1
|
Porter HL, Brown CA, Roopnarinesingh X, Giles CB, Georgescu C, Freeman WM, Wren JD. Many chronological aging clocks can be found throughout the epigenome: Implications for quantifying biological aging. Aging Cell 2021; 20:e13492. [PMID: 34655509 PMCID: PMC8590098 DOI: 10.1111/acel.13492] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 01/01/2023] Open
Abstract
Epigenetic alterations are a hallmark of aging and age-related diseases. Computational models using DNA methylation data can create "epigenetic clocks" which are proposed to reflect "biological" aging. Thus, it is important to understand the relationship between predictive clock sites and aging biology. To do this, we examined over 450,000 methylation sites from 9,699 samples. We found ~20% of the measured genomic cytosines can be used to make many different epigenetic clocks whose age prediction performance surpasses that of telomere length. Of these predictive sites, the average methylation change over a lifetime was small (~1.5%) and these sites were under-represented in canonical regions of epigenetic regulation. There was only a weak association between "accelerated" epigenetic aging and disease. We also compare tissue-specific and pan-tissue clock performance. This is critical to applying clocks both to new sample sets in basic research, as well as understanding if clinically available tissues will be feasible samples to evaluate "epigenetic aging" in unavailable tissues (e.g., brain). Despite the reproducible and accurate age predictions from DNA methylation data, these findings suggest they may have limited utility as currently designed in understanding the molecular biology of aging and may not be suitable as surrogate endpoints in studies of anti-aging interventions. Purpose-built clocks for specific tissues age ranges or phenotypes may perform better for their specific purpose. However, if purpose-built clocks are necessary for meaningful predictions, then the utility of clocks and their application in the field needs to be considered in that context.
Collapse
Affiliation(s)
- Hunter L. Porter
- Oklahoma Medical Research FoundationOklahomaOKUSA
- University of Oklahoma Health Sciences CenterOklahomaOKUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingOklahomaOKUSA
| | - Chase A. Brown
- Oklahoma Medical Research FoundationOklahomaOKUSA
- University of Oklahoma Health Sciences CenterOklahomaOKUSA
| | - Xiavan Roopnarinesingh
- Oklahoma Medical Research FoundationOklahomaOKUSA
- University of Oklahoma Health Sciences CenterOklahomaOKUSA
| | - Cory B. Giles
- Oklahoma Medical Research FoundationOklahomaOKUSA
- University of Oklahoma Health Sciences CenterOklahomaOKUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingOklahomaOKUSA
| | | | - Willard M. Freeman
- Oklahoma Medical Research FoundationOklahomaOKUSA
- University of Oklahoma Health Sciences CenterOklahomaOKUSA
| | - Jonathan D. Wren
- Oklahoma Medical Research FoundationOklahomaOKUSA
- University of Oklahoma Health Sciences CenterOklahomaOKUSA
- Oklahoma Center for Geroscience and Healthy Brain AgingOklahomaOKUSA
| |
Collapse
|
2
|
Lee JH, Gaetz J, Bugarija B, Fernandes CJ, Snyder GE, Bush EC, Lahn BT. Chromatin analysis of occluded genes. Hum Mol Genet 2009; 18:2567-74. [PMID: 19380460 PMCID: PMC2701328 DOI: 10.1093/hmg/ddp188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We recently described two opposing states of transcriptional competency. One is termed 'competent' whereby a gene is capable of responding to trans-acting transcription factors of the cell, such that it is active if appropriate transcriptional activators are present, though it can also be silent if activators are absent or repressors are present. The other is termed 'occluded' whereby a gene is silenced by cis-acting, chromatin-based mechanisms in a manner that blocks it from responding to trans-acting factors, such that it is silent even when activators are present in the cellular milieu. We proposed that gene occlusion is a mechanism by which differentiated cells stably maintain their phenotypic identities. Here, we describe chromatin analysis of occluded genes. We found that DNA methylation plays a causal role in maintaining occlusion for a subset of occluded genes. We further examined a variety of other chromatin marks typically associated with transcriptional silencing, including histone variants, covalent histone modifications and chromatin-associated proteins. Surprisingly, we found that although many of these marks are robustly linked to silent genes (which include both occluded genes and genes that are competent but silent), none is linked specifically to occluded genes. Although the observation does not rule out a possible causal role of these chromatin marks in occlusion, it does suggest that these marks might be secondary effect rather than primary cause of the silent state in many genes.
Collapse
Affiliation(s)
- Jae Hyun Lee
- Department of Human Genetics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Lee JH, Bugarija B, Millan EJ, Walton NM, Gaetz J, Fernandes CJ, Yu WH, Mekel-Bobrov N, Vallender TW, Snyder GE, Xiang AP, Lahn BT. Systematic identification of cis-silenced genes by trans complementation. Hum Mol Genet 2008; 18:835-46. [PMID: 19050040 PMCID: PMC2640206 DOI: 10.1093/hmg/ddn409] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
A gene's transcriptional output is the combined product of two inputs: diffusible factors in the cellular milieu acting in trans, and chromatin state acting in cis. Here, we describe a strategy for dissecting the relative contribution of cis versus trans mechanisms to gene regulation. Referred to as trans complementation, it entails fusing two disparate cell types and searching for genes differentially expressed between the two genomes of fused cells. Any differential expression can be causally attributed to cis mechanisms because the two genomes of fused cells share a single homogenized milieu in trans. This assay uncovered a state of transcriptional competency that we termed 'occluded' whereby affected genes are silenced by cis-acting mechanisms in a manner that blocks them from responding to the trans-acting milieu of the cell. Importantly, occluded genes in a given cell type tend to include master triggers of alternative cell fates. Furthermore, the occluded state is maintained during cell division and is extraordinarily stable under a wide range of physiological conditions. These results support the model that the occlusion of lineage-inappropriate genes is a key mechanism of cell fate restriction. The identification of occluded genes by our assay provides a hitherto unavailable functional readout of chromatin state that is distinct from and complementary to gene expression status.
Collapse
Affiliation(s)
- Jae Hyun Lee
- Department of Human Genetics, Howard Hughes Medical Institute, University of Chicago, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
MS-275 synergistically enhances the growth inhibitory effects of RAMBA VN/66-1 in hormone-insensitive PC-3 prostate cancer cells and tumours. Br J Cancer 2008; 98:1234-43. [PMID: 18349838 PMCID: PMC2359640 DOI: 10.1038/sj.bjc.6604295] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Combining drugs, which target different signalling pathways, often decreases adverse side effects while increasing the efficacy of treatment. The objective of our study was to determine if the combination of our novel atypical retinoic acid metabolism-blocking agent (RAMBA) VN/66-1 and a promising histone deacetylase inhibitor N-(2-aminophenyl)4-[N-(pyridine-3-yl-methoxy-carbonyl)aminomethyl]benzamide (MS-275) would show enhanced antineoplastic activity on human PC-3 prostate cancer cells/tumours and also to decipher the molecular mechanisms of action. The combination of VN/66-1+MS-275 was found to be synergistic in inhibiting PC-3 cell growth, caused cell cytostaticity/cytotoxicity and induced marked G2/M phase arrest and apoptosis. In mice with well-established PC-3 tumours, VN/66-1 (5 and 10 mg kg−1 day−1) caused significant suppression of tumour growth compared with mice receiving vehicle alone. Furthermore, treatment with VN/66-1 (10 mg kg−1 day−1)+MS-275 (2.5 mg kg−1 day−1) for 18 days resulted in an 85% reduction in final mean tumour volume compared with control and was more effective than either agent alone. Mechanistic studies indicated that treatment of PC-3 cells/tumours with VN/66-1+MS-275 caused DNA damage (upregulation of γH2AX), hyperacetylation of histones H3 and H4, upregulation of retinoic acid receptor-β, p21WAF1/CIP1, E-cadherin, and Bad and downregulation of Bcl-2. These data suggest that the mechanism of action of the combination of agents is DNA damage-induced p21 activation, resulting in inhibition of the Cdc2/cyclin B complex and accumulation of cells in G2/M phase. In addition, the combination caused modulation and induction of apoptosis. These results suggest that VN/66-1 or its combination with MS-275 may be a novel therapy for the treatment of prostate carcinoma.
Collapse
|
5
|
KSHV LANA inhibits TGF-beta signaling through epigenetic silencing of the TGF-beta type II receptor. Blood 2008; 111:4731-40. [PMID: 18199825 DOI: 10.1182/blood-2007-09-110544] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Signaling through the transforming growth factor-beta (TGF-beta) pathway results in growth inhibition and induction of apoptosis in various cell types. We show that this pathway is blocked in Kaposi sarcoma herpesvirus (KSHV)-infected primary effusion lymphoma through down-regulation of the TGF-beta type II receptor (TbetaRII) by epigenetic mechanisms. Our data also suggest that KSHV infection may result in lower expression of TbetaRII in Kaposi sarcoma and multicentric Castleman disease. KSHV-encoded LANA associates with the promoter of TbetaRII and leads to its methylation and to the deacetylation of proximal histones. Reestablishment of signaling through this pathway reduces viability of these cells, inferring that KSHV-mediated blockage of TGF-beta signaling plays a role in the establishment and progression of KSHV-associated neoplasia. These data suggest a mechanism whereby KSHV evades both the antiproliferative effects of TGF-beta signaling by silencing TbetaRII gene expression and immune recognition by suppressing TGF-beta-responsive immune cells through the elevated secretion of TGF-beta1.
Collapse
|
6
|
Macaluso M, Montanari M, Noto PB, Gregorio V, Bronner C, Giordano A. Epigenetic modulation of estrogen receptor-alpha by pRb family proteins: a novel mechanism in breast cancer. Cancer Res 2007; 67:7731-7. [PMID: 17699777 DOI: 10.1158/0008-5472.can-07-1476] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Estrogen receptor-alpha (ER-alpha) plays a crucial role in normal breast development and has also been linked to mammary carcinogenesis and clinical outcome in breast cancer patients. However, ER-alpha gene expression can change during the course of disease and, consequently, therapy resistance can occur. The molecular mechanism governing ER-alpha transcriptional activity and/or silencing is still unclear. Here, we showed that the presence of a specific pRb2/p130 multimolecular complex on the ER-alpha promoter strongly correlates with the methylation status of this gene. Furthermore, we suggested that pRb2/p130 could cooperate with ICBP90 (inverted CCAAT box binding protein of 90 kDa) and DNA methyltransferases in maintaining a specific methylation pattern of ER-alpha gene. The sequence of epigenetic events for establishing and maintaining the silenced state of ER-alpha gene can be locus- or pathway- specific, and the local remodeling of ER-alpha chromatin structure by pRb2/p130 multimolecular complexes may influence its susceptibility to specific DNA methylation. Our novel hypothesis could provide a basis for understanding how the complex pattern of ER-alpha methylation and transcriptional silencing is generated and for understanding the relationship between this pattern and its function during the neoplastic process.
Collapse
Affiliation(s)
- Marcella Macaluso
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania 19122, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Luong QT, O'Kelly J, Braunstein GD, Hershman JM, Koeffler HP. Antitumor activity of suberoylanilide hydroxamic acid against thyroid cancer cell lines in vitro and in vivo. Clin Cancer Res 2006; 12:5570-7. [PMID: 17000694 DOI: 10.1158/1078-0432.ccr-06-0367] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE The histone deacetylase inhibitor, suberoylanilide hydroxamic acid (SAHA), has multiple antitumor effects against a variety of human cancers. EXPERIMENTAL DESIGN We treated several anaplastic and papillary thyroid cancer cell lines with SAHA to determine if it could inhibit the growth of these cells in vitro and in vivo. RESULTS SAHA effectively inhibited 50% clonal growth of the anaplastic thyroid cancer cell lines, ARO and FRO, and the papillary thyroid cancer cell line, BHP 7-13, at 1.3x10(-7) to 5x10(-7) mol/L, doses that are achievable in patients. In concert with growth inhibition, SAHA down-regulated the expression of cyclin D1 and up-regulated levels of p21WAF1. Annexin V and cleavage of poly(ADP)ribose polymerase were both increased by exposure of the thyroid cancer cells to SAHA. Expression of the death receptor 5 (DR5) gene was also increased by SAHA, but the combination of the DR5 ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), with SAHA had little effect compared with SAHA alone. Of note, the combination of paclitaxel, doxorubicin, or paraplatin with SAHA enhanced cell killing of the thyroid cancer cells. In addition, murine studies showed that SAHA administered daily by i.p. injection at 100 mg/kg inhibited the growth of human thyroid tumor cells. CONCLUSION Our data indicate that SAHA is a plausible adjuvant therapy for thyroid cancers.
Collapse
Affiliation(s)
- Quang T Luong
- Department of Medicine and the Samuel Oschin Comprehensive Cancer Center, Cedars-Sinai Medical Center, University of California at Los Angeles School of Medicine, Los Angeles, California 90048, USA.
| | | | | | | | | |
Collapse
|
8
|
Abstract
Cell cycle progression is monitored by surveillance mechanisms, or cell cycle checkpoints, that ensure that initiation of a later event is coupled with the completion of an early cell cycle event. Deregulated proliferation is a characteristic feature of tumor cells. Moreover, defects in many of the molecules that regulate the cell cycle have been implicated in cancer formation and progression. Key among these are p53, the retinoblastoma protein (pRb) and its related proteins, p107 and pRb2/p130, and cdk inhibitors (p15, p16, p18, p19, p21, p27), all of which act to keep the cell cycle from progressing until all repairs to damaged DNA have been completed. The pRb (pRb/p16(INK4a)/cyclin D1) and p53 (p14(ARF)/mdm2/p53) pathways are the two main cell-cycle control pathways frequently targeted in tumorigenesis, and the alterations occurring in each pathway depend on the tumor type. Virtually all human tumors deregulate either the pRb or p53 pathway, and oftentimes both pathways simultaneously. This review focuses on the genetic and epigenetic alterations affecting the components of mechanisms regulating the progression of the cell cycle and leading to cancer formation and progression.
Collapse
Affiliation(s)
- Marcella Macaluso
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | | | | | | |
Collapse
|
9
|
Cinti C, Macaluso M, Giordano A. Tumor-specific exon 1 mutations could be the ‘hit event’ predisposing Rb2/p130 gene to epigenetic silencing in lung cancer. Oncogene 2005; 24:5821-6. [PMID: 16044156 DOI: 10.1038/sj.onc.1208880] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Genetic alterations in Rb2/p130 gene have been reported in several tumors, but till now there are insufficient and conflicting data linking the loss of pRb2/p130 expression with the mutational status of this gene in lung cancer. We recently reported that loss or lowering of pRb2/p130 expression is mainly due to aberrant Rb2/p130 promoter methylation, in retinoblastoma tumors, and indicated that epigenetic silencing of Rb2/p130 can impair its function to negatively regulate cell cycle progression as well as apoptotic response. In order to clarify Rb2/p130 gene inactivation in lung cancer, we investigated whether epigenetic events could impair the expression of this gene in NSLC. Here, we show that specific Rb2-exon 1 homozygous mutations, occurring in an Rb2/p130, region, rich in CpG dinucleotides, could be the 'hit event' that predispose this gene to epigenetic changes, leading to Rb2/p130 gene silencing in lung cancer. Moreover, these homozygous mutations, found in different tumor histotypes, could represent tumor-specific markers.
Collapse
Affiliation(s)
- Caterina Cinti
- Institute of Clinical Physiology, CNR, Siena Unity, Italy
| | | | | |
Collapse
|
10
|
Macaluso M, Montanari M, Giordano A. The regulation of ER-α transcription by pRb2/p130 in breast cancer. Ann Oncol 2005; 16 Suppl 4:iv20-22. [PMID: 15923424 DOI: 10.1093/annonc/mdi903] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Breast carcinoma is the most common form of neoplasia in women of the Western world, and the mortality from this disease in women is second only to that of lung cancer, with a means incidence of 10%. Although, several studies have indicated that the development of this fairly heterogeneous disease depends on a great many environmental, socio-economic, hormonal and genetic factors, the pathogenesis of breast cancer remains poorly understood. ER-alpha (estrogen-receptor alpha) and its ligand (17beta-estradiol) play a crucial role in normal breast development and have also been linked to mammary carcinogenesis and clinical outcome in breast cancer patients. The estrogen signaling regulates the growth of some breast tumors, and antiestrogen therapies can effectively block this growth signaling resulting in tumor suppression. However, most tumors eventually develop antiestrogen resistance, and antiestrogen are mostly ineffective in patience with advanced disease. Although several studies have been proposed that epigenetic events could be involved in ER-alpha silencing the mechanisms regulating ER-alpha transcription are poorly understood. Our studies suggested that pRb2/p130-complexes bind to the ER-alpha promoter and could be involved in the transcriptional regulation of the ER-alpha gene by altering chromatin structure and DNA methylation pattern.
Collapse
Affiliation(s)
- M Macaluso
- Sbarro Institute for Cancer Research and Molecular Medicine, Center of Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | | | | |
Collapse
|