1
|
Li Q, Zheng JW, Wang ZY, Liao SP, Zhu L, Wang X, Wan LH. Protective Effect of Rosmarinic Acid on Endotoxin-Induced Neuronal Damage Through Modulating GRP78/PERK/MANF Pathway. Drug Des Devel Ther 2025; 19:39-50. [PMID: 39816847 PMCID: PMC11733956 DOI: 10.2147/dddt.s481646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/08/2024] [Indexed: 01/18/2025] Open
Abstract
Objective Neuronal damage is criminal to cognitive dysfunction, closely related to endoplasmic reticulum stress (ERS). However, due to the pathogenesis of endotoxin-induced long-term cognitive dysfunction is not fully clarified, there is still a lack of effective treatment. This study was conducted to explore the protective effects and mechanism of rosmarinic acid (RA) against ERS in endotoxin-induced cognitive dysfunction in mice and neuronal injury in cells. Methods The efficacy of RA was evaluated using an endotoxin-induced cognitive dysfunction mice model and an in vitro neuronal injury model. Brain injury was assessed using behavioral tests and hematoxylin and eosin (HE) staining. Western blotting and Immunohistochemistry (IHC) were performed to determine NeuN, GRP78, PERK, ATF6, IRE1α, and MANF expression levels. Molecular docking was used to assess the associated mechanisms. Results Behavioral tests indicated that 20 and 40 mg/kg RA significantly improve endotoxin-induced cognitive dysfunction without dose differences. Histological analysis revealed no significant alterations in the number, morphology, and arrangement of neurons in the hippocampus and amygdala. However, 40 mg/kg RA treatment significantly decreased the hippocampal level of PERK protein and increased MANF in CA1 and DG in mice. Furthermore, our data showed that 120 μM RA pretreatment significantly inhibited LPS-conditioned culture-induced GRP78, PERK, and MANF upregulation in vitro. Finally, molecular docking studies suggested that RA could directly interact with GRP78, PERK, and IRE1, but not with MANF. Conclusion RA plays a protective role in improving cognitive function against endotoxemia-associated encephalopathy in mice via inhibiting the GRP78/PERK/MANF pathway.
Collapse
Affiliation(s)
- Qian Li
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jing-Wen Zheng
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Zi-Yao Wang
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Shi-Ping Liao
- Functional Laboratory, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Ling Zhu
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xia Wang
- Department of Laboratory Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Li-Hong Wan
- Department of Pharmacology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- NHC Key Laboratory of Chronobiology (Sichuan University), West China School of Basic Medical Sciences & Forensic Medicine, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
2
|
Zhang J, Chen S, Hu X, Huang L, Loh P, Yuan X, Liu Z, Lian J, Geng L, Chen Z, Guo Y, Chen B. The role of the peripheral system dysfunction in the pathogenesis of sepsis-associated encephalopathy. Front Microbiol 2024; 15:1337994. [PMID: 38298892 PMCID: PMC10828041 DOI: 10.3389/fmicb.2024.1337994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/04/2024] [Indexed: 02/02/2024] Open
Abstract
Sepsis is a condition that greatly impacts the brain, leading to neurological dysfunction and heightened mortality rates, making it one of the primary organs affected. Injury to the central nervous system can be attributed to dysfunction of various organs throughout the entire body and imbalances within the peripheral immune system. Furthermore, central nervous system injury can create a vicious circle with infection-induced peripheral immune disorders. We collate the pathogenesis of septic encephalopathy, which involves microglial activation, programmed cell death, mitochondrial dysfunction, endoplasmic reticulum stress, neurotransmitter imbalance, and blood-brain barrier disruption. We also spotlight the effects of intestinal flora and its metabolites, enterocyte-derived exosomes, cholinergic anti-inflammatory pathway, peripheral T cells and their cytokines on septic encephalopathy.
Collapse
Affiliation(s)
- Jingyu Zhang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shuangli Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiyou Hu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lihong Huang
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - PeiYong Loh
- School of International Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinru Yuan
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Liu
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jinyu Lian
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lianqi Geng
- Binhai New Area Hospital of TCM, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin, China
| | - Zelin Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yi Guo
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bo Chen
- Research Center of Experimental Acupuncture Science, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Binhai New Area Hospital of TCM, Fourth Teaching Hospital of Tianjin University of TCM, Tianjin, China
- Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Acupuncture and Moxibustion and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
3
|
Zhong X, Wang Y, Liu D, Liang Y, Liu W, Huang Y, Xie L, Cao W, Xu Y, Chen L. HC067047 Ameliorates Sepsis-associated Encephalopathy by Suppressing Endoplasmic Reticulum Stress and Oxidative Stress-Induced Pyroptosis in the Hippocampi of Mice. Neuroscience 2023; 517:117-127. [PMID: 36805006 DOI: 10.1016/j.neuroscience.2023.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is a common neurological complication of sepsis and is characterized by hyperneuroinflammation. NLRP3 inflammasome-mediated pyroptosis can induce an inflammatory cascade response and plays a key role in SAE. TRPV4 is involved in the hyperinflammatory response associated with inflammation; however, whether TRPV4 inhibition might alleviate SAE-related brain damage is still unknown. Therefore, we aimed to investigate the role and mechanism of HC067047, a potent inhibitor of TRPV4, in hyperneuroinflammation and blood-brain barrier (BBB) dysfunction in a lipopolysaccharide (LPS)-induced SAE mouse model. We found that HC067047 administration significantly inhibited the expression of TRPV4 and p-CamkIIα in the hippocampi of SAE mice. Furthermore, HC067047 treatment attenuated LPS-induced endoplasmic reticulum (ER) stress and oxidative stress (OS), thus remarkably preventing NLRP3 inflammasome-mediated pyroptosis, as well as the expression of proinflammatory factors (IL-1β and IL-18). Additionally, we found that HC067047 selectively prevented pyroptosis in hippocampal cells, mainly the neurons, oligodendrocytes and the resident microglia. The disruption of BBB integrity in SAE mice was also rescued by HC067047 intervention. Thus, we can conclude that the TRPV4 inhibitor HC067047 could protect against hippocampal cell pyroptosis, which might be due to the attenuation of the NLRP3 inflammasome-mediated pyroptosis pathway caused by ER stress and OS. Our findings suggest a potential preventive role for HC067047 in SAE.
Collapse
Affiliation(s)
- Xiaolin Zhong
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yajuan Wang
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Dandan Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yue Liang
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - WenJia Liu
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yanmei Huang
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Lihua Xie
- Department of Laboratory Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Wenyu Cao
- Department of Human Anatomy, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China
| | - Yang Xu
- Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 421001 Hunan, China.
| | - Ling Chen
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, China.
| |
Collapse
|
4
|
Sepsis-Induced Brain Dysfunction: Pathogenesis, Diagnosis, and Treatment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1328729. [PMID: 36062193 PMCID: PMC9433216 DOI: 10.1155/2022/1328729] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/30/2022] [Accepted: 06/28/2022] [Indexed: 11/18/2022]
Abstract
Dysregulated host response to infection, which cause life-threatening organ dysfunction, was defined as sepsis. Sepsis can cause acute and long-term brain dysfunction, namely, sepsis-associated encephalopathy (SAE) and cognitive impairment. SAE refers to changes in consciousness without direct evidence of central nervous system infection. It is highly prevalent and may cause poor outcomes in sepsis patients. Cognitive impairment seriously affects the life quality of sepsis patients and increases the medical burden. The pathogenesis of sepsis-induced brain dysfunction is mainly characterized by the interaction of systemic inflammation, blood-brain barrier (BBB) dysfunction, neuroinflammation, microcirculation dysfunction, and brain dysfunction. Currently, the diagnosis of sepsis-induced brain dysfunction is based on clinical manifestation of altered consciousness along with neuropathological examination, and the treatment is mainly involves controlling sepsis. Although treatments for sepsis-induced brain dysfunction have been tested in animals, clinical treat sepsis-induced brain dysfunction is still difficult. Therefore, we review the underlying mechanisms of sepsis-induced brain injury, which mainly focus on the influence of systemic inflammation on BBB, neuroinflammation, brain microcirculation, and the brain function, which want to bring new mechanism-based directions for future basic and clinical research aimed at preventing or ameliorating brain dysfunction.
Collapse
|
5
|
Lu G, Li Q, Liu J, Jia Y, Tang J, Zhang X. Inhibition of endoplasmic reticulum stress and the downstream pathways protects CD4 + T cells against apoptosis and immune dysregulation in sepsis. IUBMB Life 2022; 74:1070-1080. [PMID: 35859520 DOI: 10.1002/iub.2666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/10/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND Immunosuppression mediated by CD4+ T cell apoptosis and dysfunction is a key factor in promoting the progression of sepsis. Endoplasmic reticulum (ER) stress participates in the apoptosis and dysfunction of immune cells. AIM We aimed to investigate the role of ER stress inhibition in CD4+ T cells in both in vitro and in vivo models of sepsis. METHODS In vitro model of sepsis was established with lipopolysaccharide (LPS) and the rat model of sepsis was established using cecal ligation and puncture (CLP). After the LPS treatment or CLP, ER stress inhibitors including 4-PBA, SNJ-1945, and SP600125 were used to treat cells or rats, and the CD4+ T cells were obtained by magnetic bead sorting. The effects of ER stress inhibitors on apoptosis and the function of CD4+ T cells were evaluated. RESULTS After the LPS stimulation or CLP, the levels of ER stress and downstream markers (PERK, eIF2α, IRE-1α, ATF6, ATF4, XBP-1s, GRP78, CHOP, and p-JNK) were increased in CD4+ T cells at the beginning of sepsis. Meanwhile, the number of apoptotic CD4+ T cells markedly increased. In addition, sepsis impaired the function of CD4+ T cells, manifested by the increased population of Th1, Th2, Th17, and Treg, as well as the production of TNF-α, interleukin (IL)-6, IL-4, and IL-10. However, inhibitors of ER stress, JNK, and calpain all decreased the induction of Th1 and Th17, enhanced the increase of Th2 and Treg, decreased the production of TNF-α and IL-6, and enhanced the production of IL-4 and IL-10. CONCLUSION Our findings indicate that ER stress inhibitors may play a protective role by reducing CD4+ T cell apoptosis and maintaining CD4+ T cell function, which may be useful for enhancing the immune function and poor prognosis of patients with sepsis.
Collapse
Affiliation(s)
- Gang Lu
- Department of Trauma Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Qingqing Li
- Department of Trauma Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianjun Liu
- Department of Trauma Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Yanan Jia
- Department of Geriatrics, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Jianguo Tang
- Department of Trauma Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| | - Xuemin Zhang
- Department of Trauma Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, Shanghai, China
| |
Collapse
|