1
|
Zhu S, Hu J, Chen G, Fu W, Zhang J, Jia W. Urine-derived exosomes and their role in modulating uroepithelial cells to prevent hypospadias. Int Immunopharmacol 2024; 132:111828. [PMID: 38552294 DOI: 10.1016/j.intimp.2024.111828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE Urethral hypospadias, a common congenital malformation in males, is closely linked with disruptions in uroepithelial cell (UEC) processes. Evidence exists reporting that urine-derived exosomes (Urine-Exos) enhance UEC proliferation and regeneration, suggesting a potential role in preventing hypospadias. However, the specific influence of Urine-Exos on urethral hypospadias and the molecular mechanisms involved are not fully understood. This study focuses on investigating the capability of Urine-Exos to mitigate urethral hypospadias and aims to uncover the underlying molecular mechanisms. METHODS Bioinformatics analysis was performed to identify key gene targets in Urine-Exos potentially involved in hypospadias. Subsequent in vitro and in vivo experiments were conducted to validate the regulatory effects of Urine-Exos on hypospadias. RESULTS Bioinformatics screening revealed syndecan-1 (SDC1) as a potential pivotal gene for the prevention of hypospadias. In vitro experiments demonstrated that Urine-Exos enhanced the proliferation and migration of UECs by transferring SDC1 and inhibiting cell apoptosis. Notably, Urine-Exos upregulated β-catenin expression through SDC1 transfer, further promoting UEC proliferation and migration. These findings were confirmed in a congenital hypospadias rat model induced by di(2-ethylhexyl) phthalate (DEHP). CONCLUSION This study reveals the therapeutic potential of Urine-Exos in hypospadias, mediated by the SDC1/β-catenin axis. Urine-Exos promote UEC proliferation and migration, thereby inhibiting the progression of hypospadias. These findings offer new insights and potential therapeutic targets for the management of congenital malformations.
Collapse
Affiliation(s)
- Shibo Zhu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, PR China
| | - Jinhua Hu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, PR China
| | - Guifang Chen
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, PR China
| | - Wen Fu
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, PR China
| | - Jin Zhang
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, PR China
| | - Wei Jia
- Department of Pediatric Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, PR China.
| |
Collapse
|
2
|
Zhang S, Zhang L, Wang L, Wang H, Wu J, Cai H, Mo C, Yang J. Machine learning identified MDK score has prognostic value for idiopathic pulmonary fibrosis based on integrated bulk and single cell expression data. Front Genet 2023; 14:1246983. [PMID: 38075691 PMCID: PMC10704369 DOI: 10.3389/fgene.2023.1246983] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/10/2023] [Indexed: 03/09/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease that poses a significant challenge to medical professionals due to its increasing incidence and prevalence coupled with the limited understanding of its underlying molecular mechanisms. In this study, we employed a novel approach by integrating five expression datasets from bulk tissue with single-cell datasets; they underwent pseudotime trajectory analysis, switch gene selection, and cell communication analysis. Utilizing the prognostic information derived from the GSE47460 dataset, we identified 22 differentially expressed switch genes that were correlated with clinical indicators as important genes. Among these genes, we found that the midkine (MDK) gene has the potential to serve as a marker of Idiopathic pulmonary fibrosis because its cellular communicating genes are differentially expressed in the epithelial cells. We then utilized midkine and its cellular communication-related genes to calculate the midkine score. Machine learning models were further constructed through midkine and related genes to predict Idiopathic pulmonary fibrosis disease through the bulk gene expression datasets. The midkine score demonstrated a correlation with clinical indexes, and the machine learning model achieved an AUC of 0.94 and 0.86 in the Idiopathic pulmonary fibrosis classification task based on lung tissue samples and peripheral blood mononuclear cell samples, respectively. Our findings offer valuable insights into the pathogenesis of Idiopathic pulmonary fibrosis, providing new therapeutic directions and target genes for further investigation.
Collapse
Affiliation(s)
- Shichen Zhang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Lanlan Zhang
- State Key Laboratory of Respiratory Health and Multimorbidity, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Wang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Hongqiu Wang
- Systems Hub, The Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Jiaxin Wu
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Haoyang Cai
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chunheng Mo
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Jian Yang
- Center of Growth, Metabolism, and Aging, Key Laboratory of Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Zhong Y, Li F, Zhang S, Yang Z, Ren X, Cao X, Xu Y, Guo D, Zhou Y, Mao F, Shen S, Sun Q. Syndecan-1 as an immunogene in Triple-negative breast cancer: regulation tumor-infiltrating lymphocyte in the tumor microenviroment and EMT by TGFb1/Smad pathway. Cancer Cell Int 2023; 23:76. [PMID: 37069585 PMCID: PMC10111802 DOI: 10.1186/s12935-023-02917-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitors are the most studied forms of immunotherapy for triple-negative breast cancer (TNBC). The Cancer Genome Map (TCGA) and METABRIC project provide large-scale cancer samples that can be used for comprehensive and reliable immunity-related gene research. METHODS We analyzed data from TCGA and METABRIC and established an immunity-related gene prognosis model for breast cancer. The SDC1 expression in tumor and cancer associated fibroblasts (CAFs) was then observed in 282 TNBC patients by immunohistochemistry. The effects of SDC1 on MDA-MB-231 proliferation, migration and invasion were evaluated. Qualitative real-time PCR and western blotting were performed to identify mRNA and protein expression, respectively. RESULTS SDC1, as a key immunity-related gene, was significantly correlated with survival in the TCGA and METABRIC databases, while SDC1 was found to be highly expressed in TNBC in the METABRIC database. In the TNBC cohort, patients with high SDC1 expression in tumor cells and low expression in CAFs had significantly lower disease-free survival (DFS) and fewer tumor-infiltrating lymphocytes (TILs). The downregulation of SDC1 decreased the proliferation of MDA-MB-231, while promoting the migration of MDA-MB-231 cells by reducing the gene expression of E-cadherin and TGFb1 and activating p-Smad2 and p-Smad3 expression. CONCLUSION SDC1 is a key immunity-related gene that is highly expressed TNBC patients. Patients with high SDC1 expression in tumors and low expression in CAFs had poor prognoses and low TILs. Our findings also suggest that SDC1 regulates the migration of MDA-MB-231 breast cancer cells through a TGFb1-Smad and E-cadherin-dependent mechanism.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Breast Disease, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Fangyuan Li
- Medical Research Central, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Sumei Zhang
- Medical Research Central, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Zhenli Yang
- Cell Resource Center, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & School of Basic Medicine, Peking Union Medical College, No. 5 Dongdansantiao, Dongcheng, Beijing, 100730, China
| | - Xinyu Ren
- Department of Pathology, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Xi Cao
- Department of Breast Disease, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Yali Xu
- Department of Breast Disease, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Dan Guo
- Medical Research Central, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
- Clinical Biobank, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Yidong Zhou
- Department of Breast Disease, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Feng Mao
- Department of Breast Disease, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Songjie Shen
- Department of Breast Disease, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China
| | - Qiang Sun
- Department of Breast Disease, Peking Union Medical College Hospital, No. 1 Shuaifuyuan, Wangfujing, Beijing, 100730, China.
| |
Collapse
|
4
|
Karagiorgou Z, Fountas PN, Manou D, Knutsen E, Theocharis AD. Proteoglycans Determine the Dynamic Landscape of EMT and Cancer Cell Stemness. Cancers (Basel) 2022; 14:5328. [PMID: 36358747 PMCID: PMC9653992 DOI: 10.3390/cancers14215328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 03/15/2024] Open
Abstract
Proteoglycans (PGs) are pivotal components of extracellular matrices, involved in a variety of processes such as migration, invasion, morphogenesis, differentiation, drug resistance, and epithelial-to-mesenchymal transition (EMT). Cellular plasticity is a crucial intermediate phenotypic state acquired by cancer cells, which can modulate EMT and the generation of cancer stem cells (CSCs). PGs affect cell plasticity, stemness, and EMT, altering the cellular shape and functions. PGs control these functions, either by direct activation of signaling cascades, acting as co-receptors, or through regulation of the availability of biological compounds such as growth factors and cytokines. Differential expression of microRNAs is also associated with the expression of PGs and their interplay is implicated in the fine tuning of cancer cell phenotype and potential. This review summarizes the involvement of PGs in the regulation of EMT and stemness of cancer cells and highlights the molecular mechanisms.
Collapse
Affiliation(s)
- Zoi Karagiorgou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Panagiotis N. Fountas
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - Erik Knutsen
- Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, 9010 Tromsø, Norway
- Centre for Clinical Research and Education, University Hospital of North Norway, 9038 Tromsø, Norway
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
5
|
Tang J, Chen J, Wang Y, Zhou S. The role of
MiRNA
‐433 in malignant tumors of digestive tract as tumor suppressor. Cancer Rep (Hoboken) 2022; 5:e1694. [PMID: 35976177 PMCID: PMC9458491 DOI: 10.1002/cnr2.1694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/18/2022] [Accepted: 07/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background MicroRNAs (miRNAs) are a class of short non‐coding RNAs with a length of approximate 22 nuclei acids that can be expressed both as an oncogene and tumor suppressor gene in human cancers. MiRNAs can participate in the post‐ transcriptional regulation of gene expression, and regulate the several cancer‐related processes, including proliferation, apoptosis, metastasis, etc. Recent findings Expression of miRNA‐433 has been reported to vary in different tumors and affected by various factors. We have summarized the different previous studies and found that miRNA‐433 can significantly inhibit the growth of the cancer cells not only in malignant tumors of the digestive tract, but also in lung cancer, breast cancer, cervical cancer, ovarian cancer, bladder cancer, renal carcinoma, glioma, retinoblastoma and osteosarcoma. Conclusion When the expression of miRNA‐433 was up‐regulated, the proliferation, metastasis and invasion abilities of the malignant tumor cells were significantly inhibited. At the same time, the potential mechanisms through which miRNA‐433 can suppress the growth and metastasis of the cancer cells were found to be basically the same, and involved modulation of the specific signaling pathways or target genes in the malignant tumors. Overall, it can be concluded that miRNA‐433 can serve as potential and valuable therapeutic target.
Collapse
Affiliation(s)
- Jie Tang
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| | - Jiawei Chen
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| | - Yongqiang Wang
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| | - Shaobo Zhou
- General Surgery The Second Affiliated Hospital of Bengbu Medical College Bengbu China
| |
Collapse
|
6
|
Bai Z, Xu Y, Gu M, Cai W, Zhang Y, Qin Y, Chen R, Sun Y, Wu Y, Wang Z. Proteomic analysis of coarse and fine skin tissues of Liaoning cashmere goat. Funct Integr Genomics 2022; 22:503-513. [PMID: 35366687 DOI: 10.1007/s10142-022-00856-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 03/08/2022] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
Proteomics is the study of all proteins expressed by a cell or even an organism. However, knowledge of proteins that regulate the fineness of cashmere is limited. Liaoning cashmere goat (LCG) is a valuable genetic resource of China. The skin samples of Liaoning cashmere goats during the growing period were collected, performed tandem mass tag (TMT) method, and identified 117 differentially expressed proteins in CT_LCG (course type) and FT_LCG (fine type). To verify proteins differentially expressed in LCG, we performed PRM validation on three candidate proteins (ALB, SDC1, and ITGB4) in CT-LCG and FT-LCG. Furthermore, primary metabolic process and lysosome are most enriched in the GO and KEGG pathways, respectively. In addition, we also derived a protein-protein interaction (PPI) regulatory network from the perspective of bioinformatics. This study sought to elucidate the molecular mechanism of differential proteins regulating cashmere fineness of Liaoning cashmere goats by using TMT quantitative proteomics analysis. Differentially expressed proteins ALB and SDC1 may regulate cashmere fineness; ITGB4 can become a promising protein for further study. They can be used as key proteins to lay a foundation for studying cashmere fineness of Liaoning cashmere goats.
Collapse
Affiliation(s)
- Zhixian Bai
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanan Xu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ming Gu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Weidong Cai
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yu Zhang
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuting Qin
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui Chen
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yinggang Sun
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanzhi Wu
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zeying Wang
- College of Animal Science &Veterinary Medicine, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
7
|
Chen W, Yu X, Wang N, Jing J, Li R, Lian M. Circ_RPPH1 regulates glioma cell malignancy by binding to miR-627-5p/miR-663a to induce SDC1 expression. Metab Brain Dis 2022; 37:1231-1245. [PMID: 35334040 DOI: 10.1007/s11011-022-00965-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Recent studies revealed the key role of circular RNA (circRNA) in glioma progression. However, the effect of circ_0000520, also named as circRNA ribonuclease P RNA component H1 (circ_RPPH1), in glioma development was unknown. The study aimed to reveal the role of circ_RPPH1 in glioma cell malignancy. METHODS Human astrocytes (NHA) and glioma cell lines (A172 and U251) were employed in this study. Quantitative real-time polymerase chain reaction and western blot were used to check the expression of circ_RPPH1, microRNA-627-5p (miR-627-5p), miR-663a and syndecan 1 (SDC1). Immunohistochemistry assay was conducted to assess the protein expression of nuclear proliferation marker ki67 and matrix metalloprotein 9 (MMP9). Cell viability was assessed by 3-(4,5-Dimethylthazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cell proliferation and apoptosis were investigated by flow cytometry analysis, 5-Ethynyl-29-deoxyuridine, or cell colony formation assay. Cell migration and invasion were evaluated by transwell assays. The interaction between miRNAs (miR-627-5p and miR-663a) and circ_RPPH1 or SDC1 was identified by a dual-luciferase reporter assay. A mouse model assay was performed to reveal the impact of circ_RPPH1 knockdown on glioma cell malignancy in vivo by analyzing neoplasm volume and weight. RESULTS Circ_RPPH1 and SDC1 expression were significantly increased, whereas miR-627-5p and miR-663a expression were decreased in glioma tissues and cells in comparison with healthy brain tissues or human astrocytes. Circ_RPPH1 depletion led to the decreased cell proliferation, migration and invasion, and the increased cell apoptosis. Additionally, circ_RPPH1 bound to miR-627-5p/miR-663a and mediated glioma cell processes by interacting with them. SDC1 overexpression attenuated miR-627-5p/miR-663a-mediated actions. Moreover, circ_RPPH1 regulated SDC1 expression through interaction with miR-627-5p and/or miR-663a. Furthermore, circ_RPPH1 knockdown inhibited glioma cell malignancy in vivo, accompanied by the decreases of ki67 and MMP9 expression. CONCLUSION Circ_RPPH1 knockdown inhibited glioma tumorigenesis by downregulating SDC1 by binding to miR-627-5p/miR-663a, showing that circ_RPPH1 might be an effective therapeutic target for glioma.
Collapse
Affiliation(s)
- Wei Chen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao-Tong University, No.227, Yanta west Road, Xi'an, 710061, Shaanxi province, China
| | - Xiao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao-Tong University, No.227, Yanta west Road, Xi'an, 710061, Shaanxi province, China
| | - Ning Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao-Tong University, No.227, Yanta west Road, Xi'an, 710061, Shaanxi province, China
| | - Jiangpeng Jing
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao-Tong University, No.227, Yanta west Road, Xi'an, 710061, Shaanxi province, China
| | - Ruichun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao-Tong University, No.227, Yanta west Road, Xi'an, 710061, Shaanxi province, China
| | - Minxue Lian
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiao-Tong University, No.227, Yanta west Road, Xi'an, 710061, Shaanxi province, China.
- , Xi'an, China.
| |
Collapse
|
8
|
Tan S, Chen J. Small interfering-high mobility group A2 attenuates epithelial-mesenchymal transition in thymic cancer cells via the Wnt/β-catenin pathway. Oncol Lett 2021; 22:586. [PMID: 34122637 PMCID: PMC8190778 DOI: 10.3892/ol.2021.12847] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 01/29/2021] [Indexed: 01/30/2023] Open
Abstract
Thymus carcinoma is one of the thymic epithelial neoplasms with high metastasis, which does not have any good treatment at present. High mobility group A2 (HMGA2) is highly expressed in a variety of malignant tumors, such as lung cancer, colon cancer and ovarian cancer and is closely related to tumor invasion and metastasis. The present study aimed to investigate the effect and mechanism of HMGA2 on epithelial-mesenchymal transition (EMT) in thymic cancer cells. IU-TAB-1, A549, HCT-116 and 293T cells were screened by testing the protein expression level of HMGA2 though western blotting and subjected to HMGA2 interference [small interfering (si)-HMGA2]. Cell proliferation was evaluated using the Cell Counting Kit-8 assay. Cell migration and invasion were detected using the Transwell assay. Cell apoptosis was examined using flow cytometry and β-catenin expression was observed by immunofluorescence. The levels of E-cadherin, vimentin, Wnt3a, Wnt5a and β-catenin proteins were determined by western blotting. Among the four cell lines tested, IU-TAB-1 cells demonstrated the highest expression of HMGA2 (P<0.05) and were hence selected for subsequent experiments. Compared with the control group (untransfected cells), si-HMGA2 resulted in significantly decreased proliferation, migration and invasion of IU-TAB-1 cells, whereas apoptosis was increased (P<0.05). The protein expression of vimentin, Wnt3a, Wnt5a and β-catenin was significantly decreased by si-HMGA2 compared with the control group (P<0.05), whereas E-cadherin expression was increased (P<0.05). After treatment with si-HMGA2 in combination with Wnt/β-catenin agonists (SKL2001) or inhibitors (XAV-939), EMT was respectively enhanced or inhibited in IU-TAB-1 cells. Overall, si-HMGA2 may attenuate EMT in thymic cancer cells and the mechanism may be related to the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Sheng Tan
- Department of Cardiovascular Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Jili Chen
- Department of Ophthalmology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
9
|
Cao G, Zhang C, Tian X, Jing G, Zhou X, Yan T. circCEP128 Knockdown Suppresses Bladder Cancer Progression via Regulating microRNA-515-5p/SDC1 Axis. Cancer Manag Res 2021; 13:2885-2896. [PMID: 33833571 PMCID: PMC8020055 DOI: 10.2147/cmar.s288229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 02/02/2021] [Indexed: 12/29/2022] Open
Abstract
Background Dysregulation of circular RNAs (circRNAs) is associated with bladder cancer progression. Nevertheless, the mechanisms of circRNA centrosomal protein 128 (circCEP128) underlying bladder cancer progression remain poorly understood. Methods The levels of circCEP128, microRNA-515-5p (miR-515-5p) and syndecan-1 (SDC1) were determined via reverse transcription-quantitative polymerase chain reaction or Western blot. The effects of circCEP128, miR-515-5p and SDC1 on bladder cancer progression were investigated via MTT and colony formation assays, flow cytometry and transwell analysis and subcutaneous xenograft experiments. The interactions between miR-515-5p and circCEP128 or SDC1 were examined through bioinformatics prediction and luciferase reporter assay. Results circCEP128 and SDC1 were highly expressed and miR-515-5p was low expressed in bladder cancer tissues and cells. circCEP128 knockdown hindered cell proliferation, migration and invasion and promoted cell apoptosis in bladder cancer. circCEP128 loss increased miR-515-5p expression through direct interaction in bladder cancer cells. MiR-515-5p depletion mitigated the influences of circCEP128 knockdown on bladder cancer cell phenotypes. SDC1 was a direct target of miR-515-5p. circCEP128 positively regulated SDC1 expression via miR-515-5p. MiR-515-5p restrained the malignant progression of bladder cancer cells by decreasing SDC1 expression. circCEP128 knockdown hindered the growth of bladder cancer xenograft tumors by up-regulating miR-515-5p and down-regulating SDC1. Conclusion circCEP128 knockdown hampered the tumorigenesis and progression of bladder cancer by regulating miR-515-5p/SDC1 axis in vitro and in vivo, deepening our understanding on the molecular mechanisms of circCEP128 in bladder cancer.
Collapse
Affiliation(s)
- Guanghui Cao
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Chan Zhang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Xiangyong Tian
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Gaopeng Jing
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Xiaolin Zhou
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| | - Tianzhong Yan
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, 450003, People's Republic of China
| |
Collapse
|
10
|
Faria-Ramos I, Poças J, Marques C, Santos-Antunes J, Macedo G, Reis CA, Magalhães A. Heparan Sulfate Glycosaminoglycans: (Un)Expected Allies in Cancer Clinical Management. Biomolecules 2021; 11:136. [PMID: 33494442 PMCID: PMC7911160 DOI: 10.3390/biom11020136] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
In an era when cancer glycobiology research is exponentially growing, we are witnessing a progressive translation of the major scientific findings to the clinical practice with the overarching aim of improving cancer patients' management. Many mechanistic cell biology studies have demonstrated that heparan sulfate (HS) glycosaminoglycans are key molecules responsible for several molecular and biochemical processes, impacting extracellular matrix properties and cellular functions. HS can interact with a myriad of different ligands, and therefore, hold a pleiotropic role in regulating the activity of important cellular receptors and downstream signalling pathways. The aberrant expression of HS glycan chains in tumours determines main malignant features, such as cancer cell proliferation, angiogenesis, invasion and metastasis. In this review, we devote particular attention to HS biological activities, its expression profile and modulation in cancer. Moreover, we highlight HS clinical potential to improve both diagnosis and prognosis of cancer, either as HS-based biomarkers or as therapeutic targets.
Collapse
Affiliation(s)
- Isabel Faria-Ramos
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| | - Juliana Poças
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - Catarina Marques
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
| | - João Santos-Antunes
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Guilherme Macedo
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
- Gastroenterology Department, Centro Hospitalar S. João, 4200-319 Porto, Portugal
| | - Celso A. Reis
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
- Molecular Biology Department, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), University of Porto, 4050-313 Porto, Portugal
- Pathology Department, Faculdade de Medicina, University of Porto, 4200-319 Porto, Portugal;
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, 4200-135 Porto, Portugal; (I.F.-R.); (J.P.); (C.M.); (J.S.-A.); (C.A.R.)
- Instituto de Patologia e Imunologia Molecular da Universidade do Porto (IPATIMUP), 4200-135 Porto, Portugal
| |
Collapse
|