | - Runmin Sun
- Hypertension Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China; and
| | - Miaomiao Qi
- Hypertension Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China; and
| | - Jing Yu
- Hypertension Center, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China; and
| |
Collapse
|
4
|
Yang N, Ma W, Ke Y, Liu H, Chu J, Sun L, Lü G, Bi X, Lin R. Transplantation of adipose-derived stem cells ameliorates Echinococcus multilocularis-induced liver fibrosis in mice. PLoS Negl Trop Dis 2022; 16:e0010175. [PMID: 35100287 PMCID: PMC8830670 DOI: 10.1371/journal.pntd.0010175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 02/10/2022] [Accepted: 01/17/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Alveolar echinococcosis (AE) can cause severe liver fibrosis and could be fatal if left untreated. Currently, there are no effective therapeutic options for AE-induced liver fibrosis. In view of the therapeutic potential of adipose-derived stem cells (ADSCs), we investigated whether ADSCs transplantation has the ability to control or reverse fibrosis progression in the liver of Echinococcus multilocularis (E. multilocularis) infected mice. METHODOLOGY/PRINCIPAL FINDINGS C57BL/6 mice infected with E. multilocularis through portal vein inoculation were intravenously injected with ADSCs isolated from inguinal adipose tissues of 6-8 weeks old mice. Histopathological analysis including heamatoxylin & eosin staining as well as Masson's trichrome staining, and Sirius red staining were performed to access the degree of liver fibrosis. Histopathological examination 30 days after ADSCs transplantation revealed that ADSCs significantly decreased the degree of liver fibrosis in E. multilocularis infected mice by inhibiting the expressions of α-SMA and type 1 collagen deposition. In addition, compared to the non-transplanted group, ADSCs transplantation reduced fibrotic areas in E. multilocularis infected mice. We also found that ADSCs transplantation significantly down-regulated TGF-β1 and TGF-βR expressions, while up-regulating Smad7 expression in the TGF-β/Smad signaling pathway. CONCLUSIONS ADSCs can alleviate Echinococcus multilocularis infection-induced liver fibrosis by modulating the activity level of the TGF-β/Smad7 signaling pathway and provide a potential therapeutic approach for E. multilocularis-induced fibrosis.
Collapse
Affiliation(s)
- Ning Yang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Wenmei Ma
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Pathology department, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ying Ke
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Graduate School, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hui Liu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Jin Chu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Li Sun
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Guodong Lü
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Xiaojuan Bi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Renyong Lin
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Xinjiang Key Laboratory of Echinococcosis, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
- Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|